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Subcritical closed string field theory in less than 26 dimensions
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In this paper we construct the second-quantized action for subcritical closed string field theory
with zero cosmological constant in dimensions 2 & D ( 26, generalizing the nonpolynomial closed
string Geld theory action proposed by the author and the Kyoto and MIT groups for D = 26. The
proof of gauge invariauce is considerably complicated by the presence of the Liouville field P and
the nonpolynomial nature of the action. However, we explicitly show that the polyhedral vertex
functions obey BRST invariance to all orders. By point-splitting methods we calculate the anomaly
contribution due to the Liouville field, and show in detail that it cancels only if D —26+ 1+3Q = 0,
in both the bosonized and unbosonized polyhedral vertex functions. %'e also show explicitly that
the four-point function generated by this action reproduces the shifted Shapiro-Virasoro amplitude
found from c = 1 matrix models and Liouville theory in two dimensions. This calculation is nontrivial
because the conformal transformation from the z to the p plane requires rather complicated third
elliptic integrals and is hence much more involved than the ones found in the usual polynomial
theories.

PACS number(s): 11.25.Pm

I. INTRODUCTION

At present matrix models [1—3] give us a simple and
powerful technique for constructing the 8 matrix of two-
dimensional string theory. However, all string degrees of
freedom are missing, and hence many of the successes of
the theory are intuitively difficult to interpret in terms
of string degrees of &eedom. Features such as the dis-
crete states [4—7) and the u)(oo) algebra arise in a rather
obscure fashion.

By contrast, Liouville theory [8,9] manifestly includes
all string degrees of freedom, but the theory is notoriously
difficult to solve, even for the free case.

In order to further develop the Liouville approach, we
present the details of a second-quantized Beld theory of
closed strings deBned in 2 & D & 26 dimensions with
p, = 0. (See Refs. [10,11] for work on c=l open string
field theory. )

There are several advantages to presenting a second-
quantized Beld formulation of Liouville theory.

(a) The c = 1 barrier, which has proved to be insur-
mountable for matrix models, is trivially breached for Li-
ouville theory (although we no longer expect the model
to be exactly solvable beyond c = 1).

]

(b) In principle, it should be possible to present a su-

persymmetric Liouville theory in field theory form, which
is difFicult for the matrix model approach.

(c) For c = 1, the rather mysterious features appear-
ing in matrix models, which are intuitively difficult to
understand, have a standard Beld theoretical interpreta-
tion. For example, "discrete states" arise naturally as
string degrees of freedom with discrete momenta when
we calculate the physical states of the theory. In other
words, the C)(X, b, c, g) field contains three sets of states.
Symbolically, we have

I 4(X, b, c, P)) = Itachyon) +
I
discrete states)

+IBRST trivial states) .

Also, the structure constants of u)(oo) arise as the co-
efficients of the three-string vertex function, analogous
to the situation in Yang-Mills theory. We see that i()(oo)
is just a subalgebra of the full string Beld theory gauge
algebra. For example, if (3, mI labels the SU(2) quantum
numbers of the discrete states, then we can show that
the three-string vertex function (Cs), taken on discrete
states, reproduces the structure constants of u)((x)):

(ii, ~il(i~ ~~l(is ~sl6) - (@~;.-, (O)@~'.-*(&)@~'. ~ (~))
(glrri2 32rnl)(Ijs, jy+jg —1 ms, my+m2 (2)

where we have made a conformal transformation f'rom the
three-string world sheet to the complex plane, and where
the charges Qi = $ 2"',. 4s (z) generate the standard
u)(oo) algebra:

[Q3„-, Q2. ,-,] = (3i~2 —32~i)Qs, +2.+i,-,+-. (3)

To construct the string Geld theory action for noncrit-

I

ical strings, we first begin with the nonpolynomial closed
string action of the 26-dimensional string theory, first
written down by the author [12] and the Kyoto and MIT
groups [13—15]:

(4)
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where Q = Qs(bo —bo), Qo is the usllal Becchi-Rouet-
Stora-Tyutin (BRST) operator, and the field 4 trans-
forms as

where n labels the number of faces of the polyhedra, and
there are more than one distinct polyhedra at each level.

For example, there are 2 polyhedra at N = 6, 5 polyhedra
at N = 7, and 14 polyhedra at N = 8 [12].

If we insert b[4) into the action, we find that the result
does not vanish, unless

(-1)"(4'IIQA) + n(Qoll@'" 'A)

+) C„"(e"-"iiC~A)=0, (6)

where the double bars mean that when we join two poly-
hedra, the common boundary has circumference 2m. The
meaning of this equation is rather simple. The first two
terms on the left-hand side represent the action of g, Q;
on the vertex function. Naively, we expect the sum of
these two terms to vanish. However, naive BRST invari-
ance is broken by the third term, which has an impor-
tant interpretation. This third term consists of polyhedra
with rather special parameters; i.e., they are polyhedra
which are at the end points of the modular region. Thus,
these polyhedra are actually composites; they can be split
in half, into two smaller polyhedra, such that the bound-
ary of contact is 2z. This is the meaning of the double
bars.

[This action also has additional quantum corrections
because the measure of integration D4(X) is not gauge
invariant. These quantum corrections can be explicitly
solved in terms of a recursion relation. These correc-
tions can be computed either by calculating these loop
corrections to the measure [16],or by using the Batalin-
Vilkovisky (BV) quantization method [17].]

If strings have equal parametrization length 2z, then
we must triangulate moduli space with cylinders of equal
circumference but arbitrary extension, independent of
the dimension of space-time Thus, .the triangulation of
moduli space on Riemann surfaces remains the same in
any dimension D. Therefore, the basic structure of the
action remains the same for subcritical strings with equal
parametrization length.

%hat is diH'erent, of course, is that the string degrees of
freedom have changed drastically, and a Liouville field P
must be introduced. The addition of the Liouville theory
complicates the proof of gauge invariance considerably,
however, since this field must be inserted at curvature sin-
gularities within the vertex functions, i.e., at the corners
of the polyhedra. This means that the standard proof of
gauge invariance formally breaks down, and hence must
be redone.

This raises a probIem, since the explicit cancellation
of these anomalies has only been performed for polyno-
mial string 6eld theory actions, not the nonpolynomial

one. In particular, the anomaly cancellation of the Wit-
ten field theory depends crucially on knowledge of the
specific n»merical value of the Neumann functions. How-

ever, the Ne»mann functions of the nonpolynomial field
theory are only defined formally. Explicit forms for them
are not known. Thus, it appears that the cancellation of
anomalies seems impossible.

However, we will use point-splitting methods, pio-
neered in [18—21], which have the advantage that we can
isolate those points on the world sheet where these in-
sertion operators must be placed, and hence only need
to calculate the anomaly at these insertion points. Thus,
we do not need to have an explicit form for the Neu-
mann functions; we need only certain identities which
these Neumann functions obey. The great advantage of
the point-splitting method, therefore, is that we can show
BRST invariance to all orders in polyhedra, without hav-
ing to have explicit expressions for the Neumann func-
tions. As an added check, we will calculate the anomaly
in two ways, using both bosonized and unbosonized ghost
variables.

Thus, we will first calculate the anomaly contribution,
isolating the potential divergences coming Rom the in-
sertion points, and show that they snm to zero. Then we
will show that our theory reproduces the standard shifted
Shapiro-Virasoro amplitude.

II. BRST INVARIANCE OF VERTICES

We will specify our conventions by introducing a field
which combines the string variable X' (where i labels the
Lorentz index) and the Liouville field P. We introduce
P" where y, = 0, 1, 2, ..., D and where P+ corresponds to
the Liouville field, so that P" = (X', P).

The first-quantized action is given by

a = —J pf +y (g' (a.x'a,x; + a.aa, a) + qa) .

(7)

The holomorphic part of the energy-momentum tensor
is therefore

T 4 (g yl )2 & (F24,v)

r;," = —(B,a)'+ —(8,'0), (8)

where we have bosonized the ghost 6elds via e = e and
b = e and where Q" = (O, Q). Demanding that the
central charge of the Virasoro algebra vanish implies that

[L,L ] = (n —m)L + + —n(n —l)h +,0, (9)

with total central charge

c = D + 1+3Q' —26 = 0,
so that Q = 2~2 for D = 1 (or for two dimensions if
we promote P to a dimension). Notice that the ghost
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field has a background charge of —3 and the P" field has
a background charge of Q" = (0, Q). This allows us to
collectively place the bosonized ghost field and the (t"
field together into one field. We will use the index M
when referring to the collective combination of the string
variable, the Liouville field, and the bosonized field. We
will define

qM (0 q
= (x', (t, o) .

To calculate the insertion factors in the vertex func-

tion, we must analyze the terms in the first-quantized
action proportional to the background charge:

M
~gB(Pd (, (12)

2(N —2)
gM yM ]2

j=l

where j labels the 2(N —2) sites where we have curvature
singularities on the string world sheet. These insertions,
in fact, are the principal complication facing us in calcu-
lating the anomalies of the various vertex functions.

The vertex is then defined as

(VN) = &N(VN)0, (14)

where B~ consists of line integrals of 6 operators de-

fined over Beltrami diff'erentials (see the Appendix for

conventions for the vertex function) and ~VN)0 is the

where we have normalized the curvature on the world
sheet such that f ~gRd ( = 4xg, where y is the Euler
number. In general, the curvature on the string world
sheet is zero, except at isolated points where the strings
join. At these interior points, the curvature is a 8 func-
tion, such that f ~gRd2( = —2vr around these points.
This means that X-point vertex functions, in general,
must have insertions (after rescaling $)

standard vertex function given as an overlap condition
on the string and ghost degrees of freedom which must
satisfy the usual BRST condition

N

) q;[VN)o = 0.

Notice that it is the presence of this factor B~ which
prevents the vertex function &om being trivially BRST
invariant. The reason for this is that BN contains line
integrals of the 6 operators, defined over Beltrami differ-
entials p,I„such that

(16)

Whenever Q is commuted past a term in BN, it cre-
ates an expansion or contraction of some of the modular
parameters within the polyhedral vertex function. The
deformation generated by T„, is given as a total deriva-
tive in the modular parameter 7~, i.e. ,

d7 QTP f d7/g

When this deformation is integrated over the modular
parameter, we find only the end points of the modular re-

gion. However, the end points of the modular region are
where the polyhedra splits into two smaller polyhedra,
connected by a common boundary of 2x. This, in turn,
reproduces the residual terms (4" i'~~cp"A) appearing in

Eq. (6) which violate naive BRST invariance. Thus,
the importance of this B~ term is that it gives the cor-
rections to the naive BRST invariance equations. (The
terms which violate naive BRST invariance, correspond-
ing to the boundary of the region of integration, were
constructed in [12], as shown in Eq. (6). However, these
BN factors were first constructed in detail in Ref. [14],
thereby completing the proof of classical gauge invariance
of the theory. )

Fortunately, the factor B~ remains the same even
for the subcritical case independent of the dimension of
space-time. Therefore, we can ignore this term and shall
concentrate instead on the properties of ~VN)o, which is

defined as

iVN)o =
(2(N —2)

(qM~M y2) r N ) N
M + QM

);="i
N oo N oo

) )
r, s n, m=O v', s n, m=O

dM
~

M)
&;="i )

where P; represents the operator which rotates the string field by 0 and then averages it porn zero to 2a, where j
labels the insertion points, where we have deliberately dropped an uninteresting constant, and where the state vector
ip; ) and the Neumann functions are defined in the Appendix.

For our calculation, we would like to commute the insertion operator directly into the vertex function. performing
the commutation, we find (for % = 3)

3

l4)0= f&(p, +p, +pa +Q ) p;exp

7,s n=l n=l 7, s

3 oo

) ) ~rs Mr Ns

v, s n, m=0

cos mar/2 l d p; [p;)
i=1

Q ) ) ( ) Mr ) ~rs Mr

v=1 n=l p)s
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where QM = (0, —iQ, —3}.The factor 1j3 appearing be-
fore the background charge arises because we have broken
up the insertion operator into three equal pieces, each de-
fined in terms of the three different harmonic oscillators.
(For sixnplicity, we have only presented the holomorphic
part of the vertex function, and deleted 6 operators for
convenience. It is understood that all vertex functions
contain both the a and 6 operators. )

With these conventions, we now wish to show that the
vertices of the nonpolynomial theory are BRST covariant.
For the three-string vertex, this means P, i Q;~Vs)p = 0.

Naively, this calculation appears to be trivial, since
the vertex function simply represents a b function across
three overlapping strings. Hence, we expect that the
three contributions to Q cancel exactly. However, this
calculation is actually rather delicate, since there are po-
tentially anomalous contributions at the joining points.

Previous calculations of this identity were limited by
the fact that they used specific information about the
three-string vertex function. We would like to use a more
general method which will apply for the arbitrary N-
string vertex function. The most general method uses
point splitting.

We wish to construct a conformal map from the multi-
sheeted, three-string world sheet configuration in the p
plane to the flat, complex z plane. Fortunately, this map
was constructed in [12]:

4(z) ~II;=, v'(z —z*)(z —z')
dz

=
II". ,(, ~,.)

(20)

where the N variables p; map to points at infinity (the
external lines in the p plane) and the N —2 pair of vari-
ables (z;, z;) map to the points where two strings collide,
creating the ith vertex (which are interior points in the

p plane).
The set of complex numbers (C, z;, z;, p;} constitutes

an initial set of 2 + 4(N —2) + 2N = 6N —6 unknowns.
In order to achieve the correct counting, we must impose
a number of constraints. First, we must set the length
of the external strings at infinity to be +n In the l.imit
where z ~ p;, we have

dp(z)
z yi

(21)

Six = p(z;) —p(z;) . (22)

This gives us 2(N —2) additional constraints, for a total
of 4N constraints. Thus, the number of variables minus

This gives us 2N constraints. However, by projective
invariance we have the freedom of selecting three of the
7; to be {0,1, oo}. Then we must subtract two, because
of overall charge conservation (taking into account that
there are charges due to the Riemann cuts as well as
charges located at p;.) Thus we have 2N+6 —2 = 2N+ 4
constraints.

Next, we must impose the fact that the overlap of two
colliding strings at the ith vertex is given by ~, such that
the interaction takes place instantly in proper time v.
This gives us

the number of constraints is given by 2N —6. But this is
precisely the number of Koba-Nielsen variables necessary
to describe N-string scattering, or the number of moduli
necessary to describe a Riemann surface with N punc-
tures consisting of cylinders of equal circumference and
arbitrary extension.

These moduli can be described in terms of the proper
time v separating the ith and jth vertices, as well as the
angle 8 separating them.

Vk can de6ne

~, = 7;, + i8;, = p(z;) —p(z~), (23)

where r;z is the proper time separating the ith and jth
vertices, and 8;~ is the relative angle between them.

There are precisely 2N —6 independent variables con-
tained within the v;~, as expected. (Not all the 7";~ are
independent. )

In summary, we find that

fC, z;, z;, p;} -+ 6N —6 unknowns,

(p'(p;), p(z;) —p(z;) }—i 4N constraints,

(~;z + i 6;~ }m 2N —6 moduli . (24)

) QIV) —c()l )
i=1 C1.+C2+C3 27r

2 de
x ——0 " + —b p2 dp

+—,VCO))l&s)0, (25)

where t; are in6nitesimal curves which together comprise
circles which go around p(z;) and p(z;). Notice that this
expression is, strictly speaking, divergent because they
are de6ned at the joining point z;, where these quanti-
ties, in general, diverge. To isolate the anomaly, we will

The conformal map, with these constraints, describes
N-point scattering consisting of three-string vertices
only. This is not enough to cover all of moduli space. In
addition, we find a "missing region" [22]. For example,
we must include the 2N —6 moduli necessary to describe
the lengths of the sides of an N-sided polyhedra. The
moduli describing the various polyhedra are speci6ed by
setting 7;~ all equal to each other. In other words, on
the world sheet, the polyhedral interaction takes place
instantly in v space. Then the 2N —6 variables neces-
sary to describe the polyhedra can be found among the
8;~.

Now that we have specified the conformal map, we
can begin the calculation of the BRST invariance of the
vertex functions.

First, we will 6nd it convenient to transform the BRST
operator Q into a line integral over the p plane For th.e
three-point vertex function, we have three line integrals
which, for the most part, cancel each other out (because
of the continuity equations across the vertex function).
The only terms which do not vanish are the ones which
encircle the joining points z, and z;.

Written as a line integral, the BRST condition becomes
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now make a conformal transformation &om the p plane
to the z plane. When two operators are defined at the
same point, as in (B,P"), we will point split them by

introducing another variable z which is infinitesimally

close to z. Then our expression becomes

3
dz).&'I vs)o = .c(z)

C +C +C

1 d
I
~4.(z') ~&"(z)

2 (dz)

+
I I

—&(*') + —&'4(*) 14)
(dz'i ' dc, Q

( dz ) dz 2 0

(26)

c(«) = —c(z) b(p) =
I

—
I

«pl-'
dz (dz)

(27)

The major complication to this calculation is that the
Liouville P field does not transform as a scalar. Instead,
it transforms as

where z' is in6nitesimally close to z, where p ranges over
the D-dimensional string modes as well as the P mode,
where 6 and c are the usual reparametrization ghosts,
and the C, are now infinitesimally small curves in the z

plane which encircle the joining point, which we call z0.
In making the transition from the p plane to the z plane,
we have made the rede6nition

p(z') = p(z) + -ah,
3

(32)

where b' is an infinitesimally small constant, which we

will later set equal to zero.
We will 6nd it convenient to introduce the following

function:

f(e) = z' —zp ——e 1+ ) f„(e)h"
n=1

We can easily solve for the coefficients f„by power
expanding the following equation:

p(z ) —p(z) = -abI =2
3

= —a f (e) —e + —f (e) —e
3 5

dp 3/2= agz —ze + b(z —zo)
dz 2, , «' 3b

p( ) =«(.)+- ( — .)"I1+--( —.)+"
I3

(31)

Now let us define e = z —z0 and power expand these
functions for small e. For the purpose of point splitting,
we introduce the variable z, which is infinitesimally close
to both z and z0, and is de6ned implicitly through the
equation

dz
P(p) -+ P(z) + —ln—

2 dp
(28)

+ I ~ ~

By equating the coe%cients of b, we find

(34)

cpm I

—
I

T„+I —
I

S,fdz)' fQI'
&dp) &2)
zlll 3 ( zlI )
z' 2 ( z' )

(29)

This means that the energy-momentum tensor T trans-
forms as 2 -32f, = —.-'«'(1- p.)+

3
1 —3 + '
9

4
fs ———e s«2 (1 —pe) +

81

S = T,~ B,P m —cj, ln-«'qi' & q
(2) I

2 dp
(3o)

where S is called the Schwartzian. The form of the
Schwartzian that is most crucial for our discussion will

be

where p = b/a
In our calculation, we will 6nd potentially divergent

quantities, such as 1/(z' —z) and dz'/dz, and so we will

power expand all these quantities in terms of f„ in a
double power expansion in e and b.

Then we easily find

This complicates the calculation considerably, since it
means that there are subtle insertion factors located at
b-function curvature singularities in the vertex function.
These add nontrivial P contributions to the calculation.

III. POINT SPLITTING

z —zl

1

(e) —~

1 1—
ebb

f. , «f.' f.&—b+8'
I

—' ——I+
fi I, fg fi )

In order to perform this sensitive calculation, we will
use the method of point splitting.

Let us examine the behavior of the various variables
near the splitting point z0 using the original conformal
map in Eq. (20). Near this point, we have

1 = 1 —2

(z' —z) e f b' fi
1 —2b—

+b
I

—2—+3—+-. .fs f2
fi fi

(36)
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Also,

dz

dz dz

= 1+) 6"(ef„)' .
n=1

We also find

, =e 'f, ' (ef2)' —2fsfi

(37)

this a c-number expression which represents the anomaly.
When we put this term into the vertex function, we

pick up quantities which look like nm¹' u„"u, , where
u = e&, where, following Mandelstam, we take ( to be
a local variable defined on the closed string, such that

( = v + io. g and p coincide for the closed string lying
on the real axis. Fortunately, we know how to calculate
this term in terms of z variables.

Let us differentiate the expression in Eq. (A14) in the
Appendix:

+3f2fi '+ (efi)'( —2f2f, ')+ "
, &5 pal=e 'I —+ —[+"

(48 12)
(38)

N(p„,P, ) = 6„, ( —) ~„"(~,"+ ~,'") + 1 &

+- ) n¹'~„"(i), +~,' )
n,m)0

1dz ( 1 1
+

2 d(„ iz —z z —z') (41)

( GIz ) (z' —z)2
—4(&fi)'fzfi '

+(efi)'+ 2(efz)'

2f f 1+ 3f—2f z

, (29 13=e 'I —+ —pe I+"
i 48 12 )

(39)

and (by letting z, go to p, )

dz 1
6„,+ ) n¹our,"=

4r z 'Ye
n&1

A double difFerentiation leads to:

d d

d(„dt",
N(p„, P, ) = 6„,—) n~„"~,"+

(42)

I 2

(dz) z' —z

—1
~ ~ ~

4
(40)

The terms contained in the ellipses correspond to terms
which can be discarded in our approximation. We will
take the limit such that e is taken to be small but fi-
nite, such that 6 ( e. [We maintain this constraint be-
cause otherwise, the points z and z', which originally
belong to a single string, will belong to two different
strings. In this limit, we will find terms like b, which
apparently diverge. However, these divergent terms can
be shown to cancel if we carefully normal order the
BRST operator. Once we adopt this normal ordering,
we find that such terms vanish, as expected. For de-
tails, see Ref. [20]. A.iso, there is a Riemann cut in
the map in Eq. (20), and so we will choose the regu-
larization scheme in Ref. [21]. We can do this by alter-
ing Eq. (32) slightly. We can define our point splitting
by reexpressing our operators in terms of two new vari-
ables, zi and z2, such that p(zi) = p(z) + (2j3)ah and
p(z2) = p(z) —(2j3)a6. Then operators are defined in
terms of averaging over zi and z2. This averaging cor-
responds to choosing p(z') = p(z) + (2j3)ab and then
discarding odd powers of 6.]

Now that we have defined all our regularized ex-
pressions, we can begin the process of calculating the
anomaly. Let us first analyze the anomaly coming &om
the term 8,~ P(z') 8$(z). We will commute this expression
into the Ne»mann functions. VVe will then extract &om

) nm¹' (ar„'(0,

n, m&X

1 dz„dz, 1

2d(„dt', (z —z)z
' (43)

We will now perform the calculation in two ways, using
unbosonized ghost variables b and c, and then using the
bosonized ghost variable 0.

A. Method I: Unbosonised ghosts

%ith these identities, it is now an easy matter to calcu-

late the action of the BRST operator on the vertex func-

tion in terms of unbosonized ghost variables b and c. Let
the brackets ( ) represent the c-number expression that
we obtain when we perform this commutation. Then we

can show that the background-independent terms yield

gl g g

(z z)2

czbz'
z —zI {44)

With these expressions, we can now calculate the
contribution to the anomaly due to B,ig(z')B, P(z) and
B,c(z)b(z') This calcul.ation is simplified because the
ghost insertion factor disappears in the 6-c forxnalism.

We find (dropping the background-dependent terms,
for the moment)
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) b);~l+s)o = . c(z) — ({).b"(z')~. O)"(z))
dz t

~,+~,+~, 4+i [
dz

/dz'{ dc, dc (dz')
+2

~
~ ( (z)b(z')) 2

~ ~

(c{z)b(z')) ~Vz)o+. . .

(dz) dz . dz (dz&

C1+Ci+C3

C1 +Cz+Cs

dz t dz' 1 (dz'{ 1 dc (dz') 1
3 0+"-

4vri [ dz (z' —z)2 {,dz) 'z' —z. dz ( dz ) z' —z

dz z('5 pei 2('29 13 i dc ) 3
c(z) —e

I
+

I

+2~
I

+ pe
I

2
I I

IVs)o+
4vri (48 12) (48 12 ) dz ( 4 ) J

(45)

where the ellipses are terms which are background de-
pendent. Now let us combine the three arcs C; into one
circle which goes around the joining point zp. Integrating
by parts, we find

dz pc(z) D 1 13) O'IVs)o = . —+ ———
i=1

dc(z) 1 5D 5 65
+ + ——— IVs)o

dz z —zp 96 96 48

+ o ~ ~ (46)

The last part of the calculation is perhaps the most
crucial, i.e. , calculating the contribution of the term B,P
to the anomalies which are background dependent. Nor-

mally, this term does not contribute at all. However,
in the presence of the insertion operator at the joining
points z; and z, , this term does in fact contribute an
important part to the anomaly.

Our task is to put the operator 8,$ into the vertex
function and calculate terms proportional to the back-
ground charge Q. We find

[As an added check on the correctness of this calcu-
lation, notice that the last step reproduces the desired
transformation property of the 4) field in Eq. (28), which
has an additional contribution due to the background
charge Q. Thus, when we insert this term into the ex-
pression for the energy-momentum tensor, we simply re-
produce the Schwartzian. ]

Given this expression, we can now calculate the con-
tribution of the background-dependent terms to the
anomaly. This contribution is

dz 1 2

c(z) ——(2),b)).. 2 2

+-{)—{).
I

—({).b) I
Ib'z)o

1 dp (dz
2 dz '(dp '

)
dz

( )~ 1~5 1 1 1 IIIV
„2+i 4 (8 (z —zp)2 2 z —zo)

(49)

The last step is to put all terms together. Combining
the results of Eqs. (46) and (49), we now easily find

a,y„(p) IV,),= (-i)
2 ) ) ~,"X„"' cos(m~/2) D 13 1 1

pc(zp) ———+ —+ —Q
24 12 24 8

—) ) (d„"N„"' IV) + (47)
dc(zp) 5D 65 5 5

+ ——+ —+ —Q IVs) 0,
dz 96 48 96 32

We immediately recognize the terms on the right as being
functions of 1/(z —z;) and 1/(z —p;) in Eqs. (41) and

(42) for the case r g s.
The contribution of the anomaly &om the insertion

operator is therefore given by which cancels if

D —26+1+3' =0,

(50)

(51)

which is precisely the consistency equation for Liouville
theory in D dimensions. Thus, the vertex is BRST in-
variant.

B. Method II: Bosonized ghosts

dzQ dz——8 ln-
dp 2 8p

Next, we will show that the calculation can also be per-
formed using the bozonized ghost variable o. We exploit
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dz t pe (z) (D + 2)
„2zi f

z —zo 24

de (z) 1
+

dz Z —Z()

(D+')
]V.).96

(52)

Next, we must calculate the background-dependent
terms. We can generalize the equation which determines
how the fields change when they are commuted past the
insertion operators:

The crucial complication is that the quadratic term in
the energy-momentum tensor in Eq. (8) for the P field
and the o field differs by a factor of —1. This means that
when we insert this expression into the BRST operator Q,
we pick up an extra —1 factor, and so the contribution to
the anomaly &om the background-dependent terms now
becomes

r(z) y M

Zp

~~

dz Q' —3' (5 1
.e z„2zi 4 (8 (z —zo)z

1 1+ & ]Vs)&

where the —(+) sign appears with the P (o) operator.
Now, let us put all the terms together in the calcula-

tion. %e find

D+2 1 z 2 de ("l 5(D+2)
24 8 dz 96

a(zo) + (Qz 32) +

+—(Q' —3') ]V,). . (55)
32

Once again, we find that the anomaly cancels if we set

D+2+3(Q' —3') = 0, (56)

the fact that the I, P, and o fields can be arranged in
the same composite field P

When we commute B,P into the vertex function, we
find that the o ghost variables contribute an almost iden-
tical contribution as the P variable.

Let us redo the calculation in two parts. We will calcu-
late the background-independent terms first. This means
dropping the b and c terms in Eq. (45) and replacing the
P" field by PM. The calculation is straightforward, and
yields

as desired. Thus, the anomaly cancels in both the
bosonized and the unbosonized expressions, although
each expression is qualitatively quite dissimilar &om the
other. This is a check on the correctness of our calcula-
tions.

Similarly, the anomaly can be canceled for all non-
polynoxnial vertices. For an N-sided polyhedral vertex,
we first notice that the BRST operator Q, once it is com-
muted past the various 6 operators, vanishes on the bare
vertex because of the continuity equations, except at the
2(N —2) joining points z and z .

Second, we notice that the conformal map around each
joining point in Eq. (31) is virtually the same, no matter
how complicated the polyhedral vertex function may be.
All the messy dependence on the various constraints are
buried within p(zs) and p. Fortunately, the dependence
on these unknown factors cancels out of the calculation.
This is why the calculation can be generalized to all poly-
hedral vertices.

Thus, the calculation of the anomaly cancellation can
be performed on each of the various joining points z;
and z; separately. But since the calculation is basically
the same for each of these joining points, we have now
shown that all possible polyhedral vertex functions are
all anomaly &ee.

Notice that this proof does not need to know the spe-
cific value of the Neumann functions. The entire calcu-
lation just depended on knowing the derivatives of Eq.
(A14) and how various operators behaved when com-
muted into the vertex function.

There is one last point. In the final proof of BRST in-
variance, one has to show that, when sewing n-sided poly-
hedra with m-sided polyhedra, we obtain a (n+ m —2)-
sided polyhedra. When performing the functional in-
tegration, we obtain rather complicated deterxninants,
which must be shown to cancel. In Ref. [23], it was
shown in detail how these determinants cancel for the
critical string. We will not present all the details of how
this result can be generalized to the subcritical string,
but only sketch heuristically that it is correct.

The key observation is that these determinants are
nothing but the determinants of the functional integra-
tion of the conformal Laplacian V'2 over the conforxnal
sheet representing the various polyhedra, raised to a cer-
tain power. These functional determinants arise when we
integrate over the action given in Eq. (7). For the critical
string, the exponent arising Rom the X„ integration is
D, while the exponent arising from the ghost integration
is —26, and so the determinant vanishes if D —26 = 0.
This is a formal result, but we know &om the work of [23]
that this heuristic argument, using functional integrals,
can be shown to be rigorously correct, using harmonic
oscillators.

Similarly, for the subcritical string we can perform the
same heuristic argument. If we bosonize the b, c ghosts,
then the functional integration over the o. field is nearly
identical to the functional integration of the P field, since
both fields appear with a similar conforxnal action with
the additional insertion factor in Eq. (13). The impor-
tant observation is that the determinant factor for the
ghosts (which was already calculated in [23]) is now al-
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most identical to the determinant factor arising from the
P field. In particular, the exponent now occurs with fac-
tor 1 + 3(Q )2. For the X„ field, this means a factor
of 1 for each of the D degrees of freedom. For the ghost
determinant, this means an exponent of 1 —3(3 ) or —26,
while for the P field this means an exponent of 1+3Q .
Adding the X„contribution, the o contribution, and the
P contribution, we now have a total exponent given by
D + 1 —3(3 ) + 1 + 3Q . For the determinant term to
cancel, this sum must equal zero. But this just repro-
duces Eq. (56), as expected. Thus, we can ignore the
determinant factor in the proof of BRST invanance.

We stress, however, that this argument is heuristic and
certainly not a rigorous one.

IV. SHIFTED SHAPIRO-VIRASORO
AMPLITUDE

The next major test of the theory is whether it repro-
duces the shifted Shapiro-Virasoro amplitude. This cal-
culation is highly nontrivial, since the conformal map be-

tween the multisheeted string scattering Riemann sheet
to the complex plane is very involved. Unlike the confor-
mal maps found in light cone theory, or even the maps
found in Witten's open string theory [24,25], the nonpoly-
nomial theory yields very complicated conformal maps.

Fortunately, for the four-point function, all conformal
maps are known exactly, in terms of elliptic functions,
and the calculation can be performed [26,27].

For the four-point function, the map in Eq. (20) can
be integrated exactly. We use the identity

(z —zi)(z —z, )(z —z2)(z —z2) . A,

H;=1(z —~') i=i

where we define z; = ia, + bi and z; = —iai + bi for
complex a; and b;, and

(&; —b ) + (.6 —b2)

H, =i,,g;(~' —~~)

Then we can split the integral into two parts, with the
result

p (z) = pi(z) + p2(z)
y Ndz

pi(z) =
y& Z —Z1 Z —Z1 Z —Z2 Z —Z2

4

P2(z) = ) NA;dz

; , " ( —~') g( — )( — )( — )( — )
(59)

Written in this form, we can now perform all integrals exactly, using third elliptic integrals in Eq. (A18) and Eq.
(A20) in the Appendix. It is then easy to show

pi(z) = NgF(g, k') = Ngtn [tan P, k']

p ( )
—) g F(g, k ) + F(f, k ) +td II(P, 1 +or;, k') +~;(~; + 1)f. (60)

where

a1 + ~1g1 Qigli =
61 —a1g1 —P

f (1 + 2)
—1/2(k2 + 2) —1/21

(k2 + ~ )1/2 —(1 —4f ) / dn11
xln

(k2 + ~2) 1/2 + (1 + ~2)1/2dnu

g —bi + aigi= arctan
gai + gibi —gi'll )

and where

(61)

After a certain amount of algebra, this expression sim-
plifies considerably to

4
gNA. , ~; —g1

P( ) =)., +bt-
x ur; II(g, 1 + ~;,k') + u); ((u; + 1)f; (63)

Now that we have an explicit form for the conformal
map &om the Hat z plane to the p plane, in which string
scattering takes place; we must next impose the con-
straint that the overlap between two colliding strings is
given by vr. This is satisfied by imposing

A = (bi+ b2) + (ai+ a2)
B = (bi —b2) + (ai —a2)

g = [4a —(A —B) ]/[(A+ B) —4a ],
g = 2/(A+ B),

» ——b, —aigi, k' = 1 —k = 4AB/(A+ B)
u = dn (1 —k' sin P) . (62)

) cx;Ap(P;, k), (64)

~ = Im [p(zi) —p(»)l
(~; —gi)~; ) A;Ap(P;, k)= ——yN

2 ai + bigi —gipi Q(1 + td; )(k + (d. )
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11(y 2 k/)
. Q i 0(Pl 1 ) (65)
gk~ + u2

Next, we must calculate the separation between the
two vertices and the relative angle of rotation between
them. The proper time separating the two interactions
is given by

7 = Re [p(z2) —p(zi)]

). ups(~; —gi)II(x/2, 1+~os, k')

(oi + blgl glori) (1 + ~ )

= —K(k') ) a;Z(P;, k'),
i=1

(66)

where we have used Eq. (A24) and the fact that

II(4t, 1 + io, , k ) = II(P, 1 + u, , k') —II(4t, 1 + A&2, k'),
aKZ(arcsina I, k)

Q(a2 —1)(az —k2)
' (67)

tan/i = I, QI = COO,

i
tan/2 = —

) $2 = arcsln— (68)

which we can show by setting y = zi, z2.
Now that we have an explicit form for 7, the next prob-

lem is to differentiate it and find the Jacobian of the
transformation of ~ to x.

By differentiating, we find

where a, = NA; [(p; —bi) + ai] ~ [(p; —b2)
+a&~] ~~, where we have used Eq. (A23), where we

have set y = zi, so that tang = i, and where sin P, =
(1+idz) l. We have also used the fact that

d7 7tN

dx 2K(k)gi(l —i) (pi —ps) (pz —p4)
(73)

If we take only the tachyon component of l4), then the
four-point amplitude can be written as

). r2(P, , k') K(k') —E(k')
r(P;, k')

4

= —,K(k)-')
i=i

4

2gK(k), ; II,-=I,;g;(~' —») '

where r(8, k') = gl —k'2 sin 8 and where we have used
Eq. (A25) in the Appendix. We have also used the fact
that the derivative of n in Eq. (64) is a constant, and so

E(k) —k' sin P;K(k)
r(P;, k')

This explicit conformal map allows us to calculate the
four-point amplitude. We first write the amplitude in the

p plane, and then make a conformal map to the z plane.
Let the modular parameter be v = v + i8, where r is
the distance between the splitting strings, and 8 is the
relative rotation. Then, with a fair amount of work, one
can find the Jacobian from i to z.

Let us define z as

(~2 —~I)(ws —~4)
(71)

( Y2 Y4)(~s '7l)

so that

-(1 -) (V —
V )( — ) d (72)

(&I —v2)(~I —ws)(vi —~4)

Putting everything together, we now find

&4 ——(V, I IV, )
bobp

Io+Io —2

V ~ V i dz b.. b.—.— Vz Vo
2

d v" exp ip; i +e; i lAt- (74)

where we must sum over all permutations so that we
integrate over the entire complex plane, where bo defined
in the p plane transforms into f& dz(dz/dlo)b, in the z
plane, where C is the image in the z plane of a circle in the
p plane which slices the intermediate closed string, where
V(z) = c(z)c(z)V0(z), where V0 is the tachyon vertex
without ghosts, and where the ghost part A~ equals

dz dZ
A.~ = . exp& —) (o;o;.)+ ) (o,.o.+(z)) ~

i
d rL., (~* —»)

(»)c 2n.i dlo g. ,(z».)
= 2—,*(1- *)K(k)(~.—~.)'(~. —~.)' .

2
$2~ ~2pg 'pQ j ~ 2PQ 'P (77)

In two dimensions, we have p; p~ = p;p~
—e;e~ where e; =

I

(Notice that we have made a conformal transformation
kom the p world sheet to the z complex plane. In gen-
eral, we pick up a determinant factor, proportional to the
determinant of the Laplacian defined on the world sheet.
However, after making the conformal transformation, we
find that the determinant of the Laplacian on the Bat
z plane reduces to a constant. Thus, we can in general
ignore this determinant factor. )

Putting the Jacobian, the ghost integrand, and the
string integrand together, we finally find
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~2+ g,p;, where y is the "chirality" of the tachyon state,
and so we reproduce the integral found in matrix models
and Liouville theory. (The amplitude is nonzero only if
the chiralities are all the same except for one external
line. )

However, so far the region of integration does not cover
the entire complex z plane. This is because we have

implicitly assumed in the constraints v,~
= p(z, ) —p(z~)

that there is no four-string interaction. However, as we

have shown in [22], the complete region of integration
contains a "missing region" which is precisely filled by
the four-string interaction. This calculation carries over,
without any change, to the D & 26 case.

With the missing region filled by the four-string tetra-
hedron graph, we finally have the complete shifted
Shapiro-Virasoro amplitude, as expected.

Last, we would like to mention the direction for pos-
sible future work. Two problems come to mind. The
most glaring deficiency of this approach is that we have

set the cosmological constant to zero. However, the the-

ory becomes quite nonlinear for a nonzero cosmological
constant, and so the calculations become much more dif-

ficul.
The second problem is that we have not shown the

equivalence of this approach to the Das-3evicki action

[28,29], which is the second-quantized field theory of ma-

trix models. This action is based strictly on the tachyon,
and so we speculate that, once we gauge away the BEST
trivial states and integrate out the discrete states, our
action should reduce down to the Das-Jevicki action (for

p = 0). This problem is still being investigated.
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The tachyon state is defined as

lp") = lp' e) = e'" ' (o) Io) (A4)

where n,"Ip) = p" Ip).
To solve for e and the mass of the tachyon, we must

solve the on-shell condition

Lolp e) =L.lp e) =
I
-J; —-e(e+Q) lip e) (A5)(2'2)

so that

p; —e(e+ Q) —2 = 0 . (A6)

To put this in more familiar mass-shell form, let us define
E = e+ (1/2)Q. Thus, the mass-shell condition can be
written as

2

p, —E = —
I

—Q —1I = —m
E4 )

(A7)

which defines the tachyon mass. This means that the
tachyon mass obeys the relation

t'1 —D lm'=
I 12

(A8)

As a check, we find that this simply reproduces the usual
relationship between the tachyon mass and dimension.
So therefore the tachyon is massless in D = 1 (or in
two dimensions, if we consider the Liouville field to be a
dimension).

On the other hand, we can solve the mass-shell condi-
tion for e directly, yielding

APPENDIX
—Q + gQ' —8+4p,'

E =
2

(A9)

We will find it convenient to define the holomorphic
expressions for the operators as follows. (It is understood
that we must double the operators in order to describe
the closed string. ) If we define PM = (X', P, o }, then

We shall be mainly interested in the case of two dimen-

sions, or D = 1, and so we find Q = 2y 2 and

B,P = ) (-in'„, —iP„,o„}z " (A1)
& = —~2+ n» (A10)

where

[yM ylv] pM N g (A2)

where y = +1 is called the "chirality" of the tachyon
state. The ground state, with arbitrary ghost number A,

can therefore be written as

L„ I@) = L„IC) = 0,
(Lo —1) I @) = (Lo —1) I

C') = o

(Lo Lo)l@) = 0 . (A3)

where 6 = diag (6*~, 1, 1}.
Physical states without ghost indices are defined via

the conditions

Ip. .. w) = e* +'4'+" (0)lo), (A11)

where oolp, k) = Alp, A). We will choose A = 1 for the
ghost vacuum.

Our tachyon state is then defined as lp ) = lp, &, &).
In addition, we also have the 6-c ghost system. We

define the SL(2, R) vacuum in the usual way:
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(Oic icscii0) = 0, (A12)

and so the ghost system has background charge —3. Then
the ghost part of the tachyon field is given by cicii0).

If we let cii0) =
I

—), with ghost number —1/2, then
the open string wave function is based on the vacua

I

—)
and coi —) = I+). For the closed string case, the string
wave function I4& is based on four possible vacua, so that

I@& = &--I—
&I

—&+ ~-+I—&I+&+ v+-I+&I —
&

+~++I+&I+& . (A13)

With this ground state, we can then construct the
vertex functions, once we know the Neumann functions.
These can be defined via the Green's function on the
string world sheet in the usual way:

(A14)

N(p p) „=, —e„,) ) —e " " ' cos[no)cos(ne) —2rnsx($„, ()) +2 ) ¹'e~+ ness(ne, )cos(ne, )

= lniz —zi+ lniz —z'i .

Nre 1 z z —rap„(e)-rrap, (e)
nm, 2mi, 2s'i (z —z) s

~~g 1 8z ~p (g) (A15)

By taking the Fourier transform of the previous equation,
one can invert the relation and find an expression for¹': E(r)r, ts) = f de

4

gl —k2 sin 8d8 .
0

Third elliptic integrals are defined as

(A19)

In addition to these Neumann functions, we must also
define the B~ line integrals, which are found in the calcu-
lation of any N-point tree graph and hence must appear
in the vertex function as well.

We have (A20)—A sn Q

—o. t ) Q(1 —t )(1 —k t )

d8

—n2 sin 8)gl —k2 sin 8

CLtC

where

(bo - bo),
~I n ~ s

I =i
b„,drI, , (A16)

~/2

K(K) =K=
0

r

gl —k sin 8
= F(m/2, k) . (A21)

Complete first elliptic integrals are defined as

db„„= [pl, b(z) + c.c.),2' (A17)

F(P, k) =
0 g(1 —t')(1 —k2t2)

ze

1 —k2sin 8

= sn (y, k),
where y = sing and P = am ui.

Second elliptic integrals are defined as

(A18)

where rg are the modular parameters which specify the
polyhedra and where ps are the 2N —6 Beltrami differen-
tials which correspond to the 2N —6 quasiconformal de-
formations which typify how the polyhedral vertex func-
tion changes as the moduli parameters r; vary. These r;,
in turn, are functions of the angles 8;z.

With these Neumann functions, we can construe(, the
four-point scattering amplitude. However, the Jacobian
Rom the world sheet to the complex z plane requires
elliptic integrals.

Our conventions are those of Ref. [27]. First elliptic
integrals are defined as

Complete second elliptic integrals are defined as

~/2
E(n /2, k) = E = gl —k2 sin 8d8 .

0
(A22)

Heuman's A function is defined as

Ao(p, k) = [EF{p,k') +—KE{p,k') —KF{x,k')] .

(A23)
The Sacobi ~ iunction is defined as

Z(g, k) = E(g, k) - F(p, k) . —(A24)

In the text, we have used the following difFerential
equations:

"[K(k)Z(P,, k)) ="'{ )'"~"-~,
dk

" k2 r(P;, k')

—Ao ———[E(k) —K(k)]

[K(I /)Z(P kl)] (/ ss ) ( ) ( )
dP; r(/3;, k')

As(P;, k)=, [E(k) —k 'sin P;K(k)j
(A25)
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