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Strong-coupling series for Abelian lattice gauge models in 3+1 dimensions
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Linked cluster methods are used to calculate extended strong-coupling series expansions for the
ground-state energy, specific heat, scalar, and axial-vector mass gaps in the Z~ and U(1) Abelian
gauge models in 3+1 dimensions. There is evidence of a singularity at physical couplings in the
speci6c heat series, but none in the mass gap series. A comparison with Monte Carlo data in the
U(1) case indicates that there is actually a weak first-order transition.

PACS number(s): 11.15.Ha, 12.20.Ds

I. INTRODUCTION

Abelian lattice gauge theories in 3+1 dimensions have
been a favorite testing ground for numerical techniques,
but the details of their critical behavior have proved re-
markably elusive. The pure Z~ gauge models were the
showcase in which Creutz, Jacobs, and Rebbi [1] first
demonstrated the utility of Euclidean Monte Carlo meth-
ods. The Euclidean models have also been explored using
strong-coupling series expansions [2], as well as other ap-
proaches. The models are self-dual [3], and this fact was
useful in establishing the phase structure: For N & 4, the
Z~ models display a single first-order phase transition at
the self-dual point, while for N & 5 there are two transi-
tions, at points which are conjugate to each other under
the dual transformation, with a massless Coulomb phase
in between. This phase structure is analogous to that
of the ZN symmetric spin models in 1+1 dimensions, al-
though the gauge model transitions for N & 5 have been
thought to be second order [2,4], with index v 1/3,
as opposed to the Kosterlitz-Thouless transition in the
spin models. Studies of the Hamiltonian forms of these
models [5—7] have broadly agreed with this picture.

In the limit N ~ oo the Z~ gauge model becomes
equivalent to the compact U(1) theory, with the self-
dual point receding towards g2 = 0. This leaves only
two phases for the U(1) theory, a confining phase and
the massless Coulomb phase. The nature of the transi-
tion between these phases has been a matter of long de-
bate. It was originally thought [1,8] to be a second-order
transition, but then Jersak et al. [9] observed a small,
sharp hysteresis eÃect in the "mean plaquette value" in-
dicating a weak first-order transition instead. The order
of the transition depends on the exact form chosen for
the action; but for the simple Wilson action, several fur-
ther studies have appeared, some favoring a second-order
transition [10], others a first-order one [ll]. The most
recent Monte Carlo calculations [12,13] appear to show
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II. METHODS

The Ztv lattice gauge theories (LGT's) in 3+1 dimen-
sions [(3+1)D] can be described by the Hamiltonian

(2.1)

Wiv = ) Etv(l) —A ) [Utv(&) + UN (&)]
(N

where l labels the links between sites, p labels the elemen-
tary plaquettes of the lattice, a is the lattice spacing, g is
the bare electric charge, the strong-coupling parameter
& = (iv/g, and

2rr 5
1 —cos—

N)
( 2rr

Eiv(l) = 2
/

1 —cos —Liv(l)N

U~(p) = UiU2UsU4 .

(2.2)

a very weak first-order transition, which only becomes
apparent in the specific heat above lattice size I. = 10.
None of the Hamiltonian studies [14—17] have seen any
sign of first-order behavior, but they have not reached
such large lattice sizes.

In view of this debate, the order of the transition in
the Z~ models probably needs to be reevaluated as well.

In the present paper we report some extensions to
the strong-coupling series obtained previously [7] for the
Hamiltonian models. We have been able to add an extra
two terms to the series for the vacuum energy and spe-
cific heat, and also to generate new series for the scalar
and axial-vector mass gaps, the first since the hand cal-
culations of Kogut, Sinclair, and Susskind [14]. Section
II discusses the methods to generate the series, while in
Sec. III the series are analyzed. In the case of the U(1)
model, a comparison of the series analysis with earlier
Monte Carlo data [17] provides fairly clear evidence that
the transition is indeed a weak first-order one. Further
Monte Carlo data are needed to check whether a similar
conclusion applies to the ZN models also. These argu-
ments are set out in more detail in Sec. IV.
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The Ui (l = 1, 2, . . . , 4) operators are defined on the ori-
ented links of each plaquette p and act as raising opera-
tors on the space of eigenstates of the Liv (l):

reer z
I I i

/ /

L~IL) = LIL) (2.3)
U~lL) = lL'), where L' = (L+ l)(mod N) . (2.4)

FIG. 2. The last five graphs which contribute to order x
of the ground-state energy.

From the Z~ symmetry it follows that

(Uiv) = I . (2.5)

One of the most important properties of the Z~ model
is its self-duality about the point A = 1; that is, the
Hamiltonian satisfies [14]

H~(A) = AHN(1/A) + Civ(A), (2.6)

where the constant C~ = 6M (1 —A)/(iv, and M is the
volume of the lattice.

In the limit N —+ oo, the Z~ model is equivalent to
the compact U(1) model, which is described by

g
20 = —TV,

2G

W = ) E'(t) —x) [U(p) + Ut(p)], (2.7)

where Ei and U~ satisfy the U(1) algebra

[Ei, Ui ] = Uibi i

and this equivalence is established via the relation

(2.8)

A/(iv
-=x = 1/g

E~(t)/(iv w E'(I),
Uiv(p) m U(p) .

(2.9)

To calculate the strong-coupling series for the model,
we used Nickel's cluster expansion method. The tech-
niques necessary were reviewed by He et al. [18], and
will not be repeated here. In these calculations, the first
term in Eqs. (2.1) and (2.7) is taken as the unperturbed
Hamiltonian, diagonal in the basis of eigenvectors of E(l),
while the second term in Eqs. (2.1) and (2.7) then acts
as a perturbation which raises or lowers E~ one unit on
links 1, . . . , 4 of the plaquette. In the strong-coupling
limit x ~ 0, the dominant term in the Hamiltonian is
the electric field term. The strong-coupling states are
therefore eigenstates of E(l), which takes integer eigen-
values on each link l. Series have been calculated for
the ground-state energy, and the lowest-lying symmet-
ric and axial-vector excited state eigenvalues m„m~ for
both the Ziv (N = 2, 4, 5, 6, 7, 8) and U(l) models (the

Z2 model does not have an axial-vector excited state due
to its modulus 2).

To generate the series for the ground-state energy, we
need to generate a list of connected plaquette configura-
tions, together with their lattice constants and embed-
ding constants. For (3+1)D Abelian theory, as discussed
in Ref. [16], an open topology of cluster size j will con-
tribute to order x ~ or higher, but for a closed topology,
the situation is a bit more complicated; for example, the
cube which is a closed topology of cluster size j = 6 con-
tributes at order z . To save computer time, we only
generate the clusters which contribute to the order con-
sidered. Even so, if we treat any pairs of clusters as topo-
logically distinct unless they are degenerate under lattice
translations, rotations, or reflections (there are in total
48 such symmetry operations), there is still an enormous
number of clusters (61691) contributing to order z s. Ac-
tually, many of the graphs give the same contribution
to the ground-state energy: For example, the clusters
in Fig. 1 have the same contribution; that is, the con-
tribution from each cluster only depends on how many
plaquettes are joined together, rather than how they are
joined. Considering this, the number of clusters can be
dramatically reduced. Altogether, to get the ground-
state series up to order x, we need to generate five
difTerent classes of connected plaquette configurations.

(1) All plaquette configurations up to size 7, totaling
58775 clusters; these can be reduced to 824 graphs if we
consider the equivalence of some clusters.

(2) The plaquette configurations with one cube and
size between 8 and 10, totaling 2817 graphs, which can
be reduced to 293 graphs.

(3) The plaquette configurations with a dicube and
size between 10 and 12, totaling 86 graphs, which can be
reduced to 38 graphs.

(4) The plaquette configurations with two cubes joined
by one common edge and size between 12 and 13, totaling
eight graphs, which can be reduced to six graphs.

(5) There are still five plaquette configurations shown
in Fig. 2 which contribute to order x, the first three
having equal contributions to the ground-state energy.

The second, third, and fourth classes of graphs have
been generated starting from a cube, a dicube, and two
cubes joined by one common edge, respectively. In total,
there are 61691 graphs contributing to the ground-state

FIG. 1. Examples of graphs which are not degenerate un-
der lattice translations, rotations, or reBections, but have the
same contribution to the ground-state energy and symmetric
mass gap.

FIG. 3. The single plaquette excitations for the ax-
ial-vector excited state in the strong-coupling limit (here the
rotationally symmetric representation is used).
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FIG. 4. Two plaquette con6gurations which contribute dif-
ferently to the axial-vector excited state.

energy at order x, and the number of graphs can be re-
duced to 1164 if we consider equivalence between graphs.

In the strong-coupling limit, the symmetric excited
states consist of single plaquette excitations on the lat-
tice, symmetric under a parity transformation. To gen-
erate the series for the mass gap, we need to generate
a list of plaquette configurations, both connected and
disconnected, together with their lattice constants and
embedding constants. For the calculation of the symmet-
ric excited state eigenvalues m„ there are in total 6207
graphs, both connected and disconnected, contributing
up to order x . These graphs can be reduced to 325 if
we consider the equivalence between graphs.

The calculation of the axial-vector excited state eigen-
value mg is more complicated. In the strong-coupling
limit, if we choose the rotationally symmetric represen-
tation, the lowest-lying axial-vector excited states consist
of single plaquette excitations on the lattice, antisymmet-
ric under a parity transformation, as shown in Fig. 3.
Then for the two plaquette configurations where the pla-
quettes are joined together vertically, for example, there
are two different configurations shown in Fig. 4, which
contribute to the axial-vector mass gap differently. The
difference arises when the operator U„ is applied to the
strong-coupling vacuum for both plaquettes, because the
common edge has eigenvalue 2 of E(t) in one graph, and
eigenvalue 0 in another graph. Therefore, we cannot treat
any pair of clusters as equivalent under all 48 symmetry

operations of rotations and re8ections, as in the calcu-
lation of the ground-state energy and symmetric mass

gap. In order to distinguish the difference in Fig. 4,
the number of symmetry operations must be reduced to
12; and so there are 22542 graphs, connected and dis-
connected, contributing up to order x . Certainly, some
clusters still have equivalent contributions to the axial-
vector mass gap, but to be safe, we could not further
reduce the number of clusters by any other symmetry.

The series calculation, which was carried out in
quadruple precision, occupied several thousand hours of
CPU time on an IBM RS6000 workstation; it would
need about 10 times more CPU and memory to extend
the series one more order. The resulting series for Z~
(N = 2, 4, 5, 6, 7, 8) and U(1) LGT's are listed in Table
I and Table II. The ground-state energy series for U(1)
agrees with that of Irving and Hamer [16] up to order
x, but disagrees slightly for the x8 and x10 coefficients;
the two last coefficients are new. For the ZN models, the
series agree with Irving and Hamer [7] up to order zio

for Z2 and order x for N & 2, but disagree at order x
and x for N ) 2; and again the two last coefficients
are new. After so much time has elapsed, it has not been
possible to determine exactly why the discrepancy with
earlier work has occurred. The mass gap series are the
first since the hand calculations of Kogut et at. [14] for
the U(1) model: They agree with Kogut et al. up to
order x, and the terms beyond that are new.

III. SERIES ANALYSIS

A. Z~ models

Figure 5 displays estimates of the vacuum energy per
site for the ZN models, which were obtained using in-
tegrated first-order inhomogeneous differential approxi-
mants [19]to extrapolate the series listed in Table I. Some

TABLE I. CoefBcients of series expansions in z for the vacuum energy density ~oiM, the symmetric mass gap m„and the
axial-vector mass gap m~ of the Z~ (N = 2, 4, 6, 8) and U(1) LGT's in (3+1)D.
Order Z2 Z4 Zs Zs U(1)

0
2
4
6
8

10
12
14

0
—3

-9/4
—4117/240

—24649619/288000
—7.380641344143x 10~
—5.883415619655x 10
—5.637946435350x 10

0
—3/2
-9/S2

—4117/7680
—6.682006022135 x 10
—1.435484920718
—2.846201977681
—6.?80667242546

The vacuum energy density ceo/M
0

—3/2
—3/32

—3.643386440912 x 10
—6.587903188678x 10
—4.787738324991x 10
—8.457724360124 x 10
—1.064654305862

0
—3/2

—4.595999633863x 10
—3.469752713639x 10

3.202418092571 x 10
—4.421715941067x 10

1.786674368715 x 10
—9.972859324203 x 10

0
—3/2
9/640

—21991741/64512000
1.431376756392x 10

—4.665560506719x 10
4.717126929228x 10

—1.201323178083

0
2
4
6
8

10

4
—22

—2069/6
2031479/720

7.955491557935x 10
—2.150508794062 x 10

4
—11/2

—2069/96
2049943/46080

3.182517893282x 10
—2.100012827466x 10

The symmetric mass gap m,
4

—157/40
—82751917/4032000
5.038614799980x 10'
3.394631949653x 10

—1.915475325940x 10

4
—3.536330140811
—2.057477177993x 10'

5.058223002473 x 10
3.455147220794 x 10

—1.862667592725 x 10

4
—s7/12

—3348799/161280
5.078182045892 x 10'
3.528303990612x 10

—1.799555518774x 10

0
2
4
6
8

10

4
—7/2

-2S1/S2
—397867/138240

—8.384727803297 x 10
—4.562812798376x 10

The axial-vector mass gap mA,
4

—129/40
—7469591/1344000

4.473779024242
2.235229851505

—5.104516905059x10

4
—3.081145640666
—5.239810675572

5.606592253594
9.889037415424 x 10

—5.119332933441x 10

4
—35/12

—2364413/483840
6.751142877121

—1.081729620434
—5.012538641319x 10
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TABLE II. CoefBcients of series
the axial-

cien s o series expansions in x for the vacuu
I

o ~ ~ /
~ o e III (N = 5, 7) LGT's in (3+1)D.

, t e symmetric mass gap m„and

Order

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
0

—3/2
0

—1.426310244865 x 10
3.419485166023x 10

—3.934331963395x 10
3.760237609476 x 10

—1.811834042454x 10
1.438302274590 x 10

—5.796496089532 x 10
1.938677578719x 10

—4.384831114460x 10
5.546575306543 x 10

—1.437239338661
8.733518692988x 10

Z5 model
4
0

—4.351525249006
—2.387287570313x 10
—2.058210218541x 10
—3.484213628597 x 10

5.004730411251x 10
—2.179053095073x 10

3.330714730434x 10
1.738836382235 x 10

—l.971461611702x 10
—4.907664507119

0
—3.386847414460

2.387287570313x 10
—5.92787449??59
—3.645671021723x 10

3.069297969521
—1.791583122540x 10

2.920029116968
—3.319489250433x 10
—5.027356535792 x 10

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
0

—3/2
0

—6.466376799215x 10
0

—3.523798114130x 10
5.450491419073x 10

—4.855516843368x 10
5.324221070236 x 10

—4.497238902725 x 10
2.373674376739x 10
8.193064774641x 10
1.993705997377x 10

—9.9492848328?9 x 10
7.580240399646 x 10

Z7 model
4
0

—3.685320557282
0

—2.054264253324 x 10
—4.719369191458x 10

5.051533066610x 10
—4.253424136205 x 10

3.431694043354x 10
—2.409631884875 x 10
—1.883091227284 x 10

1.245033658014 x 10

0
—3.135947163746

0
—5.360339001763

4.719369191458x 10
5.189741144643

—5.71320843?285x 10
1.533672643527

—2.622464938526 x 10
—5.123144000884x 10

I I I I
(

I I

—0.5 pZ4

7

—1.5
0 0.5 1.5

I I I I I I I I I I

FIG. 5. Gra h ofp o the ground-state ener
tAfo th Z (N =

The self-duality relation ab A — o
results beyond A = 1. Also shown are the

o obtain the

approximants for the Z model

FIG. 6. Gra hp of the derivative of the round-sta
energy per site (IIIOuo M 8

2, 4, 5, 6, 7, 8) LGT in (3+1)D. Also shown are the
Monte Carlo results [20] for the Z2 madel
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M/M

Pole (residue)

2Variable: A

Z2

Z4

Z6

Z8

2Variable: x
U(1)

Variable: A

Z5

Z7

Defective.

2

3
2
3
2
3
2

3

4
5
6
4
5
6

1.229 (-0.703)
1.278 (-0.717)
1.234 (-0.709)
1.262 (-0.725)
0.513 (-0.981)
0.518 (-0.997)
0.202 (-1.067)
0.204 (-1.082)

0.699 (-1.19)
0.705 (-1.21)

0.919 (-0.893)
0.919 (-0.894)
0.926 (-0.912)
0.5623 (-1.033)
0.5623 (-1.033)
0.5648 (-1.048)

1.204 (-0.656)

1.213 (-0.670)

0.496 (-0.889)

0.193 (-0.945)

0.661 (-1.02)

0.917 (-0.885)
0.906 (-0.822)
0.921 (-0.898)
0.5623 (-1.033)
0.5515 (-0.924)
0.5648 (-1.048)

1.173 (-0.588)

1.184 (-0.604)

0.437 (-0.534)

0.158 (-0.435)

0.472 (-0.28)

0.905 (-0.817)
0.905 (-0.818)

0.5515 (-0.924)
0.5515 (-0.924)
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critical-point estimate available for comparison is an ex-
act linked-cluster expansion (ELCE) calculation [7] for
the Zs model, A, = 0.44(5), obtained from an analysis of
the string tension. This is a little less than the estimate
obtained above, but agrees with it within errors.

The behavior of the scalar mass gap m, is illustrated
in Fig. 8. For Z2 and Z4 the curves are again hardly
distinguishable, and a very substantial mass gap, m, =
2.1(l), remains at A = 1. For % & 5, convergence is
lost well before A = 1. A Dlog Pade analysis, however,
shows no signs of a consistent pole, i.e. , a singularity, at
small positive A. The dominant singularities appear to
be a complex pair of poles in the A plane. The series
are quite short, however, and the signs of the coefBcients
alternate in pairs, so that it is difFicult to draw any firm
conclusions. If the integrated difFerential approximants
to the mass gap are cut ofF at the critical point deduced
from the specific heat series, as in Fig. 8, it certainly
appears as if the mass gap remains finite at the critical
point, although the convergence of the approximants is
not very good by then.

The behavior of the axial-vector mass gaps (Fig. 9) is
very similar. The axial-vector mass gaps generally lie a
little higher than the scalar gaps; and the convergence
of the approximants is if anything rather better. Once
again, the mass gaps appear to remain finite at the crit-
ical points deduced from the specific heat series.

B. U(l) model

Figure 10 shows estimates of the vacuum energy per
site for the U(1) model, obtained in the same way as for
the Z~ models. Some Monte Carlo results &om Hamer

0.5

FIG. 9. Graph of the axial-vector mass gap m~ against A

for the Ziv (X = 2, 4, 5, 6, 7, 8) LGT in (3+1)D, as in Fig. 8.

and Aydin [17] are also included for comparison, along
with the weak-coupling series prediction [21]. It can be
seen that the strong-coupling series estimates are virtu-

ally tangent to the weak-coupling prediction at z 0.8,
which might suggest a possible second-order transition at
that point.

The derivative of the vacuum energy is graphed in Fig.
11. The strong-coupling and weak-coupling extrapola-

—05—

—1

3

—1.5—

I I I I I I I I I I I

0.5 0.4 0 6 0.8
X

FIG. 8. Graph of the symmetric mass gap m, against A

(cut off at the critical points deduced from the specific heat
series) for the Ziv (N = 2, 4, 5, 6, 7, 8) LGT in (3+1)D.Several
diferent approximants are shoran for each model.

FIG. 10. Graph of the ground-state energy per site ceo/M

against x for the U(1) LGT in (3+1)D. Also shown are the

Monte Carlo results [17], as well as Pade extrapolations for

the weak-coupling series [21] (dashed lines).
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0.5
X

I
[

I I I

1.5

analysis (Table III) indicates a singularity at z2 = 0.63(8)
or z, = 0.79(5), with an index cr = 0.9(3), sixnilar to that
for the ZN models.

The specific heat series thus displays evidence of a sin-

gularity very close to x = 0.8, which lies distinctly beyond
the true critical point z, = 0.675(25) obtained froxn the
Monte Carlo data. This indicates that x = 0.8 is only
a pseudocritical point, and that the transition is indeed
first order. This situation is indicated most clearly by the
comparison between the series approximants and Monte
Carlo estimates in Fig. 11.

For the mass gaps m, and m~ (Fig. 12), the behavior is

qualitatively similar to that for the Z6 and Z8 models. A

Dlog Pade analysis shows no sign of a stable pole at pos-
itive z, and does not help in fixing the phase transition.
This may simply be due to the shortness of the series,
but it would also seem to indicate that either the mass

gap rexnains finite at the transition (first-order case), or
else the index v is very small (second-order case). Unfor-
tunately there are no Monte Carlo data to compare with
for the mass gaps.

FIG. 11. Graph of the derivative of the ground-state energy
per site I9Ido/M Bz against z for the U(1) LGT in (3+1)D.
Also shown are the Monte Carlo results [17], as well as Pade
extrapolations for the weak-coupling series [21] (dashed lines).

0 I I I I I I I I I I I I

0 0.2 0.4 0.6
X

0.8

FIG. 12. Graph of the symmetric mass gap m, and the ax-
ial-vector mass gap rn~ against z for the U(1) LGT in (3+1)D
(cut off at the critical point deduced from the Monte Carlo
analysis [17]).

tions cross at z 0.81, and if the transition occurred
at this point we would assume it to be second order. In
fact, however, the evidence &om the Monte Carlo data
[17] is that the phase transition occurs somewhat earlier,
at z, = 0.675 6 0.025.

The strong-coupling series for the specific heat diverges
much like that for the Z6 or Zs model. A Dlog Pade

IV. SUMMARY AND CONCLUSIONS

Using linked-cluster expansion techniques, new series
have been generated for the vacuum energy (and hence
the "specific heat") and scalar and axial-vector mass gaps
in Abelian lattice gauge theories with ZN and U(1) sym-
metry. For Z~, N & 4, a first-order transition at the
self-dual point was very clearly evident, and estimates of
the discontinuities in the latent heat and mass gap were
presented. More interesting was the question of the order
of the transition for N & 5 and for the U(1) case.

For the latter cases, series analysis gives clear evidence
of a singularity in the specific heat, with an index a 0.9,
rather close to the value o. = 1 which would correspond
to a first-order transition. This fact already is going to
make it very hard to disentangle whether the transition
is first or second order. The mass gap series, on the
other hand, show no evidence of a singularity at physical
couplings: This may be because the series are too short,
or the index v is small (i.e., the singularity is weak), or
else there i8 no singularity.

This situation is the reverse of that for the familiar
lattice spin models. There, the index v is large and the
singularity in the mass gap series is strong, while o. is
small and the singularity in the specific heat series is
weak. Normally, if the system undergoes a first-order
transition, then one expects the series to display a singu-
larity at a "pseudocritical point" somewhere beyond the
true critical point: This can only be detected by a finite-
lattice or Monte Carlo calculation, which is not available
for the ZN models.

For the U(1) model, a Monte Carlo simulation is avail-
able [17], and it appears that the singularity in the spe-
cific heat series does indeed lie beyond the true critical
point seen in the Monte Carlo calculation. Taken to-
gether with the absence of any sign of a singularity at
physical couplings in the mass gap series, this indicates
a weak first-order transition, as seen in the Euclidean
calculations.

The behavior of the ZN and U(1) models is qualita-
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tively very similar, as one would expect, and it would be
interesting to see a Monte Carlo calculation for the Z5
model, say, to check whether the transition is really first
order in this case also.
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