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The spin—% fractional superstring is characterized by a world-sheet chiral algebra involving spin-
% currents. The discussion of the tree-level scattering amplitudes of this theory presented in the
preceding paper is expanded to include amplitudes containing two twisted-sector states. These
amplitudes are shown to satisfy spurious state decoupling. The restriction to only two external
twisted-sector states is due to the absence of an appropriate dimension-one vertex describing the
emission of a single twisted-sector state. This is analogous to the “old covariant” formalism of
ordinary superstring amplitudes in which an appropriate dimension-one vertex for the emission of
a Ramond-sector state is lacking. Examples of tree scattering amplitudes are calculated in a ¢ = 5
model of the spin—§ chiral algebra realized in terms of free bosons on the string world sheet. The
target space of this model is three-dimensional flat Minkowski space-time and the twisted-sector
physical states are fermions in space-time. Since the critical central charge of the spin-4/3 fractional
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superstring theory is 10, this ¢ = 5 model is not consistent at the string loop level.

PACS number(s): 11.25.Db

L INTRODUCTION AND SUMMARY

Fractional superstrings [1] are string theories whose
physical state conditions are generated by fractional-spin
currents on the world sheet. The resulting critical central
charges of these strings are found to be less than that of
the superstring, suggesting the possibility of string theo-
ries with critical space-time dimensions less than 10. This
paper is the second of two papers examining the proper-
ties of the simplest such fractional superstring, namely,
the one with spin-4/3 currents on the world sheet. The
first paper in this series [2] described tree-scattering am-
plitudes of this string for states in the untwisted sectors
of the spin-4/3 fractional superconformal algebra, and
showed that they obey duality and spurious state decou-
pling. Also, a specific ¢ = 5 (noncritical) model of this
string with a three-dimensional space-time interpretation
was constructed, where it was shown that the untwisted-
sector physical states correspond to space-time bosons
including the graviton and Yang-Mills bosons. In Ref.
[3] a no-ghost theorem for these ¢ = 5 untwisted-sector
states was presented.

This paper examines the twisted sectors of the spin-4/3
fractional superstring. In Sec. II we define the twisted
sectors in terms of the monodromies of the fractional cur-
rents with states in those sectors. We derive general prop-
erties that models having twisted sectors must obey using
the methods of Refs. [4,5]. It is found that there are two
types of twisted sectors, which we denote by R and R/,
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whose occurrence depends on how a Z, automorphism of
the spin-4/3 fractional superconformal algebra is realized
in specific conformal field theory (CFT) models.

In Sec. III we show how scattering amplitudes contain-
ing one channel of either R or R’ twisted-sector states and
satisfying spurious state decoupling can be constructed.
Various choices of physical state conditions in the R’
sector are consistent with spurious state decoupling in
the prescription for scattering amplitudes that we de-
velop. Presumably, demanding duality of four-point am-
plitudes will further specify the set of R’ physical state
conditions. The restriction in our scattering prescription
to only two external twisted-sector states is due to the
absence of an appropriate dimension-one vertex describ-
ing the emission of a single twisted-sector state. This is
closely analogous to the situation in the “old covariant”
formalism of superstring amplitudes [6] in which, due to
the absence of the Faddeev-Popov superghost fields, an
appropriate dimension-one vertex for the emission of a
Ramond-sector state is also lacking.

This analogy is made even closer upon consideration
of the example of the ¢ = 5 model of the spin-4/3
string where the R’ sector is found to describe space-
time fermions. In this model, discussed in Sec. IV, the
twisted-sector states are realized by a Z, orbifold twisted
sector of the ¢ = 5 CFT. In particular, the c = 5 CFT is
a tensor product of three free coordinate boson fields X*
on the world sheet which do not participate in the or-
bifolding, and an “internal” so(2,1); Wess-Zumino-
Witten model described by two bosons compactified on
a triangular lattice. The relevant twisted sector arises
upon twisting by a reflection through the origin of that
lattice. Some details of this construction are relegated to
an Appendix. In Sec. IV we also calculate some of the
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low-lying physical states in the R’ sector and compute a
three-point coupling between two fermions and the mass-
less vector boson of the untwisted sector. These compu-
tations place some restrictions on the choice of physi-
cal state conditions; however, the precise set of R'-sector
physical state conditions consistent with duality of tree
amplitudes remains an open question in this model.

There are many other ways of twisting the triangular
s0(2,1), lattice, but Lorentz invariance is invariably bro-
ken in the resulting twisted sectors. This follows from
the fact that under the action of all twists other than
the Z, twist used to define the R’ sector, at least one
of the so(2,1); currents is not invariant. Currents not
invariant under the twist cannot have zero modes in the
twisted sector, implying that Lorentz invariance is bro-
ken in these sectors. Whether or not the states in various
twisted sectors should be included in the string spectrum
is determined by one loop modular invariance; however,
since the ¢ = 5 model described above is not a critical
(c = 10) representation of the spin-4/3 fractional super-
string, it is not expected to be modular invariant in any
case.

In Sec. V we briefly describe a ¢ = 2 model of the spin-
4/3 fractional superstring in which the R (as opposed to
R') twisted sector is realized. Unlike the R’ sector, the
R-sector physical state conditions are determined by the
scattering amplitude prescription developed in Sec. III.
Because the ¢ = 2 model has only one flat dimension
the resulting space-time physics is trivial. It remains
an open question whether either the R or R’ sector is
actually realized in a critical (¢ = 10) model of the spin-
4/3 fractional superstring.

II. TWISTED-SECTOR REPRESENTATION
THEORY

We begin with a brief description of the spin-4/3 frac-
tional superconformal (FSC) algebra. A more detailed
discussion can be found in Ref. [2]. The fractional cur-
rents G¥(z) and the energy-momentum tensor 7'(z) to-
gether generate the FSC chiral algebra, encoded in the
singular terms of the operator product expansions (OPE)

[5]:
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T(2)T(w) = ——— { £ +2(z — w)’T(w) + (= ~ w)*OT(w) + -}
(z—w)* L2 ’
1 4
+ _ 2ot - + ...
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The first OPE implies that T(z) obeys the conformal Gt - wElGE, (2.3a)
algebra with central charge ¢, while the second implies G* - 6GF, (2.3b)

that G*(z) are dimension-4/3 Virasoro primary fields.
The constants AT in the GEG* OPE’s are fixed by asso-
ciativity to be

/\+——-/\_=‘/—8—g—f for ¢ < 8,

AT =27 = for ¢ > 8. (2.2)

This algebra generates the physical state conditions for
the spin-4/3 fractional superstring. Since there is only a
single cut on the right-hand side of each OPE, the cur-
rents G* are Abelianly braided (or parafermionic). Un-
der interchange of z and w (along a prescribed path, say
a counterclockwise switch) the only consistent phase that
G* or G~ can pick up with itself is e?"/3, The phase
that develops upon interchange of Gt with G~ can be
taken to be e~2:7/3,

The group of automorphisms of the FSC algebra or-
ganizes the representation theory of its highest-weight
modules. The order-six automorphism group Sz of the
FSC algebra is generated by the transformations

where w = €?""/3 and § = sgn(8 — ¢). Since the FSC
algebra is supposed to be an organizing symmetry of the
states of the spin-4/3 string, it is natural to assume that
its automorphisms extend to automorphisms of the CFT
representation of the FSC algebra. All states can then
be assigned definite Z3 quantum numbers under the ac-
tion of the Z3 group of automorphisms generated by the
transformation (2.3a). The untwisted sectors of the FSC
algebra consist of the set of states which obey the bypass
relations
Xp(2) * Xq(w) = wPx;p(2) Xq(w), (2.4)
where X, is a state with Z3 charge p. The bypass relation
V(z) * W(w) denotes the analytic continuation of z along
a closed path looping once around w in a counterclock-
wise sense as shown in Fig. 1(a). Clearly the currents
themselves are untwisted-sector fields with Zs charges
+1 for G* and charge 0 for T.
We define the twisted sectors of FSC algebra represen-
tations in terms of the bypass relations the twist fields
obey with the FSC currents. The basic property of the
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FIG. 1. Paths defining (a) the bypass relation V * W, and
(b) the double bypass relation V > W.

twisted sectors is that the twist fields are double valued
with respect to the fractional currents G*(z). More pre-
cisely, with any twist field 7(w), the split algebra currents
satisfy the bypass relations

Txr=T1, GE+*1 =wG*T. (2.5)
The path defining the double-bypass relation V(z) %2
W (w) is shown in Fig. 1(b). The phase in the double-
bypass relation is chosen so that the Gt currents have
zero modes in the twisted sectors. Indeed, the double-
bypass relation implies that z%/3G*(2)7(0) is a double-
valued analytic function on the z plane with branch point
at z = 0 and thus defines the mode expansion

G*(2)r(0) = Y 2"*743G ,7(0).
nez

(2.6)

To further specify the twisted sectors we must also
know the single bypass relations of the fractional currents
G* with the twist fields. In general under a single bypass
the G* currents go to some other pair of (dimension-4/3)
currents in the CFT under consideration. Denoting these
currents by G* we have

G* x71=0w?GT 1, GEx1=58uL2GF . (2.7)
We have included the factor of § = sgn(8 — ¢) for later
convenience. For these bypass relations to be consistent
with associativity of the CFT operator product algebra,
8G¥ must be images of the G* currents under the action
of some Z; automorphism of the CFT. This implies, in
particular, that G* satisfy the same double-bypass rela-
tion (2.5) as G* do, implying that G* have half-integral
mode expansions as in (2.6). The single bypass relations
(2.7) then imply the identification of modes

Gf,=8(-1)"GT ;. (2.8)

There are some special choices for the G* currents
(or, equivalently, for the Z; automorphism) which lead to
particularly simple twisted-sector properties. The first is
the choice Gt = GF, where the Z; automorphism group
is trivially realized by the identity transformation. In this
case we simply recover the untwisted sectors. A second
choice is Gt = wFPG*, where p € Z3. This choice gives
rise to twisted sectors we refer to as the R sectors of the
FSC algebra, since they are equivalent to the R sectors
introduced in Ref. [5]. The general case where G* # G*
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gives rise to what we call R’ twisted sectors.

The remainder of this section explores the represen-
tation theory of the R and R’ sectors. We begin with
the R sector since it is simpler, and derive the general-
ized commutation relations satisfied by the modes of G*
when acting on an arbitrary twisted-sector state. We
then turn to the R’ sector which is complicated by the
need to specify the operator product algebra of the G*
currents with their images G* under the Z, automor-
phism. This depends, in general, on specific properties
of the CFT representaton of the FSC algebra in question.

A. R-sector mode algebra

The R sectors arise from Ehoosing the Z, automor-
phism which relates G* and G* to be an automorphism
of the FSC algebra itself. There are three Z; subgroups
of the S3 automorphism group generated by the trans-
formations (2.3) of the spin-4/3 FSC algebra. They give
rise to three twisted sectors with bypass relations

G* x 7, = SwPGTF 1, (2.9)
where p € Zz. (The R-sector “C-disorder” fields ¢,
introduced in Ref. [5] actually satisfy the bypass rela-
tions G* * p, = wtPGT p,z;. With the change of basis
Tp = w2Pp + Yp—1 + Pp+1 these bypass relations become
the bypass relations written above.) The single bypass
relations (2.9) imply the mode identifications

G,y = 0w P(=1)"G} ), (2.10)

when acting on 7,. Thus in the R sector there is really
only one independent fractional current, which we can
take to be either Gt or G™.

The three R sectors labeled by p € Z3 are related by
the Z3 automorphism (2.3a) of the FSC algebra, and thus
are isomorphic in models in which that automorphism ex-
tends to the whole CFT operator product algebra. Since
we assume that this is always the case, we henceforth
restrict the discussion to the p = 0 R sectors, the other
two sectors being identical.

In analogy to the superconformal gauge of the ordinary
superstring, the physical states of the spin-4/3 fractional
superstring are certain highest-weight states of the FSC
algebra, that is, they are annihilated by all the positive
modes of T and G*. In order to show spurious state
decoupling in scattering amplitudes, we will need to know
the algebra satisfied by these modes. This algebra takes
the form of generalized commutation relations (GCR’s)
for the modes of G* due to cuts in the FSC operator
product algebra [4,5].

To derive the R-sector GCR’s, consider the integral

1
rotfe pin (vl g b
4 [, 2mi Js2mi \Vz — Jw

xG*(2)G™ (w)T(0), (2.11)

where the contours both wind twice around the origin
with the § contour inside the v contour. The factors in
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the integrand have been chosen to make these contours
closed: the whole integrand is a double-valued analytic
function on both the z and w planes with branch points
at z = 0 and w = 0 and possible poles at z = w or
z = e?™ (i.e., at the point z = w on both sheets).
Evaluating this integral by shrinking the § contour close
to the origin and using the mode definition (2.6), which
can be inverted as

1fde

+ _ 4 1/3+n/2 ~%
G, o7(0) = 2%,21\'1’ z G*(2)1(0), (2.12)
gives
= (-1,1) _
= ZD,Z PG 2G i 2 (2.13)
£=0

where the Dﬁa’ﬁ) are binomial coefficients defined by the
expansion

oo

(1-z)*(1+2)f = ZDga’ﬂ)zl.
£=0

(2.14)

The integral Z can also be evaluated in another way by
deforming the v contour to lie inside the § contour. The
result of this deformation is three contributions, as shown
in Fig. 2. One contribution is just the same integral with
~ and ¢ interchanged. The other two contributions pick
up residues associated with the G (z)G~(w)7(0) OPE

J

63 DY 6L Gl + 6L GL]
—0 2 2 2 2

- 2—5/3)‘+(_1)n+mG-;+T’E + 2-4/3 {(—-1)" + (_1)m} [ngm +

where we have used (2.10) to write the GCR’s in terms
of G* modes alone.

The commutation relations of the G* modes with the
L,, modes of the stress-energy tensor follow in the stan-
dard way:

] _ (™ _ _"_1) +
[LnG3] = (5-5F) Guvp- (2.17)
Acting on highest-weight states (states annihilated by

all the positive modes of G* and T'), one can show from
(2.16) that the zero modes satisfy the relation

§(GE)? = 2783t GE + 2743 [Lg - 15768} . (2.18)

B. R'-sector mode algebra

We refer to a twisted sector obeying the bypass rela-
tions (2.7) with G* # G* as an R’ sector. The R’ sector
of the FSC algebra is characterized by a Z, automor-

FIG. 2. Deformation of the v contour in the cut z plane.
The cut is chosen to lie along the negative real axis.

singularities at z = w and z = €?>™w. The former sin-

gularity can simply be read off from the G*G~ OPE;
to evaluate the latter we must continue z once counter-
clockwise around the origin to e?>"*z before letting it ap-
proach w (on the second sheet). By the single-bypass
relation (2.9), this analytic continuation is

G (e*™2)G™ (w)7(0) = 6w?G™ (2)G ™ (w)7(0). (2.15)
Performing the same continuation on the other factors
in the integrand, picking up the residues of poles from
the FSC algebra, and combining all the contributions as
shown in Fig. 2, gives

C

128 (07" %) bnm|

(2.16)

f

phism of the particular CFT model in question which in-
terchanges G* < §G*. This symmetry between G* and
§G* implies that the GG OPE’s form a second spin-4/3
FSC algebra by themselves (at the same central charge
and with structure constants §A%), and that G* have
untwisted-sector Z3 charges +1, and so obey all the con-
comitant bypass relations with G*. The GG OPE’s, on
the other hand, remain undetermined by this symmetry,

and depend on the properties of the specific CFT rep-
resentation of the FSC algebra under consideration. We

will assume that the GG OPE’s are of the form
Gi(z)éi(w) =(z— w)*‘l/3 {_A* + .- } ,

Gi(z)EJ;(w) =(z— w)—8/36{§f8ﬁ

+ (z — w)?[uT + BF] + -~ } (2.19)

We will see that the R’ sector of the ¢ = 5 model to be
considered in Sec. IV has currents obeying OPE’s of this
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form.

The form of the GG OPE’s (2.19) is actually more
general, and follows for representations satisfying a few
physical properties. Assume that these representations
have a global D-dimensional Poincaré symmetry realized
by the tensor product of D coordinate bosons X* with

n “internal” CFT which has a positive definite spec-
trum of highest weights. G* and G* then only involve
derivatives of the X* fields with no vertex contributions
of the form e**X | and are so(D—1,1) singlets. This re-
quirement is natural in representations which have a flat
D-dimensional space-time interpretation in string theory.
In addition, if no dimension-1/3 and no dimension-one
so(D—-1, 1) scalar fields exist, then (2.19) is the most gen-
eral form the GG OPE’s can take. Note that these last
two conditions are not as strong as they might appear.
For example, a pair of Z3 charge +1 dimension-1/3 scalar
fields would obey braiding properties and operator prod-
uct selection rules identical to those of Z3 parafermion
currents; but associativity of the Zz parafermion current
algebra fixes the central charge to be ¢ = 4/5 [4].
similar argument applies to potential dimension-one cur-
rents, for example, a simple associativity argument shows
that adding a single dimension-one current to the spin-
4/3 FSC algebra fixes the central charge to be ¢ = 1.
These arguments are not proofs, though, since associa-

tivity constraints can be evaded by increasing the number
of independent dimension-1/3 or dimension-one currents.
In any case, however the reader judges the reasonableness
of the above assumptions, there are at least two cases in
which they are satisfied, namely, the ¢ = 5 model to be
discussed in detail in Sec. IV, and a ¢ = 7 model de-
scribed in Appendix C of Ref. [2].

It follows from (2.19) that the combinations of fields
Qf = Gt - SuG* are dimension-4/3, Z3 charge +1
untwisted-sector highest-weight operators with respect
to the FSC algebra generated by G*. The properties
of the untwisted-sector highest-weight modules derived
in Ref. [2], together with the assumed symmetry under

interchanging G* and 6G*, implies that
—c)(32 - c)] ,

A* = :i (6= +9G%).

1
b= [c—32:t2 8
(2.20)

The dimension-two descendents of the QF fields,
G%, /slwi), are the dimension-two BT fields that enter
in the GXG¥ OPE.

From the bypass relations (2.7) and the OPE’s (2.19),

and using the mode identifications (2.8), one deduces the
GCR’s (just as was done in the last subsection)

oo C1y _ _ 2—5/3 n— m _
S Dy 6t 6h + 65 Gl = HH“ (D" Ghpm + (-)™N* G|
l:
~4/3 _q\n+m e+ & 2 _
+2793 {1 4 (-1) }[L im + 1o (607 = 5) 5n+m], (2.21)

and

. (—22 3uc

3" D; 3’3)[G;Gﬁ;l—Gi Gfﬂ] =270 (n = m)GEpm + 271" + (-)7) S5 H oy Mnem. (222)

£=0

The commutation relations (2.17) with the L, modes follow in the standard way.
Note that, when acting on a highest-weight state, the second GCR gives no relation for the G0 G0 zero mode
product. One can obtain a relation for these zero modes by changing the power of the (/z — y/w)/(y/z + y/w) factor

in the integrand of (2.11). One finds, in this way,

1

iDE;, 3

=

[G_GL—FG* Gf+l]=2

+ 27 (1) + (~1)™} [uL

Note, however, the appearance of the modes of the
representation-dependent dimension-two operators B in
(2.23).

III. SCATTERING AMPLITUDES

We now extend the prescription developed in Ref.
[2] for dual N-point tree amplitudes of untwisted-sector
states satisfying spurious state decoupling to include two
twisted-sector states. In that prescription amplitudes
could be written in either of the equivalent “pictures”

_5/31\in+,"
2

mpm + BT + £ (6n2 - 5) 5,,+,,,] . (2.23)

128
Aw = 2V (1) g V(D) - el
= VIV V) VW), @)

where W* are untwisted-sector physical states of Z3
charge +1 and dimension 1/3, and V is a certain
dimension-one descendent of these fields.

By analogy to the Ramond sector of the ordinary su-
perstring in the “old covariant” formalism [6] we take the
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physical states |7) of the twisted sectors to be annihilated
by the positive modes of the currents G* and T, and to
be eigenstates of their zero modes with “intercepts” h;
and A*:

Lo|t) = hi|7), GE|r) = A*|7). (3.2)

The Lo condition gives rise to the mass-shell condition
for the physical states—a Klein-Gordon equation for each
independent component of the physical state. The Goi
conditions, on the other hand, are linear in space-time
derivatives (because the fractional currents have the form
G* ~ €T . 9X + .- for models with a flat space-time in-
terpretation), and so should give rise to a Dirac equation
for the components of the physical states. This will in-
deed turn out to be the case in the models discussed in
Secs. IV and V. Of course, the Dirac equations must be
consistent with the Klein-Gordon equations. This is au-
tomatically ensured in the R sector by the relation (2.18)
between G(f and Lg; however, it is not automatically sat-
isfied in the R’ sector, and must be imposed as a separate
requirement.

We expect the form of tree amplitudes with one
twisted-sector channel to consist of “in” and “out”
twisted-sector physical states |7) sandwiching the vertex
operators of physical untwisted-sector states W which are
strung together with the Dirac propagator:

Ay = (IN[Wx_,(1)SF - STWE)m) . (3.3)

where

(3.4)

The choice of Z3 charges of the vertices and propagators
(i.e., their plus or minus superscripts) will be shown to
be immaterial in the R sector, and will have to be further
specified for the R’ sector. To show spurious state decou-
pling for these amplitudes, we must be able to transform
them to another “picture,” similar to those in (3.1), in
which the dimension-one V vertices appear instead of
the dimension-1/3 W¥ vertices. We first describe this
picture changing and the resulting spurious-state decou-
pling theorem in the R-sector case and then move onto
the more complicated R’'-sector case.

A. R-sector scattering amplitudes

We start with the ansatz for the N-point amplitude
with one R-sector channel
Ayn = (Tn|WH_(1)ST -+ STWH(1)|m). (3.5)

This form for the amplitude can be rewritten in another
“picture” using the commutator

(GE2 VD] = (Lo + 5 — he) WE(1)
~W=(1) (Lo — he), (3.6)

for any integer n, which follows from the representation

PHILIP C. ARGYRES AND S.-H. HENRY TYE 49

theory of the untwisted-sector module that V' belongs to.
(See, for example, the derivation of Eq. (3.10) of Ref. [2].)
In particular, rewrite a special case of (3.6) as

W*(1)(Lo — he) = (Lo — he)W*(1) — (G5 — AT)V(1)
+V(1)(G§ — AY). (3.7)

Insert a factor of 1 = (Lo — ht)/(Lo — ht) before any
St propagator in (3.5) and commute the (Lo — h) fac-
tor in the numerator to the left using (3.7). The first two
terms on the right-hand side give vanishing contributions
since the (Lo — h;) factor can be continually commuted to
the left using (3.7) until it annihilates the (x| physical
state, while the second term vanishes by the “canceled
propagator” argument. Tree amplitudes with canceled
propagators are holomorphic in the Mandelstam invari-
ant of the canceled propagator channel, and thus van-
ish by analyticity if the amplitudes have sufficiently soft
high-energy behavior, as string amplitudes do. The fac-
tor of (G — A*) in the third term of (3.7) cancels the
S+ propagator, leaving behind a Klein-Gordon propaga-
tor A = (Lo —hy)~!. Applying this argument repeatedly
gives

Ay = (Tn|Vn-1 (DA - AV3(1) AW, (1)|71).  (3.8)

The fact that one of the space-time boson vertices is
still a highest-weight state W and not one of the Zs-
charge ¢ = 0 descendents V, is familiar from tree ampli-
tudes with one fermion line for the ordinary superstring
in the old covariant formalism . The position of the lone
W *-vertex is arbitrary, as can be shown by manipula-
tions similar to those used to derive (3.8). Furthermore,
the above manipulations can be reversed using Eq. (3.7)
with W~ G5, and A~ to show that any choice of & su-
perscripts in (3.3) is equivalent to (3.5). It is important
to note in this connection that due to the equivalence of
G* and G~ modes (2.10) in the R sector, that we must
have AT = dA™.

The following trick allows us to reexpress the ampli-
tude (3.8) completely in terms of V vertices. Insert
1 = (Lo — h¢)/(Lo — h;) between W, (1) and |r;) and
use (3.7) once more to finally obtain the amplitude in
the form

Gi—A*

Ax = (rw[veaa--avm g

Tl> . (3.9)

This form for the amplitude is slightly delicate because
both the numerator and denominator in the factor before
|71) annihilate it. However, this potential ambiguity can
be resolved by noting that the Lo — h; operator, when
acting on the spinor wave function u(k) associated with
71, is the Klein-Gordon operator k% +m?, while G§ — A+
is the associated Dirac operator ik - v + m. For massive
states the simple zeros of the numerator and denominator
cancel, and for massless states it can be defined as the
limit as k goes on mass shell.

If we start with physical states in the amplitude (3.9),
will they scatter only to other physical states? We can
reformulate this question in terms of spurious state de-
coupling. A state (s| obeying the zero-mode conditions
in Eq. (3.2) is called a spurious state if it is orthogonal to
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all physical states. Since the physical state conditions are
the only restriction on a generic physical state, it follows
that (s| can be written as

(sl = 3 (xmlLm + 3 (03163 (3.10)
m>0 n>0
in terms of some other states x,, and ¢§. All states

not satisfying the physical state conditions must have a
spurious component. A physical state can itself be spuri-
ous, in which case it is a null state (since it is orthogonal
to itself), and should also decouple from all scattering

J

Gy — AT

amplitudes. Thus, the decoupling of all spurious states
from scattering amplitudes of physical states is a prereq-
uisite for a sensible interpretation of those amplitudes.
For this decoupling to be true, no spurious states should
contribute to residues of poles in amplitudes when an
internal propagator goes on shell.

Suppose we fix the external momenta k; of the vertices
V; such that some state |s) in the string Fock space at
momentum K = kpry1+---+kn is on shell: (Lo—h:)|s) =
(G* — A*)|s) = 0. Factorize the amplitude in Eq. (3.9)
by inserting a sum over a complete set of states o; of
momentum k at the propagator between Vs y; and Vi,

1 At

An = (tn|VN_1(1) - AVirga (1)

i

Then the |s)(s| term in the sum contributes a pole in
momentum space. The requirement of spurious state de-
coupling is that if |s) is spurious, its contribution to the
residue of the pole should vanish:

GE - A+

(s|lVm(1)A--- AVz(l)—I::)—_—‘,:

[m)=0.  (3.12)

To prove this, consider one term, say <¢|G: /2 withn >
0, in the presentation of (s| as a sum of descendent states,
Eq. (3.10), where ¢ must satisfy (Lo + 5 — h¢)[¥) = 0.
[The G/, descendent pieces can be shown to decouple

by the same argument using the R-sector equivalence of
G* and G~ (2.10). The L, pieces decouple by a simpler
argument.] The G:’ , mode can be commuted to the right

in Eq. (3.12) using Eq. (3.6) and the identity

1 1
Gt =
5Lo—he Lo—hi—12

G3, (3.13)

which follows from (2.17). The insertions coming from
the right-hand side of Eq. (3.6) again vanish by a canceled
propagator argument. Finally, the G:/z mode can be

seen to pass through the G§ — A™ factor and annihilate
|r1) by the physical state conditions using the R-sector
GCR (2.16). This proves spurious state decoupling.
Since there is no appropriate dimension-one commut-
ing vertex in the R sector, we cannot extend our scatter-
ing amplitude prescription (3.5) or (3.8) to include more
than two R-sector vertices. By the same token we can-
not prove cyclic symmetry (duality) of these amplitudes
in the present formalism. This situation is closely analo-
gous to what happens in the old covariant formalism in
the ordinary superstring. There, dual amplitudes with
spurious state decoupling can be formulated for scatter-
ing of Neveu-Schwarz sector states, and can only be ex-
tended to include two Ramond-sector states as the “in”
and “out” states in the correlator, thus losing manifest
cyclic symmetry. So presumably, just as in the Ramond
sector of the superstring, our inability to incorporate
more than two R-module physical states in our scatter-

0 .
Lo - ht Io.l)ih‘, .

G¢ -
Vi (1) AVa(1) =), (3.11)

v+

ing prescription means that there is a nontrivial contri-
bution to R-module scattering amplitudes coming from
the “fractional superghost” fields on the world sheet.

B. R'-sector scattering amplitudes

The main difference between the R and R’ sector scat-
tering amplitudes is that in the R’ sector there is no
identification of Gt with G~ modes analogous to (2.10).
This means that the zero-mode conditions (3.2) generate
two a prior: independent Dirac equations for the physical
state wave functions. This will lead to overly restrictive
physical state conditions unless the G* intercepts are ap-
propriately tuned, or only a subset of all the G:f /2 modes

with n > 0 are used as R’-sector physical state condi-
tions. Since, as was emphasized at the end of Sec. II, the
mode algebra obeyed by the fractional currents in the
R’ sector depends on the details of the particular CFT
model under consideration, we can only hope to deter-
mine the appropriate R’-sector physical state conditions
in the context of a specific model.

However, we can still demonstrate spurious state de-
coupling in amplitudes with one R’-sector channel. In-
deed, all the manipulations of the last subsection for the
R sector scattering go through unchanged in the R’ sector
as long as all the untwisted vertices W* and Dirac propa-
gators S* in (3.3) have the same Z3 charge (i.e., all their
superscripts are the same). The point is simply that since
the GJ and Gy modes are not related in any general way
in the R’ sector, the associated Dirac propagators are not
equivalent—in particular (G§ — AT)/(Gy — A7) is not
proportional to the identity.

In fact, one can show that the ansatz for the one chan-
nel R'-sector scattering amplitude

An = (Tn|Wx_1(1)S%--- SCW5(1)|71) (3.14)

obeys spurious state decoupling, where a is any fixed
complex number and we define
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Goe = G:/z + O‘G;/z’
A*=A" 4+ oA,

S*=(Gg —A*)7",
We=W* 4 aW™. (3.15)
This follows from the fact that the analogue of the com-

mutation relation (3.6) is satisfied for the above combi-
nations:

[Gh/2 V(1) = (Lo + g - ht) We(1)

W) (Lo k). (316)
Thus, we have a one-parameter family of satisfactory
scattering amplitudes in the R’ sector.

Tree-level duality may restrict the value of a and the
correct set of physical state conditions in the R’ sector.
In particular, by duality, if one factorizes the amplitude
(3.14) in a channel other than the R’-sector channel dis-
played, one should find an infinite tower of poles corre-
sponding to untwisted-sector physical states. Presum-
ably this occurs only if the R'-sector states 7 obey the
correct set of physical state conditions. We will discuss
the choice of physical state conditions in the context of a
concrete example in the next section, though to the level
we compute we will not be able to put many restrictions
on the possible choices. As an example of the kind of
choices that could make sense, note that associated with
each value of « is a natural choice of physical state con-
ditions for R'-sector states:

(Ln — htbrn o) |7) = 0,

(Gg/z - Aaan,o) ) =0, (3.17)
for n > 0. Note also that by the commutation relation
(2.17) all the possible physical state conditions are gen-

erated by Lo, L1, Goi, and Gzlt/z. In particular, the com-

mutator of Ly with G(:,t generates all the integer-moded
GZ conditions. Thus, it may also be consistent to restrict
the physical state conditions to only the integer-moded T
and G* annihilation operators. These, however, are only
the simplest guesses. The fact that R’-sector states are
Z,-twist fields obeying nontrivial monodromies with each
other may indicate that the physical state conditions and
scattering amplitudes for R’-sector “matter” fields (i.e.,
after integrating out the fractional superghost pieces of
the full physical vertices) may be more complicated than
what we have presented here.

IV. SPACE-TIME FERMIONS IN THE c =5
MODEL

Strings propagating in D flat space-time dimensions
are described by a world-sheet CFT which includes D
massless scalar fields X*(z). The spin-4/3 fractional su-
perstring CFT also includes a set of fields € (z) of confor-
mal dimension 1/3, transforming as vectors under space-
time Lorentz transformations. The simplest nontrivial
such CFT which is also a representation of the spin-4/3

FSC algebra can be constructed from five free massless
scalar fields on the world sheet, and hence has central
charge ¢ = 5. (A list of known representations of the
spin-4/3 FSC algebra is given in Appendix C of Ref.
[2].) Three of the scalars are just coordinate boson fields
X*(z), p = 0,1,2, with the standard operator products
XH(2)X¥(w) = —g*¥ In(z — w), where g#” is the three-
dimensional Minkowski metric with signature (— + +).
The remaining two fields gpi(z), 1 = 1,2, are compact-
ified on a triangular lattice: *(z) = ¢'(z) + 2w, with
©*(2)p? (w) = —g¥ In(z — w), where

ij—l 2 -1
g T3\ -1 2]

These two bosons form a representation of the so(2,1);
Wess-Zumino-Witten model. Thus the ¢ = 5 model has
a global three-dimensional Poincaré symmetry.

Vertex operators in the so(2,1); CFT, V,, =
exp{im, o’ + imap?} for integer m;, describe Virasoro-
primary operators transforming as integer-spin fields un-
der the so(2, 1) symmetry. For example, some of the sim-
plest so(2, 1), Virasoro-primary fields are the dimension-
1/3 so(2,1)-vector fields ¢, the dimension-4/3 so(2,1)-
*, and the dimension-one U,’s, given by

(4.1)

scalars s
63 = (Vizr31)» Vi£1.0)» Vio,21)) »

57 = 3 (Viz2,22)+ V(2,00 +Vio,52)) »
U.= (V<1,—1)+V(—1,1) s Vi) +Vi-1,-2)

V(2,1)+V(—2,41))~ (4.2)

The properties of these and other fields in the ¢ = 5
model are discussed in more detail in Ref. [2].

The fractional supercurrents G* satisfying the spin-
4/3 FSC algebra (2.1) are given in terms of these fields
by

7 (4.3)

There are actually six solutions for the supercurrents,
which can be obtained from the above solution by making
the transformations G¥ — w*IG* or G* — wiqéi,
where q € Z3 and G* are given by

~+ 1 + 3
G 7 <$e axX 23 ) ,
which differs from (4.3) by a sign change in the et . 0X
terms. The existence of these six solutions is a conse-
quence of the Z, x S3 automorphism group of the ¢ = 5
CFT generated by X* — —X*, Vi = w™ ™2V, and
Vi = V_m, which leaves the so(2,1) generators invari-
ant.

In what follows, we construct the R’ twisted sector cor-
responding to the Z; automorphism V,, = V_m, which
is generated by the transformation ¢/ — —p?. Recalling
the discussion of Sec. II, the fields of this twisted sec-
tor are characterized by the property that under single-
bypass around a twisted-sector field, untwisted-sector

G* = L (iei -9X — gsi) )

(4.4)



49 TREE SCATTERING AMPLITUDESOFTHE ... . IL. ...

fields transform according to this automorphism. Thus
the defining property of the R' twisted sector is that with
any twist field, 7(w), the free boson fields ¢7(z) satisfy
the basic bypass relation

O xT = —p T, (4.5)
This is also the definition of the twisted sector of a Z,
orbifold [7] of the so(2,1); CFT under the action of the
symmetry which reflects the triangular ’-boson lattice
through the origin. Note that this Z; transformation
maps the G¥ currents into the G* currents. It is straight-
forward to show that these currents obey OPE’s of the
form (2.19) with

n= _3/57
_3
2V2

B* = 3T, - 2Tx + 1U - 8X,

A* = (G* +G*),

(4.6)

where Tx and T, are the stress-energy tensors for the
X* and s0(2,1), CFTs, respectively. Thus we are indeed
constructing precisely the R’ sector discussed in Sec. II.

There is a physical reason for expecting this sector to
appear in the spin-4/3 fractional superstring: it includes
the space-time fermionic states of the ¢ = 5 model. The
untwisted-sector states described so far are all space-time
bosonic states, corresponding to integer-spin representa-
tions of so(2,1), in the ¢ = 5 FSC algebra representa-
tion. In general, the so(/V); Wess-Zumino-Witten model
can be realized as the Z; orbifold of the su(N); model,
with the spinor representations of so(/V) appearing as the
Z,-twisted fields [8]. Thus we expect to find the space-
time fermionic physical states of the ¢ = 5 model of the
spin-4/3 fractional superstring in the Z,-twisted sector of
s0(2,1),. In the next subsection we construct this twisted
sector in some detail, and show along the way that the
R'-sector bypass relations (2.7) are indeed satisfied. In
the subsequent subsections we compute some low-lying

J
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R'-sector physical states and discuss their scattering am-
plitudes using the results of Sec. III.

A. The twisted sector of so(2,1);

From the bypass relation (4.5), it follows that the 7 (2)
bosons have the mode expansion

. . 1 .
J(y) = ; Zgi,T
P(z)=¢+i ) ~Bl27", (4.7)
LA
with modes satisfying the commutation relations
[ﬂ:’ﬂﬁ] = Tgij6r+a~ (48)

It is easy to show that

G| (E7)

r>0 8<0
(4.9)

implying the basic OPE ¢'(2)¢? (w) = —g¥lIn(z — w) +
.... The quantization of the zero mode ¢’ is crucial for
correctly reproducing the operator products of untwisted
sector operators when acting on states in the twisted sec-
tor. As shown in Ref. [8], the correct quantization of the
¢’ zero modes of ¢?(z) is

[¢ia ¢]] = i'rrsij’

where €% is the antisymmetric two-index tensor normal-
ized by €12 = 1. These commutation relations result
from the proper quantization of free boson zero modes
in the presence of the constraints arising from identifi-
cations under lattice translations and the inclusion of a
constant antisymmetric background field [8].

In the twisted sector (i.e., with a Z, twist field inserted
at the origin) the basic vertex operators Vi, =: e™¢ :
have the normal ordered expression

(4.10)

Vin(2) = exp {—%mlmz} 27Mm, =3 M Moy fim - ¢}

xexp{—z %m-ﬁ,z"'}exp{—z %m-,@rz_r}- (4.11)

<0

The first factor provides the signs needed to “Wick ro-
tate” from so(3) to so(2,1). No further cocycles are
needed, since the so(3) signs are automatically taken care
of by the commutation relations of the ¢’ zero modes.
The normal ordering factors (24/z) ™™ are required to
ensure the factorizability of amplitudes (associativity of
the operator product). Using this explicit form (4.11) for
the vertex and the mode commutation relations (4.8) and
(4.10), it is easy to check that the vertex operators in-
deed obey the correct untwisted-sector operator product
expansion

>0

{
Vn(2)Va(w) = (=1)™"™ (2 — w)™ *Vinyn(w) + - -
(4.12)

as they should since the operator products encode only
local information and do not depend on whether any
twist fields are located elsewhere on the world sheet.
The representations of the zero mode algebra (4.10) de-
termine the properties of the twisted-sector ground state.
It is shown in the Appendix that there are only three
representations of the zero mode algebra which preserve
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the global so(2,1) symmetry of the so(2,1); CFT. This
implies that there are three twisted sectors 7,, labeled
by p € Zs, and that if 7, is an arbitrary twist field in
Tp and Vi, is an untwisted-sector vertex operator, then
VinTp € Tp. Thus the three twisted sectors are disjoint;
in fact, they are just copies of one another under the ac-
tion of a Z3 symmetry of the so(2,1), CFT. Indeed, from
the expression (4.11) for the Vj, vertex acting on an ar-
bitrary twisted-sector state 7,,(0) one obtains the bypass
relation

Vin(2) * 7p(0) = eI meZmoy.  (2)7,(0)
_ e—iwm-me(ml-f-mz)V_m(z) TP(O)’ (4.13)

where in the second line we have used a property of the
zero-mode representations derived in the Appendix. This
bypass relation implies the double-bypass relation Vi, *2
Tp = e 2"mmy . which in turn implies the existence
of the mode expansion

Vin(2)75(0) = z zmammed (Ven) 3 75(0).

nes

(4.14)

It is clear from (4.13) that the 7, twisted sectors can
be “rotated” into each other by the Z3; automorphism of
the so(2,1); CFT: Vi, = w™ ™ ™2V,,. Thus the three
twisted sectors are equivalent and we henceforth restrict
ourselves (without loss of generality) to the p = 0 sector.
In this sector the single-bypass relation (4.13) for the
basic fields are

et w1 = Wit Fr,

stxr = wzsq:'r,

G* x 7 = Ww?G¥r, (4.15)
the last of which is precisely the defining bypass relation
(2.7) of the R' sector. These bypass relations along with
the mode expansion (4.14) imply that Z,-even fields have
only integer moding, while the Z;-odd fields have only
half-odd integer modings. For example,

pn+ (—1)" n—

€nj2 = €ny2)

s:/z = (_1)n5;/2>

G*, = (-1)"GT

=g = e (4.16)

We now discuss the properties of the twist fields. In
order to characterize the twisted-sector states we must
take into account the action of the zero modes ¢’ on
the twist states. In particular, the twisted-sector ground
state forms a representation of the nontrivial zero-mode
algebra (4.10). As a result, it is shown in the Appendix,
the ground states in the twisted sectors are doubly degen-
erate. We label the corresponding twist fields by o®(z)
and the ground states by |a) = ¢*(0)|0), where a = 0 or
1.

The action of the zero mode of an arbitrary untwisted-
sector operator on the twisted-sector ground states can
be worked out using the methods of the Appendix. In
particular, one finds that the zero modes of the so(2,1)
scalar and vector fields act on the ground state as

sy la) = 27%/%a),

c6™la) = 2723 (y*)51b),

Ug'la) = 271 (v*)31b), (4.17)
where v, is a Dirac I matrix obeying
YHAY = gh" — et¥Pr,, (4.18)

where £#¥? is the antisymmetric tensor in three dimen-
sions normalized by £%!? = 1. These zero-mode actions
imply that the twisted sector ground states transform as
spinors under the global so(2, 1) symmetry. Thus twisted
sector physical states describe space-time fermionic exci-
tations of the spin-4/3 fractional string.

Since the ground states satisfy B%|a) = 0 for 7 > 0, a
simple computation reveals

(a|T(2)[b)

. i J LI
= hin (a] {—%atp (w)g:;0¢" (2) — (w — 2)2 } [b)
(4.19)

implying that the conformal dimension of the twisted-
sector ground state is h(c®) = 1/8. C% is the spinor
metric which can be taken to be (v°)%. All other twist
fields are created from o® by the repeated action of the
@7 creation modes 3 with 0 > 7 € Z + ;. Thus the
twist states have the spectrum of conformal dimensions

h = § + % for n > 0 an integer.

B. Mode algebra in the so(2,1); twisted sector

Acting on a twisted-sector state, the FSC currents G*
have the mode expansion

GE()r(0) = Y 27373GE 27 ?1(0), (4.20)

nez

following from (4.14). Since the space-time coordinate
boson fields X* of the ¢ = 5 representation of the FSC
algebra are unaffected by the orbifolding procedure, their
mode expansion is the usual one,

1
B(y) = 2 — ia*l i §° Zakzm,
XH"(z) = 2" —iafIn(z) + ¢ %60 oz
n

(4.21)

satisfying the standard commutation relations [z#, af] =
igh¥ and [a¥, a’] = mémng"””. Combining this with the
mode expansion of the so(2,1), fields acting on twisted-
sector states, and recalling the form of the currents (4.3),
we obtain

1
GE, = — {;i > om-€r - gsif}. (4.22)
n/ \/—2_ =, 2 2

Although we could, in principle, use the mode expan-
sion (4.22) to calculate the action of the G¥ modes on



arbitrary twisted-sector states using expression (4.11) for
the vertex operators in terms of the modes of (7, this is
in practice a complicated way of computing. A more
efficient way which preserves Lorentz invariance in inter-
mediate steps is to express all the twisted-sector states in
terms of products of modes of ef acting on the twisted-
sector ground-state spinor. The set of all products of ef
modes is not a linearly independent basis, however, so we
need to compute the algebra satisfied by the ef modes.
Also, in order to compute the action of the G* and T
modes on twisted-sector states, we have to express them
in terms of the ef modes.

The algebra of the e;f modes can be written as a set of
generalized commutation relations (GCR’s) derived from
the eif OPE’s in the same way that the G* GCR’s were
derived in Sec. II. Noting from (4.16) that the €} and

€, modes are related, we define

6Z/z = 6z/_z = (*1)"633-

(4.23)
Using the OPE’s eXef = 27%/3g,, 4+ --- and efef =
z‘1/36u,,"ef +---, the mode algebra for the €*’s is found
to be

v n
“€m—t—1€ntr41 }
2 2

= 2 () g B+ 2 ()R
2
(4.24)

where the coefficients Dga’ﬂ ) are given in Eq. (2.14). Any
s0(2,1), twisted-sector state can be written as a polyno-
mial in the € creation modes acting on the twisted-sector
ground state. The GCR (4.24) plus the identity
€_1/2 - €ola) =0, (4.25)
which is easily verified from the expression for vertex op-
erators in terms of the ¢/ modes (4.11), are sufficient to
reduce any set of such states to a linearly independent
basis.
The current modes can be expressed in terms of e*
modes as follows. Since the s* and s~ modes are related
by the identifications (4.16), we can define

Sn/2 = S,y = (=1)"s7% 3 (4.26)

and from the OPE e¥-e* = 322/35F +. - one then derives

- o0 52
2 1/3 575)

8 = - D, €m—t * € R
R B PR
(4.27)
9-4/3 2 (52,
S = D, ¥3€mt - €mie
™73 ,z:: ¢ met Tmit
+e€m—t—1 €m4L4+1 }
2 2
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Similarly, since €t - €F = 327%/3 4 24/3T, 4 ...

L?®

m

1 = (3.-%)
- gém,o - (__1)m2—2/3 ZDlz’ 3 €m—¢—1 " €m+e+1,
£=0 2 2

(4.28)

where L¥, are the modes of T,. The mode expansion of
the full stress-energy tensor is then

1 o0
L, = 5 Z Qp—g " Og + Lgl (4.29)

£=—o0

Using (4.27) and (4.28) in (4.29) and (4.22) gives the
current modes solely in terms of € and a modes.

C. Simple physical states and scattering amplitudes

As discussed in Sec. IIIB, the correct set of physical
state conditions in the R’ sector is not known. So, for
the moment, we assume the maximal set:

(L'n - htan,())l'r> =0,
(G = AFbn0)lm) = 0, (4.30)
for n > 0 an integer. The h; intercept determines the
conformal dimension of physical state vertex operators in
the twisted sector. In terms of the polarization spinors
of the twisted sector states, the Lo condition gives the
usual Klein-Gordon equation fixing the mass of the state.
The G’Oi conditions, likewise, give Dirac equations for the
spinor wave functions, which also fix the mass of the
state. The consistency of these three zero-mode condi-
tions determines the G intercepts A* in terms of the
Ly intercept h;. We now solve these physical state con-
ditions for the lowest two levels of twisted-sector states.

The lowest twisted-sector state is

|T0) = uala; k), (4.31)

where |a; k) = e**X|a) and u, is a spinor wave function.

The only nontrivial physical state conditions come from
the Ly and G(:,t modes:

(Lo — ht)|m0) =0 = (k* —2hy + HYu =0, (4.32a)

(G — A%)|mo)

=0= (:tik v+ 3+ 22/3\/§Ai) u=0. (4.32b)

Consistency of (4.32aa) with (4.32ab) implies A* and h;
are related by

223VoAt = -3+ /1 - 2h,.

Now we examine the first excited state in the twisted

(4.33)
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sector. These are the four dimension-5/8 states ﬂ’_l/zla).
Written in this manner their so(2,1) properties are not
apparent. These can be made more manifest by intro-
ducing the combinations

|u,a) = e‘il/zla). (4.34)
From the identity (4.25) it follows that
Yulp,a) = 0. (4.35)

Thus, |u,a) describes a spin-3/2 so(2, 1) representation.
If desired, they could be written in terms of ¢/ modes as
|w,a) =my-B_1/2(7u)3|d) (no sum on p implied), where
mo = {—1,-1}, m; = {1,0}, and my = {0,1}. The
general first excited twisted-sector state is then
|T1) = u¥|p, a; k), (4.36)
where |u,a;k) = e*X|u,a). The constraint (4.35) im-
plies that we are free to redefine the spin-3/2 polarization
by u* — u* + y*4, where 4 is an arbitrary spinor. We
fix this freedom by taking
Yuu* = 0. (4.37)
The nontrivial physical state conditions come from the
Ly, Goﬂ:, and Gli/2 modes:

(Lo —h)|m) =0 = (k*=2hy+3)u* =0, (4.383)
4

(Gy — A%)|m)
-0 = (iik VR - 22/3\/'21\*) ub =0, (4.38b)

Gialn) =0 = k-u=0. (4.38¢)
Together with (4.37) these are the correct equations of
motion for a spin-3/2 particle. Consistency of the Dirac
equations (4.38b) with the Lo condition (4.38a) implies
the intercepts are related by

223V2At = $ 5 4/5 - 2he.

Note that the Gli/2

it follows from the Dirac equations (4.38b) along with the
constraint (4.37).

From these two lowest R’-sector levels, it already fol-
lows that the maximal set of physical state conditions
(4.30) must be modified. In particular, the relations
(4.33) and (4.39) between the A* and h, intercepts are
different and have no common solution. If, however, we
restrict ourselves to the set of physical state conditions
(3.17) discussed in Sec. IIIB and parametrized by a, we
find that there is then a common solution for the inter-
cepts only for « = 0, hy = 1/8, and A* = —3.2725/6_ In
other words, a consistent set of R'-sector physical state
conditions may be to impose only the vanishing of the G+

(4.39)

condition (4.38c) is redundant, since

annihilation operators and the Gg — AT = 0 condition:

(Ln — htbn0)|T) =0,

(G, —AT8,0)|7) =0,

g (4.40)

for n > 0 an integer. The action of the G~ operators,
and in particular the value of the G intercept, would
then be free to vary from state to state as determined
by the GCR’s for the ¢ = 5 model. With this choice of
physical state conditons, the lowest-level R'-sector state
To is a massless Majorana spinor, and the next level de-
scribes a massive spin-3/2 particle. Note also that since
the G1+/2 condition (4.38c) is redundant, it might also be
consistent to discard the half-odd-integral modings of G*
as physical state conditions. A potentially useful exercise
would be to compute R’-sector physical states at higher
levels to check these conjectures.

The simplest nontrivial scattering amplitude we can
write using the prescription (3.8) developed in Sec. III is
a three-point coupling for two R’'-sector ground states 7
and the massless vector state from the untwisted sector.
This latter state was worked out for the ¢ = 5 model in
Ref. [2], and is described (in the Z3 charge +1 sector) by
the vertex

WH(z) = € [ef(2) + 1, ke (2)] em X (4.41)
where the momentum and polarization satisfy k - k =
k- & = 0. The three-point coupling is then easily worked
out:

Avor = (1030, k1 [W (€, ka5 1) |70; u, k3)

= 2720908, (" + iek k5 ) w8 (ka + ka + ko).
(4.42)

The first term is just the expected minimal coupling of
the fermions to the gauge field. The second term repre-
sents a derivative coupling which is higher-order in the
string tension, and therefore is suppressed at energies be-
low the Planck scale. This string correction to minimal
coupling does not occur in the corresponding ordinary
superstring amplitude, although string correction terms
do appear in higher-point functions.

Higher-point tree amplitudes can be calculated simi-
larly using W+ vertices and S* = (G — A")~! propa-
gators, in accordance with the prescription developed in
Sec. III B. As mentioned in that section, even without an
understanding of the world-sheet “fractional superghost”
system, the correctness of our twisted-sector scattering
prescription can still be tested at the tree level by com-
puting four- or higher-point scattering amplitudes and
checking whether duality is satisfied. In particular, it
would be interesting to work out some four-point ampli-
tudes with two twisted-sector states and two untwisted-
sector states. One could then check for duality by look-
ing at the spectrum of poles in the ¢ channel to see if it
matched the spectrum of the untwisted sector for some
values of the twisted-sector intercepts, while factorizing
in the s channel will give information on the physical
twisted-sector spectrum and may help clarify the correct
R'-sector physical state conditions.
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V. THE R SECTOR IN A ¢ =2 MODEL

The issue of the correct set of physical state conditions
in the R sector is simpler than in the R’ sector because
of the mode identifications (2.10) which imply that there
is really only one independent fractional supercurrent in
the R sector. In particular, since G5 = §G{, the GE
intercepts must be related to each other by A~ = JA™T.
[Recall that § = sgn(8 — c).] Also, by (2.18), the G§
intercept is related in a model-independent way to the
Ly intercept:

STt é 5¢
+(a+_2A Y\ _ 9 _ 2
A (A 28/3) =i/ (ht 128)' (5.1)
This implies that
AT )
(G3+A+_m) (GF —AY) = 2—4/3(1‘0‘}“)’
(5.2)

thus ensuring that the Dirac equation resulting from the
G¢ — AT = 0 physical state condition is automatically
consistent with the mass-shell constraint coming from the
Lo — h; = 0 physical state condition.

It is natural to ask whether the R sector can be realized
in the ¢ = 5 model described in the last section. From
the discussion of Sec. II, the R sector is characterized
by the automorphism of the FSC algebra which inter-
changes G* > §G~. This automorphism is extended to
the whole ¢ = 5 CFT by the stmultaneous transforma-
tions X#* — —X* and ¢ — —¢?. Thus the R sector
can be realized in the ¢ = 5 model, but as the twisted-
sector of a Zy orbifold of all five boson fields on the world
sheet. This has unfortunate consequences for the physi-
cal interpretation of states in this sector since orbifolding
the coordinate boson fields X# does not leave the gen-
erators of space-time translations 8X* invariant. Thus
there are no translation-invariant states in the R sector
of the ¢ = 5 model.

However, one should not conclude from this that the R
sector is in general badly behaved from a space-time point
of view, rather, this behavior is only a property of specific
CFT models of the spin-4/3 FSC algebra. As an exam-
ple in support of this statement, we briefly describe in
this section a ¢ = 2 model in which the R sector appears
without orbifolding the coordinate boson fields. Unfor-
tunately, this model has only one space-time dimension,
so the resulting space-time physics is trivial; however,
we can still demonstrate the existence of R-sector phys-
ical states which are translationally invariant in the one
space-time dimension.

The ¢ = 2 model is written in terms of two free
bosons, X and ¢, satisfying X(z)X(w) = —In(z — w)
and ¢(2)p(w) = —2In(z — w), with ¢ compactified on
the unit circle ¢ = ¢ + 27 [9]. The vertex operators in
the ¢-CFT, V,, = ¢'™? for m € Z, have conformal dimen-
sions h(V,,) = m2/3, and carry the (untwisted-sector) Zs
charge ¢ = m mod 3. Denoting the dimension-1/3 and
4/3 operators by

€ =Viy, s =Vg, (5.3)
it is easy to check that the spin-4/3 FSC algebra currents
are given by

Gt =— (ieiax + is*) . (5.4)

V2

Comparing to the expression (4.3) for the currents in the
¢ = 5 model, the important difference for our purposes is
the absence of + signs in front of the e£8X term in (5.4).
This means that the automorphism interchanging G* <
G~ is realized in the ¢ = 2 CFT by the transformation
¢ — —¢ without any accompanying reflection of the X
coordinate boson.

Thus, the R sector states of the ¢ = 2 model are real-
ized as states in the twisted sector of the Z, orbifold of
the single ¢ boson. Acting on this sector, ¢ has its mode
expansion shifted in the standard way,

. 1, _
p(z)=¢+i Y Bz, (5.5)
r€Z+}
with modes satisfying the commutation relations

[Br,Bs] = (2r/3)6,+5s. The ¢ zero mode commutes with
everything, and so can be taken to be a constant, which
we set to zero. The basic vertex operators V,, have the
normal ordered expansion

1
Vm(z) = 2—2m3/3z"m7/3exp {'— Z ;mﬁ,.z-r}

r<0

X exp {— Z %mﬂ,z"} . (5.6)

>0

The normal ordering factors (4z)“'"2/ 3 are required to
ensure the factorizability of amplitudes (associativity of
the operator product). From this expression acting on an
arbitrary twisted-sector state 7 one obtains the bypass
relation V,, * 7 = w~™'V_,, 7, where w = e2"/3. In
particular, the single-bypass relation for the basic fields
are
et x 7 = wleT,
st =w?sFr,
Gt x 1 = wiGFT, (5.7)
the last of which is precisely the defining bypass relation
(2.9) of the R sector. (More precisely, this is the bypass
relation of the p = 0 R sector; the p = £1 R sectors can
be realized by letting the ¢ zero mode take the values
¢ = 2m/3 and 47/3.) In general, these bypass relations
imply that Z,-even fields have only integer moding, while
the Zj-odd fields have only half-odd integer modings.
The twisted-sector ground state is nondegenerate. We
denote the corresponding twist field by o(z) and the
twist ground state by [Q2) = ¢(0)|0). The action of the
zero mode of an arbitrary untwisted-sector operator on
the twisted-sector ground state is simply (Vin)o|Q2) =
2-2m*/3|Q). Since the ground states satisfy 3,|Q) = 0
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for > 0, a simple computation analogous to (4.19) re-
veals that the conformal dimension of the twisted-sector
ground state is k(o) = 1/16. All other twist fields are
created from o by the repeated action of the ¢ creation
modes (3, with 0 > r € Z + ;. Thus the twist states
have the spectrum of conformal dimensions h = % + 3
for n > 0 an integer.

Acting on a twisted-sector state, the FSC currents G*
have the mode expansion

GE(2)r(0) = Y 27373GE 2721 (0).
nez

(5.8)

Since the coordinate boson field X is unaffected by the
orbifolding procedure, its mode expansion is the usual
one, as in Eq. (4.21). Recalling the form of the currents
(5.4), we obtain

1 1
+  _ + +
Gn/2 = —\/ﬁ{ E Am€n _m + —ﬂs%}.

meZ

(5.9)

The lowest-level state in the R sector is simply |7) =
e**X|Q). The nontrivial physical state conditions are

(Lo — he)lmo) =0 = k*—2hy+ % =0,

(5.10a)
(65~ A*)iro) =0 = k42792 222yap*
=0. (5.10b)

Consistency of (5.10a) with (5.10b) implies AT and h;
are related by

At = 9-11/3 4 9—2/3 /ht _ %,

which is equivalent to the relation (5.1) derived from the
R-sector mode algebra.

The first excited state in the twisted sector is |1;) =
B_1/2¢"*X|Q). The nontrivial physical state conditions
are

(5.11)

(Lo — he)|m1) =0 = k*—2h,+ 2 =0, (5.12a)

(GF —AT)|m) =0 = k+13x27%243x 2327+
=0, (5.12b)

Giyln) =0 = k-27%%=0. (5.12¢)
Consistency of (5.12b) with (5.12a) implies the intercepts
are related by

At =-1 (13 x 271/3 £ 972/3, [h, — —1%) . (5.13)

Although this is a different functional relation between
A" and h; than appears in (5.1), they have the com-
mon solution h; = 5/8 and A* = —5 x 271*/3 which is
precisely realized when the condition (5.12c) is satisfied.

At higher levels in the R sector similar physical states
will be found, all with specific values of the intercepts
satisfying the relation (5.1). A priori, there is no reason

to expect all these states, or even an infinite subset of
them, to have the same value of the intercept. Of course,
in one space-time dimension duality does not require the
existence of infinite towers of states. We have thus shown
that, to the same level of consistency, both the R and R’
sectors can be realized in models of the spin-4/3 frac-
tional superstring. It remains an open question whether
either of these sectors is actually realized in a critical
(¢ = 10) model of the fractional superstring.
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APPENDIX: TWISTED-SECTOR ZERO MODES
OF so(2,1);

‘We take into account the action of the ¢’ zero modes
¢’ on the twist states. In particular, the twist ground
state forms a representation of the nontrivial zero-mode
algebra [¢!,$?] = im, and so is degenerate. We denote
this degeneracy by an index a on the twist field o°(2)
and write for the twist ground state simply

@) = o%(0)0). (A1)
We choose these states to be eigenstates of ¢? (the second
component of ¢7):

$*|a) = mala), (A2)
where, for the moment, a can be any real number. The
zero-mode algebra [¢!, $?] = im implies that ¢' and ¢?
are conjugate variables, and that
™9 |a) = |a+m). (A3)
Recall that the classical boson fields ¢’ take values on
the torus defined by the lattice identifications ¢’ =
¢’ + 2w. This implies, first of all, that only exponentials
exp(im;¢’) with m; € Z should be considered (since they
are single-valued on the torus), and secondly by (A2) that
we should identify
la+2) = %¢'|a) = gla), (A4)
where 3 will be determined momentarily. Note that since
[e24" ¢im¢] = 0 for integer m;, § = 2" is a constant.
The fact that the m; are constrained to be integers
means that for each 0 < a < 1 and every choice of 3 there
is a separate, inequivalent two-dimensional representa-
tion of the zero-mode algebra, consisting of the states |a)
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and |a+1). Note that in terms of their ¢? eigenvalues,
these two states differ by a half-lattice translation, as do
the fixed points of the Z, orbifold. In this way we match
up with the familiar result that the number of (ground
state) twist fields in an asymmetric (chiral) orbifold is the
square-root of the number of fixed points of the orbifold
action [7,10]. Note also that the existence of these infinite
number of representations of the zero-mode algebra is a
reflection of the symmetry of the vertex operator algebra
which takes Vi, — 8™1/2y™2/2V,,, where B = ¢’ and
5= ezi¢’ — glima,

We now show that only three of these infinite number
of inequivalent representations of the zero-mode algebra
are consistent with the so(2,1) symmetry of the CFT. In
particular, the zero modes (U, )o of the generators of the
50(2, 1)z current algebra symmetry must obey the so(2,1)
algebra

(U)o, (Un)o] = €uuo(UP)o-

Using the definitions of the U, fields in terms of vertices
(4.2), and the identification of the zero mode of a vertex
acting on the ground state as

(A5)

in

(‘/(ml,mz))o —e 2 m1m22—-m;g‘1mj Z(ml,mz)a (A6)
from (4.11) where
Z(myma) = exp(iqubj), (A7)

one can show, using the Hausdorff formula e4ef =
eAtBe:[4B] that the so(2,1) algebra (A5) is satisfied
only if

21y + Z(—2,-1) + Z(0,3) + Z(0,-3) = 0,
Z(1,2) + Z(~1,-2) + Z(3,0) + Z(-3,0) = 0,
Za,-n + 211 + Z3,3) + Z(-3,-3 = 0. (A8)

Acting on the ground states |@), using (A4) and the Haus-
dorff formula one can show that these equations reduce
to

THYTE =BT =0,
B+p2—y—7"18"1 =0,
By+B 2y 2-p -y =0,

where we have defined v = e*™. The only solutions
to these equations are 8 = v = wP where p € Z3 and
w = e?™/3, These three twisted-sector representations
give rise to three inequivalent highest-weight modules of
the FSC algebra.

Introducing the new notation |a), for the twisted sector
ground states to remove the fractional part of the index
of the |a) states,

(A9)

la)p = [a+8), (A10)

where a = 0 or 1, we can write

. 3 2
e™?®|a), = exp {%r—mz (m1 +2a + —32) } la +m1)p,

la +2)p = wPla)y. (A11)
Using the explicit form of the zero-mode representations
given in (A11) and the expression (A6) for the zero mode
of a vertex acting on the twisted-sector ground state, it
is easy deduce the zero mode actions (4.17) and (4.18).

[1] P.C. Argyres, A. LeClair, and S.-H.H. Tye, Phys. Lett.
B 253, 306 (1991).

[2] P.C. Argyres and S.-H.H. Tye, preceding paper, Phys.
Rev. D 49, 5326 (1994).

[3] Z. Kakushadze and S.-H.H. Tye, Phys. Rev. D 49, 4122
(1994).

[4] A.B. Zamolodchikov and V.A. Fateev, Zh. Eksp. Teor.
Fiz. 89, 380 (1985) [Sov. Phys. JETP 62, 215 (1985)];
90, 1553 (1986) (63, 913 (1986)].

(5] A.B. Zamolodchikov and V.A. Fateev, Theor. Math.
Phys. 71, 451 (1987).

[6] A. Neveu and J.H. Schwarz, Phys. Rev. D 4, 1109 (1971);
for a detailed explanation of this formalism, see, e.g.,
Chap. 7 of M.B. Green, J.H. Schwarz, and E. Witten,

Superstring Theory (Cambridge University Press, Cam-
bridge, England, 1987).

[7] L. Dixon, J.A. Harvey, C.Vafa, and E. Witten, Nucl.
Phys. B261, 678 (1985); B274, 285 (1986); S. Hamidi
and C. Vafa, ibid. B279, 465 (1987); L. Dixon, D.
Friedan, E. Martinec, and S. Shenker, tbid., B282, 13
(1987).

(8] K. Itoh, M. Kato, H. Kunimoto, and M. Sakamoto, Nucl.
Phys. B306, 362 (1988); M. Sakamoto, Phys. Lett. B
231, 258 (1989).

[9] P.C. Argyres, E. Lyman, and S.-H.H. Tye, Phys. Rev.
D46, 4533 (1992).

[10] K.S. Narain, M.H. Sarmadi, and C. Vafa, Nucl. Phys.
B288, 551 (1987).



