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Tree scattering amplitudes of the spin-- fractional superstring.
I. The untwisted sectors
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Scattering amplitudes of the spin-3 fractional superstring are shown to satisfy spurious state
decoupling and cyclic symmetry (duality) at the tree level in the string perturbation expansion.
This fractional superstring is characterized by the spin-- fractional superconformal algebra —a
parafermionic algebra studied by Zamolodchikov and Fateev involving chiral spin-3 currents on
the world sheet in addition to the stress-energy tensor. Examples of tree scattering amplitudes are
calculated in an explicit c = 5 representation of this fractional superconformal algebra realized in
terms of free bosons on the string world sheet. The target space of this model is three-dimensional
flat Minkowski space-time with a level-2 Kac-Moody so(2, 1) internal symmetry, and has bosons and
fermions in its spectrum. Its closed string version contains a graviton in its spectrum. Tree-level
unitarity (i.e. , the no-ghost theorem for space-time bosonic physical states) can be shown for this
model. Since the critical central charge of the spin-4/3 fractional superstring theory is 10, this c = 5
representation cannot be consistent at the string loop level. The existence of a critical fractional
superstring containing a four-dimensional space-time remains an open question.

PAGS number(s): 11.25.Db

I. INTRODUCTION

String theories are characterized by the local symme-
tries of two-dimensional field theories on the string world
sheet. The bosonic string is invariant under diKeomor-
phisms and local Weyl rescalings on the world sheet, and
the superstring is characterized by a locally supersym-
metric version of these symmetries. It is natural to ask
whether other symmetries on the world sheet can give
rise to consistent string theories. Since &actional-spin
6elds exist in two-dimensional theories, one can imag-
ine new local symmetries on the world sheet involving
&actional-spin currents (replacing the spin-3/2 supercur-
rent of the superstring). A proposal for a large class of
new string theories, called &actional superstrings, based
on these &actional symmetries was advanced in Ref. [1].
The critical central charges of the fractional superstrings
are smaller than that of the ordinary superstring. Evi-
dence has been presented for the existence of &actional
superstrings with potentially realistic phenomenologies in
space-times of dimensions four and six [2,3]. This paper
presents a spin-4/3 fractional superstring model that is
consistent at the tree level in string perturbation theory,
and has a low-energy spectrum and scattering amplitudes
describing gravity, Yang-Mills theory, and fermions.

The basic idea behind the &actional superstring is to
replace the world-sheet supersymmetry of ordinary su-
perstring theory with a world-sheet "&actional supersym-
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metry. " Such a kactional supersymmetry relates world-
sheet coordinate boson 6elds X" not to fermions but
rather to fields e'„of&actional world-sheet spin h. The
&actional supersymmetry is generated by a generaliza-
tion of the supercurrent, a set of new chiral currents G'
[4—6] whose conformal dimensions are 1+h. The compu-
tationally simplest case after the ordinary superstring is
the spin-4/3 fractional superstring where h = 1/3, and is
the subject of this paper. The dimension-4/3 &actional
supercurrents |+ are of the form

G+(z) - c„+Ox"+ (1.1)

and generate, along with the stress-energy tensor T, the
spin-4/3 fractional superconformal algebra. Classically,
this spin-4/3 algebra is the constraint algebra arising
&om gauge fixing the local world-sheet symmetry. Quan-
tum mechanically, the constraints generate physical state
conditions which pick out the propagating degrees of
&eedom kom the larger string state space. Although
the classical world-sheet gauge symmetry giving rise to a
spin-4/3 constraint algebra is not understood at present,
we can make progress by taking thr. constraint algebra
itself as a starting point, and checking the consistency of
the resulting string theory by constructing unitary scat-
tering amplitudes for the physical states. This approach
mimics the original construction of the superstring.

By analogy with the superconformal gauge of the su-
perstring, the stress-energy tensor and &actional super-
currents are assumed to generate the physical state con-
ditions. In particular, physical states are taken to be
annihilated by all the positive modes of T and G+. The
physical states are thus highest-weight states of the frac-
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tional superconformal algebra. In Sec. II we derive the
properties of a class of highest-weight modules of this
algebra, the untiiiisted modules, using the techniques de-
veloped by Zamolodchikov and Fateev [4,5] for studying
parafermionic algebras. These modules are organized by
a Z3 symmetry of the fractional superconformal algebra.
Highest-weight states with Z3 charge kl are said to be-
long to D modules, while those with Z3 charge 0 are in
S modules. The results we derive for these modules are
independent of the choice of particular conforrnal field
theory representations of the spin-4/3 fractional super-
conformal algebra.

We then take a first step toward showing the con-
sistency of fractional superstrings by defining tree scat-
tering amplitudes and showing that they are consistent
with the assumed physical state conditions following from
the spin-4/3 fractional superconformal algebra. In other
words, in tree scattering, physical states never scatter
to unphysical states, and null states can also be consis-
tently decoupled from scattering of other physical staths.
This property is commonly referred to as spurious state
decoupling, and is shown in Sec. III in a representation-
independent way. The argument for spurious state de-
coupling follows closely that used in the "old covariant
formalism" [7] for ordinary superstring amplitudes; how-

ever, due to the nonlinearity of the spin-4/3 fractional
superconformal algebra, an extra independent cancella-
tion is required for the argument to succeed compared to
the ordinary superstring case. The fact that this cancel-
lation does occur is not trivial, and is additional evidence
for the basic consistency of fractional superstrings.

Scattering of D-module states can be written in three
physically equivalent "pictures, " refiecting the Zs sym-
metry of the fractional superconformal algebra, in which
the vertex operators for scattering can be one of W+ of
conformal dimension 1/3 and Zs charge kl or V~+& of
conformal dimension 1 and Zs charge 0. This is closely
analogous to the two different pictures for scattering of
Neveu-Schwarz sector states in the old covariant formal-
ism for the ordinary superstring, in which vertex opera-
tors can be either G-parity even dimension-1/2 operators
or G-parity odd dimension-1 operators. Scattering of S-
module states is more problematic due to the absence of
an appropriate dimension-1 vertex operator in that sec-
tor. In this respect the S-module states are analogous
to the Ramond sector states of the ordinary superstring.
However, unlike the Ramond sector, the S-module sec-
tor includes the scalar ground state of the spin-4/3 string.
Prom this point of view the S-module states are analo-
gous to the Gliozzi-Scherk-Olive- (GSO-) projected states
of the Neveu-Schwarz sector, which include a tachyon
state. Indeed, S-module states can also be shown to de-
couple &om tree scattering amplitudes with D-module
states by a Zs analogue of the GSO projection [8].

A separate issue that can be addressed at the tree level
is the unitarity of scattering amplitudes. In particular,
spurious state decoupling implies unitarity only if one can
prove that the space of physical states has non-negative
norm. This latter property is called the no-ghost theo-
rem. We will not prove a no-ghost theorem in this paper;
however, such a theorem is discussed in Ref. [9] for the

three-dimensional model presented in Sec. IV of this pa-
per.

The model presented in Sec. IV is a particular confor-
mal field theory representation of the spin-4/3 factional
superconformal algebra with central charge c = 5. It
is made up of three &ee coordinate boson fields X" on
the world sheet and a two-boson representation of the
so(2, 1)2 Wess-Zumino-Witten model. This model thus
has a global three-dimensional Poincare invariance. The
nonlinear nature of the spin-4/3 factional superconfor-
mal algebra makes the existence of such a representation
nontrivial. Also, the states in the model are found to
be space-time bosons or fermions, showing that the ex-
istence of fractional-spin constraints on the world-sheet
need not imply fractional spins in space-time. The un-
twisted sectors of the fractional superconformal algebra
describe space-time bosonic physical states in this repre-
sentation. Some simple states and their scattering ampli-
tudes are discussed in Sec. IV. In particular, the lowest-
mass D-module states describe massless gauge fields for
the open string and a graviton for closed or heterotic-type
fractional superstrings. Appendix A collects some useful
details of the free boson construction of the so(2, 1)2 con-
formal field theory. Appendix B briefly describes other
known representations of the spin-4/3 factional super-
conformal algebra.

Fields transforming in so(2, 1)z spinor representations
in the c = 5 representation (i.e, as space-time fermions)
appear in the twist sector of the Z2 orbifold of the two-
boson theory describing the so(2, 1)q current algebra.
The resulting physical states are highest-weight states of
huisted modules of the fractional superconformal (FSC)
algebra. A companion paper [10] discusses the properties
of these modules and the spurious state decoupling argu-
ment for scattering amplitudes involving the twist sector
highest-weight states.

The structure of the highest-weight modules of the
spin-4/3 fractional superconformal algebra (i.e., its Kac
determinant formula) can be used to place restrictions
on the values of the central charge and the intercepts in
various sectors consistent with unitarity. In the bosonic
and superstrings, for representations with one timelike
(space-time) dimension, a non-negative physical state
space occurs up to a maximum value of the central
charge. As one passes through this critical value of the
central charge the norm of some physical states change
sign, implying that at the critical central charge there are
extra null states. Thus, one can check for the existence of
a critical central charge in a representation-independent
way by searching for the occurrence of extra sets of zero-
norm physical states. For the spin-4/3 fractional super-
string, the critical value of the central charge is found to
be c = 10 [1].

One immediate consequence of this value of the criti-
cal central charge is that the three-dimensional spin-4/3
&actional superstring model that we present as an ex-
ample in Sec. IV is not a critical string since its central
charge is c = 5. This fact, however, has no significance
at the level of tree scattering amplitudes. It is only for
loop amplitudes that one expects the condition c = 10
to manifest itself, since it comes &om an anomaly can-
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cellation condition. Indeed, this is precisely what occurs
in the bosonic and superstrings, where unitary tree am-

plitudes exist for c & 26 and c & 15, respectively, but
loop amplitudes are only sensible at the upper bounds of
these ranges, i.e., at the critical central charges. Since
three-dimensional Minkowski space-time is too small to
decribe nature, it is encouraging that the central charge
of our three-dimensional model is less than 10, allowing
the possibility of a critical spin-4/3 &actional superstring
containing four-dimensional Minkowski space-time.

This paper is organized so that the technical matter
appears in Sec. II. Since some readers may be unfa-
miliar with the considerations involved in analyzing the
properties of highest-weight modules of parafermionic al-

gebras, we have tried to make the other parts of the pa-
per intelligible without reading that section. In particu-
lar, if the reader reads only the first two paragraphs of
Sec. II and is willing to accept the results summarized in

Eqs. (2.24) and (2.25) and (2.27)—(2.31), the discussion

of spurious state decoupling in tree scattering amplitudes
in Sec. III should be self-contained. However, we have
tried to provide sufBcient detail to make the arguments
of Sec. II intelligible to any reader familiar with the ba-
sics of two-dimensional conformal 6eld theory. Also, the
three-dimensional model given in Sec. IV provides a con-
crete example of the abstract considerations of Sec. II,
in which all the computations are easy to carry through
since only &ee scalar Gelds are involved.

II. THE SPIN-4/3 FRACTIONAL
SUPERCONFORMAL ALGEBRA

The &actional currents G+ (z) and the energy-
momentum tensor T(z) together generate the fractional
superconformal (FSC) chiral algebra, encoded in the sin-

gular terms of their operator product expansions (OPE):

T(z)T(w) = —+ 2(z —w)'T(w) + (z —w) BT(wj+ ),(z —iU)4 2

T(z)G+(w) = —G+(w) + (z —w)BG+(w) + ),(z —ii))2 3

A+ 1
G+(z)G+(w) = G (w)+ —(z —w)BG (w)+ ),(z —T())4&s 2

+ 1
G (z)G (w) = Gz(w)+ —(z —w)BG+(w)+ ),(z i())4/3

1 3c 2—+(z —w) T(w)+ ).(z —w)s&' 8

(2.1)

8 —c
for c&8,

6

c —8
for c) 8.

6

(2.2)

Conformal invariance Gxes all the other coe%cients in
(2.1). This algebra generates the physical state condi-
tions for the spin-4/3 fractional string. The holomorphic
chiral algebra (2.1) is suitable for describing open string
states and scattering. For closed strings one must in-
clude an antiholomorphic copy of this algebra. We will
focus almost exclusively on the open string case, since the
generalization to closed string states and tree-scattering
amplitudes is straightforward.

An important property of the FSC algebra is its group

The first OPE implies that T(z) obeys the conformal
algebra with central charge c, while the second implies
that G+(z) are dimension-4/3 Virasoro primary fields.
The FSC algebra was first studied by Zamolodchikov and
Fateev [4,5]. The constants A+ in the G+G+ OPE's are
real parameters which are de6nite functions of c. We will

show below that associativity fixes %+A = (8 —c)/6.
Using a remaining freedom to rescale the G+ currents,
we choose the conventional values of A to be

of automorphisms, which organizes the representation
theory of its highest-weight modules. The order-six au-

tomorphism group Ss of the FSC algebra is generated by
the transformations

G+ -+ (G+ G, G+ m sgn(8 —c)G+, (2.3)

where (G = e2 ')'s is a cube root of unity. We will exploit
the Zs subgroup of automorphisms generated by the first
transformation in (2.3) in the remainder of this section
to analyze the properties of the untwisted modules of the
FSC algebras using conformal field theory (CFT) tech-
niques developed for parafermionic algebras [4,5]. A basis
of states in the untwisted modules can be taken to have
definite Z3 charges q. Highest-weight states with q = 0
are said to be in an S module, while D modules have
pairs of highest-weight states with q = +1. The reader
interested in getting to the prescription for spin-4/3 frac-
tional superstring scattering amplitudes can skip to Sec.
III which only uses the operator product expansions sum-
marized at the end of this section. In a companion paper
[10] we will exploit the Z2 subgroup of automorphisms
generated by the second transformation in (2.3) in order
to understand the twisted modules of the spin-4/3 alge-
bra. The next six paragraphs comment on some general
features of the spin-4/3 algebra, after which we begin the
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detailed analysis of its untwisted modules.
Since the choice of the algebra (2.1) essentially defines

the spin-4/3 fractional superstring, it is worth briefiy
mentioning the reasons why one might expect it to give
rise both to a sensible and a computationally manage-
able string theory. The representation theory of the FSC
algebra (and related nonlocal algebras) is well studied
[4—6,11,1,12,9]. It is known to have a representation
theory similar to that of the conformal and supercon-
formal algebras. In particular, it has a series of uni-
tary minimal representations realized by the coset models
su(2)4su(2)L, /su(2)L, +4 with central charges which ac-
cumulate at a particularly simple c = 2 model as L ~ oo,
analogous to the free field representation of the conformal
algebra with central charge 1, or the superconformal al-
gebra with central charge 3/2. Presumably a continuum
of representations exists for c ) 2; some simple examples
will be given later in this paper.

An important feature of the FSC algebra is the appear-
ance of cuts in the GG OPE's. Since there is only a single
cut on the right-hand side of each OPE, upon continua-
tion of a correlation function involving, say, G+ (z)G+ (m)
along a contour interchanging z and m it is consistent for
the correlator to pick up a definite phase. This situation
is described by saying that the currents G+ are Abelianly
bnuded (or parafermionic). Under interchange of z and m

(along a prescribed path, say a counterclockwise switch)
the only consistent phase that G+ or G can pick up with
itself is e '~~ . The phase that develops upon interchange
of G+ with G can be taken to be e

Because the operator algebra (2.1) is Abelianly
braided, one can derive a Ward identity relating cor-
relators with a G+G pair to ones with the pair re-
moved [4,5]. One can then solve for the structure
constants A+ by imposing the associativity condition—
independence of which G+G pair we apply the
Ward identity to—on, say, the four-point function
(G+(zi)G+(z2)G (zs)G (z4)), giving (2.2). The crucial
fact that enables us to integrate the Ward identity is the
absence of fractional cuts not allowed by Abelian braiding
property on the right-hand side of the OPE's (2.1), even
among the "regular" terms. This argument is described
in more detail in Appendix C of Ref. [13]; however, we
will not pursue it further here since we will be able to
derive (2.2) from the generalized commutation relations
satisfied by the modes of the currents, to be discussed
below.

The Abelian braiding of the currents tightly constrains
the form of the FSC algebra. For example, the appear-
ance of a new primary dimension-7/3 field on the right-
hand side of the G+G+ or G G OPE would not be
consistent with Abelian braiding. On the other hand, a
primary dimension-1 field (and its Virasoro descendents)
could appear in the G+G OPE consistent with Abelian
braiding as long as it appeared with opposite sign in the
G G+ OPE, similar to the way the spin-1 current en-
ters in the N = 2 superconformal algebra. However, we
exclude such an operator from (2.1) because it can be
shown that such an algebra is only associative for c = 1,
making it unsuitable for constructing a string theory.

An important consequence of the associativity con-

dition (2.2) is that representations of the FSC algebra
cannot be tensored together to form new representa-
tions of the FSC algebra. Given two representations
of the FSC algebra with the same central charge co,
and therefore the same structure constants A+(co), and
currents G,+-, T; for i = 1,2, it may seem that one
could form a new representation by tensoring thexn to-
gether. The tensor-product algebra would have currents

Gy + Gg &
T —Tp + T2& central charge c = 2co,

and structure constant A+(co) = A+(c/2); however, the
new central charge and structure constant are no longer
related by (2.2), indicating that the tensor-product rep-
resentation is not really a representation of the FSC al-

gebra (2.1). The problem is not that associativity some-
how breaks down for the tensor-product representation,
but rather that taking tensor products introduces new
fractional powers among the regular terms of the OPE's,
implying that the braid relations of G+ in the tensor-
product CFT are different from those in the FSC alge-
bra. For example, the first regular term that would ap-
pear in the G+G+ OPE in the tensor-product CFT is
G+(z)G+(m) (z —m)0:G+G~+: (m). This term and
its descendents all appear with integer powers of (z —m).
Although these terms do not introduce "cuts, " they do
nevertheless involve powers of (z —m) that do not appear
(mod integers) among the leading terms of the FSC alge-
bra OPE's. The basic lesson is that it is not the OPE's
alone that define a chiral algebra; they must be supple-
mented by the braid relations satisfied by the currents.

Thus, the nonlinearity of the FSC algebra, indicated
by the dependence of the structure constants A+ on c, im-
plies the absence of tensor-product representations of the
algebra. We will see that it is this nonlinearity, rather
than the fractional dimension of the currents G+, that
raises the main obstacles to the existence and tractabil-
ity of the spin-4/3 fractional superstring. Indeed, the
existence of sensible tree-scattering amplitudes despite
the nonlinearity of the FSC algebra will appear to oc-
cur, in our formulation, due to an "accidental" algebraic
cancellation which has no counterpart in the analogous
formulation of bosonic or superstring scattering ampli-
tudes.

A. The FSC mode algebra

The physical states of the spin-4/3 &actional super-
string are annihilated by the positive modes of T and
G+, in analogy to the "old covariant" formulation of
the bosonic string and superstring in (super)conformal
gauge. In this section we will de6ne what we mea, n by the
modes of the G+ current, and will derive the algebra that
these modes satisfy. This discussion will actually only
be valid for certain untwisted" sectors of states analo-
gous to the Neveu-Schwarz sector of the superstring. The
analysis for the analogues of the Ramond sector appears
in Ref. [10].

It wiQ be important in the sequel to know the mon-
odromies of the currents G+. The monodromies are the
phases picked up when the insertion point of one cur-
rent is continued along a closed path around the inser-
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tion point of another current. We choose this path to
be a simple counterclockwise closed loop, and denote the
analytic continuation of a field V(z) around W(iii) by a
bypass elation [4], denoted V(z) *W(iU), and illustrated
in Fig. 1. The monodromies are thus simply the phases
acquired upon braiding a pair of fields twice. The bypass
relations satisfied by the &actional currents can be read
off from the FSC algebra OPE's (2.1):

The point is simply that the powers appearing on the
right-hand side are the only ones which pick up phases
consistent with (2.5) upon a counterclockwise continua-
tion of z around 0. The moding of the currents labels the
(operator) coefficients of these terms with the convention
that the value of the mode number is the negative of the
dimension of the mode operator. The mode expansions
{2.6) can be inverted to give

T(z) *T(i') = T(z) T(w),

T(z) * G+(ui) = T(z) G+(ui),

G+(z) *G+(ur) = e ' / G (z) G+(w),

G+(z) * G+(io) = e+' / G+(z) G+(w).

(2.4)

T+pq =Tpq) G +pq =6 G pq. (2 5)

Note that these monodrornies are consistent with {2.4)
and the Zs charge assignments of T and G+. These by-
pass relations imply that we can define the mode expan-
sions of G+ and G acting on any state yq by

As was pointed out in Ref. [5], the FSC algebra (2.1)
has a Z3 symmetry that is useful in organizing its rep-
resentation theory. In particular, the currents G+ and
G can be assigned Zs charges q = 1 and —1, respec-
tively, while the energy-momentum tensor T (as well as
the identity) has charge q = 0. Et is natural to assume
that, since the FSC algebra is supposed to be an organiz-
ing symmetry of our theory, all the fields in a represen-
tation will have definite Zs charges, and that these fields
will have the same monodromies with the FSC currents
as the currents have with themselves. These conditions
define the class of untwisted representations of the FSC
algebra. Along with the parafermionic nature of the FSC
algebra, these properties enable one to learn much about
the structure of these representations [4].

So, assume the state space of FSC algebra represen-
tations falls into sectors Qq labeled by their Zs charge.
The currents G+ and G have Zs charges q = +1 and
q = —1, respectively, and so act on the Fock space sectors
as G+: Mq ~ Llqyi. A state yq g Qq obeys the bypass
relations

G„'(, ,)/, Xq(0) =
2

.z"+"G+(z)&q(0)
~ 2m'

dz
G (i )/sgq(0) = z" G (z)&q(0) .

(2.7)

Here, p is a contour encircling the origin once, where

gq(0) is inserted. The allowed modings of the currents in
the different Z3 sectors are summarized in Fig. 2. Note
that the action of a G+ mode on a state in a given sec-
tor will map it to a different sector, where, in general,
different modings are allowed.

Following the arguments of Ref. [4], the generalized
commutation relations (GCR's) satisfied by the current
modes of the FSC algebra (2.1) can be derived. We
briefiy review this argument by deriving the OCR's of
the modes of G+ with G . The general procedure for
deriving GCR's for the modes of any Abelianly braided
operators should be clear Rom this example.

Consider the integral

m+q/3 n —q/3
27' z $2%~.(.— )"""G'( )G-( )X,(0), (2g)

where m, n, and p are arbitrary integers. The contours p
and h encircle the origin, with h inside p. The fractional
parts of the exponents in the integrand are chosen so that
the whole integrand is single valued in both the z and w

planes. This is possible only because of the Abelian na-
ture of the G+G OPE. Evaluate X by letting b shrink
down to a small circle near to the origin. Inthis limi, t, ex-

Pand the (z m) fa—ctor as (z io) = P—
& o C&( z ~mr,

where C& are the appropriate &actional binomial coef-
ficients:

G+(z)&q(0) = ) z" G+i „(i)/syq(0),
ngz

( )& ( )=). +:
( )/ x ( ) .

(2 6)

G" = (-1)'i (2.9)

I/3

V(z),

FIG. 1. Path denning the bypass relation V * W. FIG. 2. Modings of G acting on Z3 sectors of charge q.
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Inserting this expansion into (2.8) and using the mode
definitions (2.7) gives

~(p+2/3) G+ G (0
vn+p —E+(1+q)/3 n+E —(1+q)/3~q ~

E=O

(2.10)

2' can also be evaluated in another way, by first deforming
the p contour so that it lies inside b. Upon performing
this deformation, one picks up in the usual way two con-
tributions corresponding to the same integral with p and
b interchanged, and a contribution where the p contour
encircles the G insertion at the point w on the z plane;
see Fig. 3. The contribution with the p and h contours
interchanged is evaluated in the same way as outlined
above after interchanging G+(z) and G (w) as well as z
and w in the (z —w)~+z~s factor. Taking care to perform
these interchanges along equivalent paths in the complex
plane gives anoverallphasee' & ~ axe' (~+ ~ ) = (—1)~
(where the Abelian braiding of G+ with G has been
used). The second contribution, where p only encircles
the point ur in the z plane, is evaluated by letting this
contour shrink to a small circle around zu and replacing
G+(z)G (w) by their OPE. The value of the integer p in
the integrand controls the number of terms in the OPE
that contribute. For example, taking p = —1 and assem-

~p

FIG. 3. Deformation of the 7 contour in the z plane.

bling the three contributions shown in Fig. 3 results in
the generalized commutation relation for the G+ and G
modes given below in Eq. (2.11).

Alternatively we could have chosen another value of
p, which would pick up difFerent contributions from the
G+G OPE. It is clear that by letting p take more neg-
ative values, more complicated GCR's involving more
terms from the G+G OPE can be obtained. By con-
formal invariance, this tower of GCR's is consistent. In-
deed, the GCR obtained with p = po can be derived from
the GCR with p = po —1 using the binomial coefficient

identity C& —Ct ~
—— C& . So, there are many() () (+i)

GCR's that can be derived from a single OPE, depend-
ing on how many terms on the right-hand side of the OPE
one wishes to include. We will include only the singular
terms, shown in Eq. (2.1).

With this choice, the FSC algebra GCR's become [5]

(—2lsl G+ G+ G+ G+
e S&+n —Z ~+&+~+g &+en —t ~+&+~+g

S S S
Z=G

A+

2 '(n —m) G-
I 2+2lg +

) C G G: —G G = (n —m)G+,—&+~—g 2-0+~+/ —++m —g & —9+~+/ 2 % / &-~c+~+~'S S S S 2 S
E=G

3c c) Ct G,+, G,+, + G,+, G,+, = L„+~+—n+ 1+ —
I

n+ — o~p~,
E=G

(2.11)

I,G,+] = (
——r ) G+ ~, , (2.12)

where these expressions are understood to be acting on a
state in M~. Because of the infinite sum on the left-hand
sides, the mode algebra in Eq. (2.11) is not a graded Lie
algebra, but a new algebraic structure on the string world
sheet. This infinite sum is a reflection of the fractional
dimension of the current G and the resulting cuts in its
OPE's. Although the GCR's look complicated, they are
as useful as the familiar (anti)commutators of the (su-
per)Virasoro algebra. The reason for this is that the
integer 8 appearing in the infinite sum is bounded &om
below. Acting on any state of fixed conformal dimension,
the left-hand sides of the GCR's will have only a finite
number of nonzero terms since for large enough 8 the G+
modes will annihilate the state. Examples of the use of
the GCR's wiD be given later in this section.

For completeness, we also write down the standard
commutators following &om the conformal algebra and
the fact that G+ are dimension-4/3 Virasoro primary
6elds:

[L,I„]= (m —n)L +„+—(ms —m)h
12

(2.13)

independent of q.

B. FSC highest-weight modules

A highest weight state (o-r primary state) Iy) of the FSC
algebra is a state which is annihilated by all the positive
modes of T and G+:

L-Ix) = G„+i,Ix) =0 neZ) 0. (2.14)

A highest-weight module of the FSC algebra is a highest-
weight state Iy) along with all its descendent states
formed from Iy) by the action of creation (or zero) modes
of T and G+. It is easy to see from the IG+ commuta-
tor (2.12) that any sequence of L and G+ creation modes

I

where the moding r is the one appropriate to whichever
Zs sector the G+ currents are acting on, and the L„are
the standard modes of the stress-energy tensor defined
by
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can be reordered (to a different set) so that the L's are
to the right of the G 's. Thus the general descendent of
ly) can be written

G„+ G„+L„, L„,ly), r, e Z/3 & O, n, c Z & 0.

(2.15)

States annihilated by the positive L„modes are Vira-
soro primaries, while states created &om a primary state
by the action of the I „modes alone are Virosoro de-
scendents. In general, we will use the term "descendent"
without modifier to mean descendents with respect to
the FSC algebra. Thus, descendent states can be Vira-
soro primary or Virasoro descendent.

Before describing the properties of the FSC modules
in detail, let us first outline how the FSC mode alge-
bra (2.11) is used in practice. The basic problem that
the mode algebra should answer is how any sequence of
G+ and I creation or annihilation modes in which the
sum of all the modings is nonpositive, can be written as
a descendent state as in (2.15). For the L's alone, this
follows &om the Virasoro algebra (2.12) by repeatedly
commuting the positively moded L's to the right until
they annihilate the highest-weight state y. The analo-
gous operation for the G+ modes is less clear due to the
infinite sums in their GCR's (2.11).

To explain how this can be done, we first need to show
a basic property of the GCR algebra (2.11). For any
highest-weight state y, and any r; 6 Z/3,

"commuting a mode to the right" using the GCR's (2.11).
Namely, the GCR's relate the product of the mode in
question and its neighbor to the right to an infinte sum
of products of modes as in (2.17). However, by (2.16) all
but a finite number of these terms vanish, and repeated
applications of the GCR's on the remaining terms will
eventually convert them all to creation operators.

As an example of the use of the GCR's, we derive the
associativity constraint (2.2) on the structure constants

Consider a highest-weight state y with Zs-charge
q = 0 satisfying Loly) = hip) and its descendent state

l~') = Go Go G', g.l~). (2.19)

We can simplify y' by using the G+G+ GCR of Eq. (2.11)
with q = 0, m = —1, n = 0 to find (since y is highest
weight)

I
A+

l~') =
2

GoG:,qsl~). (2.20)

Now using the G G GCR with the same values of q,
m, and n gives

&+x-
i~') = (2.21)

Alternatively, we can try to simplify (2.19) with the
G G+ GCR. Acting on the state G+~&sly) (which is in

the q = +1 sector) with q = 1, m = 1, n = —1, this GCR
gives

p

G„+ Gaily) =0, if ) r, ) 0. (2.16)

Consider the p = 2 case first, where we want to show that
G„G~lg)= 0, if r+ s ) 0, where n and P are k. If s ) 0
the expression vanishes because y is highest weight, so
we only need to examine the case r ) —s & 0. From the
form of the GCR's (2.11) it follows that

G+

1 cl=
I
h+ ———IG+ ly),3 24' (2.22)

) Cr~ i G„rG~+r6 G~, rG„, ~ Iy)
e=o

(G~+, or L„+,) ly), (2.17)

where we have used (2.16) to remove all but two terms
from the infinite sum. Using the G G+ GCR again with

q = 0, m = 1, n = —1 on y shows Gz&sG+z&sly)

Loly) = hip), which, when substituted in (2.22), shows
that

where s' = s —1/3 or s —2/3 and r' = r + 1/3 or r + 2/3.
Since y is highest weight, and using r ) 0, r + s ) 0, and

t o ——1, the above expression reduces to the finite sum(~)

f'1 c )
I
X'& =

I 3
—

24 I ] /s I X) .

Comparing (2.21) and (2.23) determines %+A

(2.23)

—B

G:G~lx) = ).Gg'G:-eG. +gl~)
e=1

(2.18)
8 module8

Note that all the terms in the sum on the right-hand side
are of the same form as the original term on the left-hand
side, except that the modings of G~ are less negative. Re-
peatedly applying the same argument to these terms, one
can eventually show that they are zero. For the general
case p ) 2 perform the same argument on G„G~ in
(2.16) using the p = 2 result and proceed by induction
on p.

This shows how to perform the operation analogous to

The basic properties of the FSC modules built on
highest-weight states with Z3 charge q = 0 follow from
the nonvanishing modings of G+ and their GCR's. The
modules based on these states are called "S modules"
[5]. On states of Zs charge zero, the only nonvanishing
modings GP have r 6 Z —1/3. In particular, there is
no (nonvanishing) G+ zero mode. The only zero mode is
thus Io, and let us choose highest-weight states R; for



49 TREE SCA I I'ERING AMPLITUDES OF THE. . . . I. . . . 5333

these modules to be Lo eigenstates of eigenvalue h, . A
given S module will be completely determined by h, and
c, the value of the central charge in whatever representa-
tion of the FSC algebra we are considering.

The first descendents of ~W, ) are G+i&s~W, ), which

are Virasoro primary states of dimension h, + 3 with Z3
charges q = +1. To create further descendents &om these
states by the action of G+ modes requires either r E Z
or r E Z —

s (see Fig. 2). Proceeding in this way, it is
easy to see that the 8 module will consist of q = 0 states
of dimension h, + n, and q = +1 states of dimension
h, + 3 + n, where n & 0 is an integer.

One may try to build an infinite series of S-module
]

descendent states of given conformal dimension by the
action of the Go modes. For example, at dimen-
sion h, + s we have (Go Go)"G+i&s~W, ), for any non-

negative integer p. However, the GCR's (2.11) show
that these states are not independent: they are equal to
(%+A /4)"G+i&s~W, ). In general, the problem of finding

a basis of independent states at each level can be com-
plicated. The number of independent states at each level
has been determined in Ref. [9].

The structure of the 8-module descendents can be
summarized by the operator product expansions of the
FSC current G+ with the W, primary state and its de-
scendents. They are

G+(z)W, = ' +, G+(z)V,+ =
i ~ is V++ BV,+ +,'is +VP ~ + (A+ l 1 + 2z ~ V,+

(2.24)

V+

6 ) z2 ' 3h+1 z 3z+

For ease of writing, we have inserted the S-module vertex
operators W„etc., at the origin of the complex plane and

have dropped their arguments. V+, V+, and V, are
new Virasoro (though not FSC) primaries of conformal
dimension h. + 31, h. + 34, and h. + 43, respectively, while

W, is a dimension h, + 1 Virasoro primary. They are
defined by

iV,+) = G+
( iW, ),

IV.+) = G+-ilV.+)—

iV, ) = 2G+4isiW, ) — I i(V,+),
S

I~.) = (/" 2/3/ —1/3 G—2/3/: —l/3) I~.)

(2.25)

The various coefficients appearing in (2.24) were deter-
mined by the FSC mode algebra (2.11). For example,

G+] iV, ) = G+i G i iW, )

= Lo[W, ) = h. (W.), (2.26)

giving the first coefficient in the G V, OPE in (2.24).
Here the G+G GCR (2.11) was used in the second
equality.

We should think of V+ as forming a "fractional su-
permultiplet" with W, . Note that W, is single valued
with respect to the currents T and G+, while V+ have
cuts with the &actional current, reBecting the "&actional
statistics" of V+ on the world sheet. Summarizing, S-
module are characterized by the fields (W„VP)belong-
ing to a &actional superconformal multiplet with confor-
mal dimensions (h„h,+ s) and with world-sheet statis-
tics (bosoruc, fractional).

S. D modtclee

where

Go ~W„+)= A+~W~+), (2.27)

A+=A = hg ——
24

for c ( 24hq,

(2.28)

~+=-w- =
24

for c ) 24h~.

The main properties of D modules are summarized by
the OPE's of the currents G+ with the highest weight
vertex operators Wz+(z) of dimension hq and their first

descendent operators Vz (z) of dimension hq + s:

FSC modules built on highest-weight states with Zs
charge q = +1 are called "D modules" [5]. The non-
vanishing modings GP on q = +1 states have r E Z or
r C Z —2/3. If we choose the highest-weight states of the
D module to have conformal dimension (Lo eigenvalue)
h~, it follows that descendents will have dimension hd+n
in the q = +1 sectors and dimension hg + s + n in the

q = 0 sector, for n a non-negative integer. However, the
structure of D modules is more complicated than that of
9 modules because of the action of the Go modes on the
highest-weight state.

Consider a highest-weight state W+ with q = +1, and
conformal dimension hg. In general, this state will be
degenerate with another state ~W ) = Go ~W+) which
also has dimension hg, but has charge q = —1. The
G+G GCR in (2.11) implies that Go ~W ) = (hg—
2'4) ~W+), so fractional highest-weight states are doubly
degenerate. It is convenient to normalize these states to
satisfy
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Z z

G+(z)Vz = (hz+ —+A+A+ — W++ BW —
(

A+ ——A+
(

d z

G+(z)Vz = P (hz+ —A+Az — Wz++ BWzz A
(

Az+ —Az
(

+

(2.29)

The first OPE defines the two (Virasoro primary) de-
scendent operators of conformal dimension her+ 1 and Z3
charge q = +1,

~ Wq+ ) = G+,
~

Wq+ ) — L i
~

Wq+ ), (2.30)

while the second OPE defines the Z3 charge q = 0 Vira-
soro primary descendents of conformal dimension hd+ 3

..

(2.31)

III. TREE SCATTERING AMPLITUDES

We have put the 6 superscript on the Vd descendent
states in parentheses to emphasize that they do not refer
to the Z3 charge of these states. We have chosen the
particular definition (2.31) of V& for later convenience.
Just as in the S-module case, the coefEcients of the OPE's
(2.29) are determined from the FSC mode algebra (2.11).

We think of V& as forming a fractional supermulti-
plet with W& . The fractional currents G+ are single val-

ued with respect to the q = 0 descendent V& but has(+)

cuts with the q = +1 highest-weight states W&+. In sum-

mary, D modules are characterized by the central charge
c and the conformal dimension hd of their two highest-
weight fields. The D module fractional supermultiplets
are always of the form of a set of fields (W&+, V& ) with
conformal dimensions (hg, hg + s) and with world-sheet
statistics (fractionat, bosonic) .

(WIT(z) I&) = (&IG (z) I&) = 0 (3.1)

for any physical states ~P) and ~Q). Just as the stress-
energy constraint is satis6ed if the physical states are
defined to be those states annihilated by the stress-energy
modes L„with n ) 0, we can factorize the fractional
current constraint by demanding that all physical states
are annihilated by non-negative modes of G+. Thus, a
physical state ~P) should satisfy

(L„—M„o)ig)= 0, 0 & n E Z,

GP ~P) = 0, 0 & r c Z/3,
(3 2)

1

formal gauge are given by the vanishing of the energy-
momentum tensor and superconformal current. The full
local world-sheet symmetry of the spin-4/3 fractional su-

perstring is unknown, though it should include invari-
ances under reparametrizations and Weyl rescalings of
the world sheet. Assume that some analogue of the su-

perconformal gauge exists in the &actional superstring,
giving rise to an algebra of constraints generated by the
vanishing of T(z) and the fractional superconformal cur-
rents G+(z). In other words, assume that the fractional
superconformal algebra is the quantum version of some
classical constraint algebra. Thus, although we do not
know of any classical local symmetry on the world sheet
that gives rise to a spin-4/3 current as a constraint upon
gauge fixing, we nevertheless assume the weak physical
state conditions

In this section we formulate tree-level scattering am-
plitudes of physical states in the spin-4/3 fractional su-

perstring, and show that these amplitudes obey spuri-
ous state decoupling and duality properties. In what
follows, we construct open string scattering amplitudes.
Closed string scattering amplitudes at the tree level are
easily formed by combining two open string amplitudes
using a level-matching condition for left and right movers
[14]. The construction we use is closely analogous to that
of open Ramond-Neveu-Schwarz superstring tree ampli-
tudes in the "old covariant" formalism [7].

We take the physical states of the fractional super-
string to be highest-weight states of the FSC algebra.
Thus the physical state conditions are the requirement
that the positive (annihilation) modes of the FSC cur-
rents vanish when acting on physical states. This defini-
tion of physical states can be motivated as follows. In the
usual superstring, the physical state conditions are con-
straints following from gauge fixing the local world-sheet
symmetry. Classically these constraints in the supercon-

where r is the appropriate moding depending on the Z3
charge of the state, as in Eq. (2.6). Note that, by (2.12),
all the positively moded constraints can be generated
from those of the set (Li, L2, G~&s, Gz&s, Gi, G~&s).

From the physical state conditions (3.2) it is clear that
physical states are highest-weight states of the FSC al-
gebra. If the state has Z3 charge q = 0 it is the highest
weight state of an S module with conformal dimension
h, = h. If the state has Z3 charge q = +1 it is the
highest-weight state of a D module with hg ——h. Here
h is the "intercept, " a normal ordering constant in the
definition of T. The value of this intercept should be de-
termined by demanding consistency (unitarity, anomaly
cancellation) of the string scattering amplitudes.

The above argument suggests that there should also be
a Go physical state condition for D-module states (in-
teger moding is not allowed on S-module highest-weight
states, see Fig. 2). However, since the FSC algebra es-
sentially determines the action of the Go modes on the
two highest-weight states of a D module in terms of their
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common Lo intercept hg as described in Sec. IIB2, we

find that we do not need to impose any extra zero-mode
physical state condition to those of Eq. (3.2).

The standard properties of spurious and null states
follow from the physical state conditions. A state ls)
obeying the zero-mode conditions in Eq. (3.2) is called
a spurious state if it is orthogonal to all physical states.
Such a state can be written as

(3 3)

in terms of some other states ly„}and lQ„+}.Since ls)
is orthogonal to all physical states, the operator ls)(sl
must an»hilate all physical states. Since the physical
state conditions (3.2) are the only restriction on a generic
physical state, it follows that ls)(sl = g„&OX„L„+
P„&0@KG„+for some operators X„and 4P. Equa-
tion (3.3) follows with (y„l= (slX„and (Q„+l= (sly„+.
All states not satisfying the physical state conditions
must have a spurious component. A physical state can
itself be spurious, in which case it is a null state (since
it is orthogonal to itself), and should decouple from all
scattering amplitudes. Thus, the decoupling of all spuri-
ous states from scattering amplitudes of physical states
is a prerequisite for a sensible interpretation of those am-
plitudes.

We formulate scattering amplitudes of physical states
by first satisfying the requirement of conformal invari-
ance on the string world sheet. This essentially ensures
decoupling of spurious states which are created solely by
modes of T in (3.3). This consideration and the resulting
description of scattering amplitudes is identical to that
encountered in the "old covariant" formulation of bosonic
string amplitudes [7]. We briefiy describe heuristic argu-
ments that lead to a prescription for &actional super-
string scattering; however, this presription is only really
justified by the spurious state decoupling argument which
then follows.

The world sheet in an open string tree scattering pro-
cess is conformally equivalent to a unit disc with vertex
operators V(x) representing the asymptotic scattering
states inserted at points on the boundary. Since we must
be able to integrate these vertex operators over their in-
sertion positions, they must be dimension-one operators
in the two-dimensional world-sheet theory. Furthermore,
as in the bosonic string, they must be Virasoro primary
operators. We can conformally map the disk to the com-
plex upper half-plane, fixing the positions of three of the
vertex insertions at oo, 1, and 0 on the real axis, with the
remaining insertions at points 1 & x, & oo. The bound-
ary conditions at the ends of the string (the real axis)
can be implemented by the standard trick of extending
the amplitude to the full complex plane so that holo-
morphic functions on the upper half-plane correspond
to left-moving excitations of the open string and holo-
morphic functions on the lower half-plane correspond to
right-moving modes. The boundary conditions then im-
ply the continuity of these functions across the real axis.
This picture is suitable for writing the string amplitude as
a correlator of holomorphic operators only with a radial-
ordering prescription:

dx3 ' ax% 1—
(VN IViv-i(»-i) - "V2(1) lVi),

&3 +N —i

(3.4)

where the "in" and "out" states are the insertions at
xq ——0 and xN = oo, and the integration is over all x;
preserving the order 1 & x3 « . - - xN q & oo. A vertex
insertion at z can be rewritten as V(z) = z~'V(1)z
and the positions of the insertions explicitly integrated
over to give the amplitude in the form

A~ = (V~lVN i(1)6.. .b,Vz(1) lVi), (3.5)

where the propagator is b, = (Lo —1)
From the presentation on the disk, it is clear that A~

should be invariant under cyclic permutations of the ver-
tex ordering. The cyclic symmetry of open string ampli-
tudes is known as "duality. " It can be formulated in the
picture corresponding to (3.4) as the requirement that
after passing the VN vertex to the right through all the
other vertices the value of A~ must be unchanged. Now,
suppose the string describes particles in some fiat space-
time with coordinate fields X"(z). Then, by translation
invariance, the general vertex in (3.4) will be of the form

V;(z) = V (k;, z)e' " (3 6)

where Vo depends only on derivatives of X (as well as any
other conformal fields on the world sheet). Upon com-
muting the e'"x factors of two vertices, one picks up the
phase exp[imk; kate(x; —z~)], where e(z) = +1 if z ) 0
and —1 if z ( 0. Commuting this exponential part of the
V~ vertex to the right past all the other vertices gives the
factor exp( —iz k~), where we have used momentum con-
servation. Since this factor is independent of the number
of vertices Viv was commuted through, whereas the phase
that Vs(kiv, x) picks up will depend on how many other
Vo's it commutes with, the only requirement consistent
with having nonzero scattering of arbitrary numbers of
particles is that k&2 6 2Z and the Vo(k;, z) commute with
each other.

Now, &om the representation theory of the FSC alge-
bra, only world-sheet fields with Zz charge zero can be
commuting operators. Combined with the condition that
the V; vertices have conformal dimension one, this implies
tight restrictions on the possible candidate states appear-
ing in the scattering amplitudes. In particular, if the
physical state we want to scatter is a D-module highest-
weight state W&+, the appropriate operators appearing in
(3.4) would have to be the q = 0 Virasoro primary de-
scendents of R'&+ of conformal dimension kg+ n+ 3. The

lowest level such states are V&, with dimension hg+ 3.
This choice for the V vertex in (3.5) implies the Lo in-
tercept for D-module highest-weight states to be hg ——

3
in order for the total dimension of the vertex to be 1.
We will examine this possibility below, and return to the
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case of S-module physical state scattering later.
Consider scattering of D-module highest-weight states,

where the vertices in Eq. (3.5) may correspond to the

V& descendent states in a FSC D module. We can(+)

convert Eq. (3.5) to a diferent "picture" involving the
highest-weight states TV&+ using the general properties of
D modules. Evaluate the commutator

[G+ V+ (u))]
—= .z"+ G+(z)V+ (m).2%i

(3.7)

(where the integration contour is around the point m) by

inserting the G+(z)V&+ (m) OPE in (2.29) on the right-
hand side, since it involves only integer powers of z —m.
Setting m = 1, one finds

)G+, , V~ (1)] = (hq+ —+%+A+
~ (( + -')Wq+(1)+ ))Wq+)1)) —)A —iA )W~ (1).

3hg
(3 8)

In deriving this commutator, we have only used general
properties of D modules. For string scattering, though,
we should set the dimension of W&+ to hg ——3, since at

this value of the intercept V&+l has dimension one, as
required by conformal invariance. The commutator (3.8)
dramatically simplifies at this value of h~.

[G.+ Vd (1)] = (r + s)Wd (1) + &Wd (1) (3.9)

Since Wz are Virsoro primaries of dimension hq,

[Lo, W&+(1)] = hgW&+(1) + BW&+(1), and using this in
(3.9) with hd = 1/3 then gives

G„+(Lo—a —r) = (Lo —a) G„+, (3.11)

following from Eq. (2.12). Acting on the "out" state,
(V~+) ~G+2&s

——o.(W+~, which is a consequence of the
third OPE in Eq. (2.29) with h& = 1/3. The extra in-

[G„+,V„(1)]= (Lo + r —-)W+(1) —W+(l)(L —-')

(3.10)

for all r E Z/3.
The crucial point for what follows is that at hg = 1/3

the dimension-(1+hg) descendents W&+ decoupled &om
the commutator (3.8). It is this unexpected decoupling
at precisely the physical value of the intercept which will
allow us to construct sensible tree-scattering amplitudes
from Eq. (3.10). Note that the decoupling of W&+ has no
counterpart in the analogous formulation of ordinary su-

perstring scattering amplitudes. The occurrence of this
operator in the first place is due to the nonlinear struc-
ture of the FSC algebra, and its decoupling appears as
the result of an algebraic "accident" in this formulation
of &actional superstring scattering amplitudes. Note also
that the decoupling does not occur for the V&i

l descen-

dent state. As a result, only V&+ will be a consistent
choice for the vertices appearing in the amplitude (3.5).

With this understanding, we interpret all the vertices
in (3.5) as V&+ descendent states of D module physical
states W&+, and we drop the d subscript. We can now

replace the "in" state ]Vz~+l) in (3.5) with a physical state
using ~V~+)) = G 2&s~W+) + G+z&s]W ) which follows

from Eq. (2.31). The G+2 s modes can be commuted to
the left using Eq. (3.10) as well as the relation

sertions coming from the right-hand side of Eq. (3.10)
vanish by a "canceled propagator" argument, since set-
ting r = —2/3 in Eq. (3.10) gives factors of Lo —1 and
Lo —1/3 which cancel the propagators to the left and
right, respectively. Tree amplitudes with canceled prop-
agators are holomorphic in the Mandelstam invariant of
the canceled propagator channel, and thus, by analytic-
ity, vanish if the amplitudes have Regge asymptotic be-
havior. We will see in the next section that they do have
this soft high energy behavior. The resulting form for
the scattering amplitude is

AN = (W~~VN ).(1)A AV2+ (1)~W). )

+(W„]V„"',(i)a" SV,"'(i)]W,'),
(3.12)

where the propagator in this picture is 6 = (Lo —-)
Th«wo terms appearing in (3.12) are actually equal, as
is easy to see using the normalization of the W+ states
given in (2.27). In particular, one can rewrite (W&+] as

(& ) (W~ ~Go and then commute the Go to the right
using (3.10), (3.11), and the canceled propagator argu-
ment until it acts on ]Wz ) to give A ~W~ ). Thus, the
final form we find for the scattering amplitude of D-
module physical states is

A~ = 2(W~]V~i+~, (1)6 b, V, +i(1)]W, )

= 2(W~~V)v+ ~(l)6. AV2+ (1)]W~+). (3.i3)

These two forms for A~ along with the expression (3.5)
in terms of q = 0 vertices comprise three physically equiv-
alent "pictures" for computing scattering amplitudes.
They are clearly closely related to the Zq symmetry of
the spin-4/3 FSC algebra.

Now we can investigate the crucial issue of spuri-
ous state decoupling in our amplitudes. If we start
with physical states defined as highest-weight vectors of
FSC modules, will they scatter only to other physical
states? For this to be true, only physical states must
contribute to residues of poles in amplitudes when an
internal propagator goes on-shell. Suppose we fix the ex-
ternal momenta such that some state ~s) in the string
Fock space at momentum rc = kM+q + . . - + k~ is on-
shell: (Lo —1/3)]s) = 0. If we factorize the amplitude
in Eq. (3.13) by inserting a sum over a complete set of

states of momentum x at the propagator between V~+&
(+)
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and VM+, then the Is) (sI term in the s»m will contribute
a pole in momentum space. The requirement of spurious
state decoupling is that if Is) is spurious, its contribution
to the residue of the pole should vanish:

tercept h, = 1 implies that the V; in (3.5) be identified
with S-module highest-weight states W, . However, &om
the S-module OPE's (2.24) we can derive the relation
analogous to (3.10):

(sIV (l)6 .b, V~ l(1)IW, ) = 0. (3.14) [G„+,W, (1)j = V,+(1) for all r E Z/3. (3.15)

To prove this, consider one term, say (g IG„with r ) 0,
in the presentation of (sI as a sum of descendent states,
Eq. (3.3), where I@ ) must satisfy (Lo+r —s)IQ ) = 0.
(The G+ descendent pieces can be shown to decouple
by the same argument, and the L„piecesby a similar,
simpler argument. ) The G„mode can be commuted to
the right in Eq. (3.14) using Eqs. (3.10) and (3.11). The
insertions coming from the right-hand side of Eq. (3.10)
again vanish by a canceled propagator argument. Finally,
the G„mode acting on the "in" state Iwq) vanishes by
the physical state conditions Eq. (3.2), thus proving spu-
rious state decoupling.

To examine whether similar considerations can give
sensible scattering amplitudes for S-module physical
states, first of all note that the intercept in this sector
does not have to be the same as that of the D-module
physical states. As discussed above, the conditions com-
ing &om conformal invariance for an operator to repre-
sent a scattering vertex in (3.5) are that it have Zs charge

q = 0 and be Virasoro primary of conformal dimension
1. In an S module, appropriate operators would have
to be W, itself (of conformal dimension h, ) or one of
its Virasoro primary descendents of dimension h, + n in
order to satisfy the q = 0 condition. Choosing the in-

I

Because this commutator does not have the factors of L0
on the right-hand side similar to those that appeared in
(3.10), there can be no canceled propagator argument to
remove the right-hand side of (3.15) when used in eval-

uating the residue of a spurious state pole, and thus the
spurious state decoupling proof fails. One might wish to
consider instead the S-module descendent W, with di-
mension h, +1 by choosing the S-sector intercept h, = 0.
From the last OPE in Eq. (2.24) follows a commutator
similar to that of (3.8). For the picture-changing and spu-
rious state decoupling arguments to go through, though,
the contibutions of the dimension h, + s descendents

VP and V, must decouple from the commutator when

h, = 0. One finds that VP does not decouple. Bosonic
sector descendents at higher levels also do not seem to
work since they also are created &om the W, primary by
quadratic or higher combinations of current modes. This
makes a picture-changing argument of the type used to
relate (3.5) to (3.13) problematical.

To summarize, our prescription for dual N-point tree
amplitudes satisfying spurious state decoupling can be
written in either of the equivalent "pictures"

w„'Iv„"'(1) ', v„'(1)",v,"'(1)Iw„-)
0 0

= ( d Ivd (1) Vd (1)"' Vd (1)IVd )d
0

(3.16)

where Wd+ are D module phy-sical states which are re-
quired to have an Ls intercept,

A~ = (W, IV~+i (1)
0 s

V„+(1)IW,).
0 e

LpIwd+) = sIwd+), (3.17)
(3.20)

and their relative normalizations are fixed by

Go IWd+) = A+ Iwd+), (3.18)

(3.19)

(Each state or vertex in the amplitude can correspond to
a different physical state, of course. )

This prescription can be extended to include two S-
module physical states by simply replacing the "in" and
"out" Wd+ states in Eq. (3.13) with S-module states W, :

where A+A
3 24 is 6xed by associativity of the

FSC algebra, and we choose A+ =
3 24 With this

convention the Vd~+ (x) fields are the q = 0 descendent
states

The argument for spurious state decoupling then goes
through unchanged. However, since there is no appro-
priate dimension-1 commuting vertex in the S module to
play the role of the Vd+ vertices, we cannot prove cyclic
symmetry of the amplitudes with two S-module states,
nor can we extend the prescription to include scatter-
ing of three or more S-module states. This situation
is closely analogous to what happens in the old covari-
ant formalism in the ordinary superstring. There, dual
amplitudes with spurious state decoupling can be for-
mulated for scattering of Neveu-Schwarz sector states,
and can only be extended to include two Ramond-sector
states as the "in" and "out" states in the correlator, thus
losing manifest cyclic symmetry. So presumably, just as
in the Ramond sector of the superstring, our inability
to incorporate more than two S-module physical states
in our scattering prescription means that there is a non-
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trivial contribution to S-module scattering amplitudes
coming from the fractional ghost" fields on the world
sheet.

Note, however, that upon factorizing the D-module
scattering amplitude in Eq. (3.16) on any propagator, we

can never obtain an S-module intermediate state. The
reason is simply that the D-module TV& "in" state has

Z3 charge q = —1 and their descendent V& vertices
have charge q = 0. By conservation of Z3 charge, only

q = —1 intermediate states can contribute, whereas the
S-module physical states R', have q = 0. This means,
for example, that

(W, ~V,'+'(1) ~W„)= 0. (3.21)

This selection rule makes it consistent at tree level to
drop the S-module physical states altogether, a desirable
feature if it turns out that the S-module physical states
include tachyons. This projection is closely analogous to
the GSO projection in the Neveu-Schwarz sector of the
ordinary superstring [8].

where g"" is the three-dimensional Minkowski metric
with signature (—+ +). The stress-energy tensor for
these fields is given by

Tg ———
2 g„BX"BX". (4.2)

This X" CFT has a global so(2, 1) Lorentz symmetry,
generated by the charges

Mx"" —— . (X"BX"—X"BX") .
27ri

(4 3)

p*(z) = (p*(z) + 2m. , (4 4)

their operator product expansion (OPE) is

We assign Hermiticities and choose conventions so that
(X~)t X„and (BX")t = BX„.—

The remaining two fields, y'(z), i = 1, 2, describe a
map &om the string world sheet to a torus. In a basis
in which the target space p' boundary conditions are
diagonalized,

IV. A THREE-DIMENSIONAL FRACTIONAL
SUPERSTRING

where

V'(z)~'(~) = -g" »(z —~) (4.5)

X"(z)X (tv) = —g"" ln(z —m), (4.1)

Any string propagating in D Bat space-time dimen-
sions will be described by a world sheet CFT which in-
cludes D massless scalar fields X"(o,7). These fields
are interpreted as giving the space-time coordinates X"
of the point (o, 7) on the string world sheet. The idea
behind the construction of the spin-4/3 &actional super-
string is to require that the world-sheet CFT also in-
clude a set of fields e+(o, w) of right-moving (holomor-
phic) conformal dimension 1/3, transforming as vectors
under space-time Lorentz transformations. In addition,
we demand that there exist currents G+(a, r) of con-
formal dimension 4/3 on the world sheet of the form
G+(cr, r) = e+BX"+, obeying the FSC algebra (2.1).
As described in the last section, this algebra organizes
the world-sheet CFT, allowing us to identify vertex op-
erators corresponding to physical states.

In this section we construct an example of a CFT satis-
fying these requirements, and having a three-dimensional
space-time interpretation. We compute a few low-lying
states in the spectrum of this fractional superstring and
calculate some of their scattering amplitudes. The CFT
in question is particularly simple, being constructed from
five free massless scalar fields on the world sheet. In
descri. bing this theory, we only write the right-moving
parts of the world-sheet fields, i.e., those holomorphic in
z = ~ + io. By itself this is suitable for describing an
open string; if matched with an appropriate left-moving
theory it will describe a closed or heterotic string.

Since we construct this CFT from five free massless
scalars, it will have central charge c = 5. Three of the
scalars are just coordinate boson fields X"(z), p = 0, 1, 2,
with the standard operator products

1(
( —1 2) (4 6)

Alternatively, we could have chosen de'erent linear com-
binations of the p', say p', which have the standard.
OPE's g'(z)P'(m) = —b'i ln(z —m), but which would
then have boundary conditions more complicated than
those in (4.4). Introduce two pairs of vectors e' and e,
satisfying e' ei = g'i, e; e~ = g,i, and e' ei = h',

where g,~ is the matrix inverse of g'&, and define the
vector-valued 6eld y = p'e;. The stress-energy tensor
for scalars obeying the OPE's (4.5) is

&& = --', ~v' &v = (&v")' - (&-v')' - (~v')(~v').

(4.7)

The y CFT also has a global so(2, 1) Lorentz symme-

try, and there are two dimension-1/3 fields, e+ and e„,
which transform as vectors under this symmetry. To see

this, consider the vertex operators

V = c(m)exp(im (4.8)

h(V ) = 2m m = s (mi+ m2 —mim2) . (4 9)

It follows that all vertex operators have dimensions ei-
ther an integer or an integer plus 1/3. Note also that
mi + m2 is (mod 3) just the Zs charge of the V op-
erator. The "momenta" xn of the vertex operators V
take values in a triangular lattice, as shown in Fig. 4.

where m = m;e' and c(m) is an appropriate cocycle op-
erator, described in more detail ia Appendix A. Because
of the boundary conditions (4.4), these are well-defined

fields for integer m;. The V vertex operators are Vira-
soro primary fields of conformal dimension
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&(O,I)

V(I,O)

FIG. 4. Wiangular su(3) lattice of vertex "moments"
Ixl = my6 + mph'

1 2

This lattice is actually the su(3) weight lattice (g;z is
equivalent to the su(3) Cartan matrix), and thus the ~
CFT is the standard free boson realization of the su(3)1
Wess-Zumino-Witten model [15]. An so(3) current al-
gebra arises because so(3)2 is conformally embedded in
su(3)1, corresponding to the embedding of so(3) as a non-
regular subalgebra of su(3). The difference between so(3)
and so(2, 1) is just a matter of the appropriate choice of
cocycles. With these cocycles, the vertex operators sat-
isfy the basic operator product expansion

V (z)V (w) = (—1) '"'(z —is) '"V + (ut) +
(4.io)

More concretely, consider the triplet of dimension-one
fields U„:

Uo = V(i, -i) + V( —i, i)~

Ui = V(i,2) + V(—i,—2))

U2 V(—2,—1) + V(2, 1))

(4.11)

where we denote the vertex operator V by the compo-
nents of m = m;e* as V(, ,). The U„generate the
so(2, 1)2 Kac-Moody current algebra

U"()U"( )= + ' +, (4»)
Z —XU Z —tU

where s""~ is the completely antisymmetric tensor den-
sity in three dimensions normalized by s = 1. The
zero modes of these currents,

M"" = s""~Up(z),
2vri

(4.i3)

= (V( 1 1), V(i,o) i V(o,i)) ~

+ /

(V(1,1), V(-1,0) ~ V(0,-1)),

2 [V(2~2) + V(-2~10) + V(0~-2)] ~

= -. [ (-2.-2) + (2,0) + (0.2))

(4.14)

generate the global so(2, 1) Lorentz rotations.
All the fields in the rp CFT can be organized in so(2, 1.)

representations. For example, some of the simplest Vi-
rasoro primary fields in the ~ CFT are the so(2, 1) vec-
tor Belds e+ and e„ofconformal dimension 1/3 and the
so(2, 1) scalars s+ and s of dimension 4/3, given by

The other Virasoro primary fields up to dimension 4/3
are the U„and a symmetric-traceless W„„bothof di-
mension 1, and a pair of symmetic-traceless dimension
4/3 fields t+„andt„„.(The precise vertex operator def-
initions of these fields are given in Appendix A.) There
are, of course, an infinite tower of Virasoro primary fields
of higher dimension on the world sheet. The dimension-
1/3 vector fields, e+ and e„,are the analogues of the
dimension-1/2 fermion fields g" of the ordinary ten-
dimensional superstring. Likewise, the dimension-1 ad-
joint field s"" U~ is the analogue of the dimension-1 Q"vP"
superstring field. On the other hand, the dimension-4/3
scalars, s+, and the dimension-1 and -4/3 spin-2 fields,
W„„andt+„,have no superstring analogues. It is a
straightforward exercise to work out the OPE's satisfied
by the above fields using the free boson operator product
(4.5). The results are collected in Appendix A, where at-
tention has also been paid to the cocycle algebra, needed
to get the signs right.

We now construct the &actional supercurrents G+.
This current must be a dimension-4/3 Virasoro primary
Beld, and a scalar with respect to the global so(2, 1)
Lorentz symmetry generated by M"" = M~" + M"".
In addition, it should be invariant under translations
along the X" directions, generated by the momentum
P" = i $ 2"',.c)X", which together with M"" generates
the full three-dimensional Poincare group. This implies
that G+ can only depend on derivatives of X" and not
on the e'~'x vertex operators. There are clearly only
four fields which obey these requirements: e+BX" and
8+. The coefBcients with which these four fields con-
tribute to G+ are fixed by requiring that the OPE's of
G+ with themselves close only on the stress-energy ten-
sor T = T~+T~ and G+ among its singular terms. Using
the OPE's tabulated in Appendix A, the fractional su-
percurrent is found to be

G+= ~.+ ax--.+
~,

(4.i5)

G =
/

—e c)X ——s
v&E 2 )

In fact, the coefficents of the terms in G+ are overcon-
strained by the condition that a fractional superconfor-
mal algebra closing only on G+ and T should exist. The
existence of the solution (4.15) is an indication that we
have in fact chosen a special world-sheet CFT: the generic
CFT with a global Lorentz symmetry and dimension-1/3
vector fields would not have a &actional superconformal
symmetry. G+ and T satisfy the FSC operator product
algebra (2.1,2.2) with c = 5.

We should comment on the uniqueness of the expres-
sion (4.15) for the fractional supercurrent. First, note
that the replacement V~ ~ V = P 'p 'V~ is a sym-
metry of the basic operator product (4.10), where P and p
can be arbitrary complex numbers. (This can be thought
of as the result of a complex shift in the origin of the y~
boson fields. ) Thus, making this replacement in the ex-

pressions (4.15) for G+ and then reexpressing the V 's in
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terms of P, p, and the old V 's will give new expressions
for G+ which will automatically obey the same operator
product algebra. Similarly, the X" OPE's are preserved
under the replacement X" —+ A"X where A" is any
so(2, 1) rotation, and so any such replacement will pre-
serve the FSC algebra OPE's. However, such transfor-
mations will not, in general, preserve so(2, 1) invariance.
Indeed, it is easy to check that there are only six such
transformations that do preserve the space-time Lorentz
invariance. The resulting six solutions for G+ are

the generalized commutation relations of the e+ modes.P
These generalized commutation relations (GCR's) can

be derived &om the ~„+ OPE's given in Appendix A in
the same way that the G+ GCR's were derived in Sec. II.
In particular, picking up just the first term of the t +~+
OPE gives

) g{—2/3) p+ v+ v+ p +
E E~—e+~3 ~+e+2+q ~—e+& ~+e+'+q

e=o

or

~p ~p+
P + +2+2q

3
(4.18)

G+ ~ +qG+

where u = e '/, q E Z3, and G+ are given by

G+ =
~

—e+ BX ——s+
V&E 2 )'

t' 3

)

(4.16)

(4.17)

when acting on any state with Zs charge q. (The rules for
the allowed modings of the e+ fields are the same as that
for the G+ currents summarized in Fig. 2.) The binomial

coefficient C& is given in Eq. (2.9). Picking up only the
leading term of the e+e+ OPE gives

)-g(—1/3) S + g y p,+
e m —e+'

e=o

which difFers from the solution in (4.15) by a sign change
in the e+ . BX terms. The existence of these six so-
lutions is a consequence of the Z2 x S3 automorphism
group of the c = 5 CFT generated by X" ~ —X",
V -+ exp(27ri(mi + m2)/3)V, and V ~ V, which
leaves the so(2, 1) generators invariant. These six solu-

tions for G+ give rise to equivalent representation theo-
ries and thus it is immaterial which of them we choose
to be the generators of our physical state conditions.

A. Physical state conditions for general vertex
operators

= g""8 +„+,. (4.19)

Any state in the g CFT can be written as a polynomial
in the e+ creation modes acting on the vacuum. The
GCR's (4.18) and (4.19) are sufficient to reduce any set
of such states to a linearly independent basis.

The current modes can be expressed in terms of c+
modes as follows. Since e+ e+ = 3z / 8+ +, one
derives

1 ~ ~( 5/3)
S2m 1yq m —e—]p & ~+e+ 2+2q

e=o

+6 2 'E
m, —e—1+~

In this subsection we will set up an eScient formalism
for computing the action of the modes of the currents G+
and T on a general state. This enables one to determine,
in principle, the physical states at arbitrarily high levels.
The method we use involves generalized commutation re-
lations similar to those derived in Sec. II. The reader
unfamilar with generalized commutators may safely skip
to the next subsection where the lowest-lying physical
states and their scattering amplitudes are computed us-

ing only the (&ee boson) OPE's collected in Appendix
A.

It is a complicated problem to identify the Virasoro
primary so(2, 1) covariant combinations of fields of high
dimension in the ~ CFT. In addition, to compute the
action of the physical state conditions on these fields,
one must calculate their OPE's with the G+ currents,
which can be a lengthy procedure. A way around this is
to express all the states in the ~ CFT in terms of the
modes of the e+ fields. In this basis so(2, 1) covariance is

manifest. Also, since the modes of the currents G+ and T
can be written in terms of e+ modes, all that is needed to
compute the physical state conditions on a given state are

(4.20)

1 X C( 5/3)

e=o

+ g
m —e—1+~ ~+e+1+ '+q

andsince~+-e+ =3z / +z / T +.--,V'

=X ~{»3) &+
2m ~—e—'-q ~+e+ '-q

3 3e=o

V(~+ 8)
&+ e 5+q +e+ 5+q 6

)
3 3

(4.21)
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+
2m+1

E=O

where (AAB)" = e""~A„B~,the polarization f" is trans-
verse ( k = 0, and the state is massless k2 = 0. The first
FSC algebra descendent of this state is

+6~—e—'+' ~+a+ '+&
9 3

V~ ———v 2 ( BX —ik A (.U+ k"(k A ()"W„„e'
(4.26)

1X"(z) = x" —iao"ln(z) + i ) —n„"z
n+0

(4.22)

where I~ are the modes of T+. Introduce also the usual
mode expansion for the X" fields:

TV& and V& are the vertj. ces appropnate for comput-(+)

ing scattering amplitudes using the prescription (3.13)
derived in Sec. III.

The operator product algebra of the fractional super-
conformal currents G+ with W, is easily worked out:

satisfying the standard commutation relations [z",ao] =
ig"" and [a",a„"]= mb +„g"".Then, from the expres-
sions for the currents G+ and T worked out earlier in this
section, one finds

1 ) ~i~ t ~t+L

VP m
G+(z)W, (w) = ' + regular terms,

(z —iU)

where

(4.27)

(4.28)

(4.23)

which, using (4.20) and (4.21), gives the current modes
solely in terms of e+ and a modes.

B. Simple vertex operators

The fields of our c = 5 CFT are organized into highest-
weight modules of the &actional superconformal algebra.
We refer to the two fields of lowest conformal dimen-
sion in a module as a "&actional superconformal multi-
plet. " The modules are characterized by the dimensions
and Zs charges of the multiplet fields. These and other
properties of the fractional superconformal modules were
derived in a general way, independent of any particular
CFT representation of the fractional superconformal al-
gebra, in Sec. II. For the purposes of this section, we just
illustrate these facts by considering two of the simplest
vertex operators in the c = 5 theory,

are Virasoro primary fields of dimension 2k + 3. We
should think of VP as forming a "fractional supermulti-
plet" with W, . Note that no cuts occur in the OPE (4.27)
refiecting the fact that W, is single valued with respect
to the currents T and G+. We describe this situation by
saying that W, is a "bosonic" field on the world sheet.
Computing, say, the G+V+ OPE,

z
k2W, (m) 2 i9W, (io) 6 W, (w)

(z —u))s~s (z —m)~&s

(4.29)

we see that it closes back on W„along with the higher-

dimension Virasoro primary operator W, whose form
will not be important to us. The &actional powers
of (z —m) appearing in (4.29) refiect the "fractional
statistics" of VP on the world sheet. Summarizing, we
have found that the pair of fields (W„V,+) belong to a
fractional superconformal multiplet with conformal di-
mensions (2k, 2k + s) and with world-sheet statistics
(boaoni c, fractional).

We can perform a similar analysis for the W&+ field in

(4.27). The first few terms of the G+W&+ OPE's are

ikX W+ (+P + ikX.(4.24)

W~+ = (+f . e+ —ik A ( . e+) e* ' (4.25)

which describe, respectively, scalar and vector particles
in space-time as shown by their so(2, 1) transformation
properties. The g„coefficients in Wg are polarization
vectors, and the k" are interpreted as space-time mo-

menta. Both vertices are Virasoro primary fields of con-
formal dimensions h(W, ) = zkz and h(W&+} = 2k2 + s.

Before deriving the properties of these vertex operators
in detail, let us summarize the results relevant for the
computation of scattering amplitudes as discussed in Sec.
III. The properly normalized Wz+ vertices satisfying the
physical state conditions are

;i,.xG+(z)W„+(m) = e'"' (m) +
~2(z —m)5~s

Gk( )W+( )
( & + & ) ikx( )

2~2(z —io) ~

(4.S0)

Since the operator e'" in the first term of the first OPE
has lower conformal dimension than R'&+, it follows that
R'&+ is, in general, not a primary fractional superconfor-
mal field. In fact, if the polarization vectors take the
form g+ k~, then we recognize W&+ as the VP member

of the R", &actional supermultiplet. For TV&+ to be the
highest member of its own &actional supermultiplet, we
must require the coefficient of the (z —uy} s~ term in
(4.30) to vanish:
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k . (+ = 0. (4.31)

—(„+p 2i(k A (~)„=2~2AQ, (4.32)

where 2v 2A = /4k2+ 1. (Actually, A is fixed to this

In addition, to normalize the W& vertices according to
the prescription (3.18) used to define scattering ampli-
tudes in Sec. III, we demand that the coefEcients of the
(z —io) ~ terms satisfy

2i(k A f)„
1+ /4k'+1 (4.33)

The G+R'&+ OPE's can then be computed:

value by consistency of these equations, and does not,
therefore, represent an independent requirement on (+.)
The solution to (4.31) and (4.32) can be expressed in
terms of a single transverse polarization vector (":( k =
0 and

&g4u+i& w'(), i( '"~ ~ ' '~ ~)
G+(z) W~+(io) = , +, G+(z)W~+(io) =—

2 2 ) z —io 2 z —io

(+) (2k +3+ v4k2+1) p 2(z —io) p /4k2+1 —1) W~+(ur)

4(z —to) 3k + 2 ( 2y 2 ) (z —to)

( ) (2k +3 —y4k2+1) ~ 2(z —ur) ~ (/4k2+1+1 I W+(io)

(4.34)

where we have also written the OPE's of G+ with the
Vd descendents of R'&+. These OPE's are, of course,
special cases of the D-module result (2.29) derived in a
more general context in Sec. II, and shown to be cru-
cial for spurious state decoupling in tree-level scattering
amplitudes in Sec. III. The form of the V& and TVd

(+)

descendents can be easily worked out; in the case k2 = 0,
the explicit forms of the V& vertices are

Vd = —~2 (.OX —ik A( U+k"(k A()"W„„e*"

V,' ' =+~2 k~(. OX —-', ( U —k"("W„„
(4.35)

Note that in Minkowski space-time (k A ()" is propor-
tional to k" for lightlike k" and transverse (". From
(4.34) the highest-weight states W&+ have cuts in their
operator products with the currents G+, reQecting these
states' fractional statistics on the world sheet. On the
other hand, the V& states are world-sheet bosons since(+)

they have no cuts with G+. Just as with the TV, state,
we say that (W&+, V& ) form a fractional supermultiplet,
but with conformal dimensions (2k + s, 2k + 1) and
world-sheet statistics (fractional, bosoni c)

C. Three-point couplings and scattering amplitudes

the operators BX„,U„,and W„„appearing in V&~+~ are
all bosonic fields on the world sheet —they have no cuts
in their OPE's with any other field —making them suit-
able for vertices in dual amplitudes by the arguments
presented in Sec. III. The intercept for the S-module
vertex R', describing scalar particles is not fixed by our
considerations so far. If, for example, its intercept were
1/3, the same as that of the D module, then W, would
describe a tachyon. We will mention below some consid-
erations which may 6x the S-module intercept, but for
the present discussion we will leave it arbitrary.

The simplest amplitude to calculate is the three-point
coupling of two scalar states to a vector state given by
the formula (3.20):

A„„=(W, (ks) ~Vq (k2) (z, 1)~W, (ki)), (4.36)

A„„=—&2(ks, 0~(2 [BX(1)+ xkz & U(1)

k2]e' ' (1)~ki ) 0). (4.37)

The U„and W~„fields of the ~ CFT give no contribution
by Lorentz invariance and all that survives is a standard
free-boson correlator in the X" CFT, giving

where we have indicated the momenta and polarization
vectors associated to each vertex. Inserting the explicit
expressions for the vertices given in Eqs. (4.24) and
(4.35), we find

We will now calculate some tree-level scattering ampli-
tudes of the vector and scalar particles described above.
The prescription for computing these amplitudes was
worked out in Sec. III, and is summarized in Eqs. (3.16)—
(3.21). The intercept condition (3.17) for the D-module
physical states implies that our vector vertex must have
dimension 1/3. W& meet this requirement if k = 0,
thus describing massless vector particles. Furthermore,

A„„=z~2(2 kib (k, + k2 + ks). (4.38)

It should be clear that the calculation of any N-point
function will reduce to free-field correlators in the tp and
X" CFTs.

Another three-point amplitude that can be calculated
in our formalism is the coupling between one scalar and
two vector particles. It is trivial to check that it vanishes
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identically, illustrating the selection rule (3.21). This im-

plies that the scalar particle can be consistently decou-
pled (at tree level) from the scattering of vector particles,
in close analogy to the way the tachyonic state in the
Neveu-Schwarz sector of the ordinary superstring can be
decoupled from scattering of the massless vector states.
In general, the selection rule (3.21) allows the tree-level
decoupling of world-sheet S-module physical states from
the scattering of D-module ones, in close analogy to the
GSO projection [8) in the Neveu-Schwarz sector of the

I

ordinary superstring.
A less trivial amplitude is the coupling A„„ofthree

massless vector states. One expects such a coupling
to be gauge invariant since the V& vertices describe
gauge bosons in the transverse gauge ( k = 0. Indeed,
upon making a gauge transformation b'(" k", one finds

bV& 8(exp(ik. X)), a spurious state which decouples
by the arguments of Sec. III. In fact, with some straight-
forward algebra using the kinematics of three massless
particles one computes explicitly

A,„=2(Wq+(ks, (3)~Vq+ (k2, $2, l)]Wq (k1, (1))

(kl ' (3)((2 ' (1) + (k2 ' (1)($3 ' $2) + (k3 ' $2)($1 ' (3)

((1 ' k2)((2 ' k3)((3 ' kl) h (kl + k2 + k3). (4.39)

The first three terms are precisely the expected Yang-
Mills coupling; gauge group charges can be introduced
by Chan-Paton factors [16] in the usual way. The last
term in (4.39) represents a nonlinear correction to the
Yang-Mills action which is higher-order in the string ten-
sion, and therefore is suppressed at energies far below
the Planck scale. The nonlinear term also appears in
the three-vector coupling in the bosonic string, though
with the opposite sign; in the superstring no such term
appears in the three-point coupling (though string cor-
rection terms do appear in higher-point functions).

Higher-point amplitudes can also be calculated using
the prescription of the last section. The main features
of these amplitudes can be easily understood without
detailed computation. Consider, for example, the four-
point vector particle amplitude

A4„—— dz(Vq~+l(k4, (4)[V~+ (k3 (3 x)
1

xV~+ (k2, (2, 1)]V~+ (k1, (1)), (4.40)

in the "picture" of Eq. (3.4). Inserting the expression

(4.35) for V&~+l leads to a sum of terms, each of which is
a product of a correlator in the rp CFT and a correlator in
the X„CFT.Now, only in the X„CFTcorrelators is the
dependence on the momenta k; nonpolynomial, entering
through the exponentials as

(4.41)

(perhaps with extra BX" insertions as well). These cor-
relators are precisely the ones that enter into bosonic
and superstring scattering amplitudes, and give rise to I'-

function dependence on the Mandelstam invariants sim-
ilar to that which appears in the Veneziano amplitude.
These factors result in the extremely soft high-energy
Regge behavior characteristic of string amplitudes. Frac-
tional superstring amplitudes will difFer &om ordinary
superstring amplitudes only by the y CFT correlators
which are polynomial in the momenta, and so cannot
change the soft high-energy behavior of the amplitudes.
This implies, in particular, that the canceled propagator

argument used in the last section is justified.
It would be an interesting exercise to calculate

the explicit expression for some four-point functions
in this three-dimensional fractional superstring model.
As an example of what one could learn from such
a computation, consider the four-point correlator

(W, ~V& V& ~W, ) of two vector and two scalar particles.(+) (+)

Although our prescription for including two S-module
physical states in scattering amplitudes is not manifestly
dual, the final expression should be. That means in prac-
tice that one could factorize the expression in the 3 and t
channels and check that the appropriate spectra of inter-
mediate states is recovered. This should place restrictions
on the allowed intercepts for 9-module physical states.

A no-ghost theorem for this three-dimensional model
of fractional superstrings is discussed in Ref. [9], where
it is argued that the space of physical states has non-
negative norm. Combined with the spurious state de-
coupling theorem for tree-scattering amplitudes shown
in Sec. III this implies that tree-level amplitudes in the
three-dimensional model of spin-4/3 fractional super-
strings are unitary.

Higher-point closed fractional superstring or heterotic-
type scattering amplitudes can be easily obtained by
combining appropriate open string amplitudes [14]. For
example, in a closed string we could match a left-moving
and a right-moving version of, say, W&+ to form the mass-
less physical state

W~+ (z, S) = ("" e„+e„++ g„„(k. e+) (k z+)

+~„+(ikA e+)„+(ik A e+)„e„+e'"

(4.42)

with k„f""= k„(""= 0. The symmetric-traceless, anti-
symmetric, and trace parts of (""will then describe the
graviton, the antisymmetric tensor field, and the dila-
ton (in covariant gauge), respectively, just as in bosonic
strings and ordinary superstrings.
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V. DISCUSSION AND OUTLOOK

In this paper we have shown how to construct tree-level
scattering amplitudes for the spin-4/3 fractional super-
string which are dual and obey spurious state decoupling.
We have illustrated these properties in an explicit three-
dimensional model of the spin-4/3 fractional superstring,
and found that it has a sensible space-time spectrum in-
cluding gauge bosons and a graviton (for closed strings).
Tree-level unitarity follows from the spurious state decou-

pling property once a "no-ghost" theorem for the physi-
cal state spectrum in a given representation is proven. A
no-ghost theorem has been presented in Ref. [9] for the
three-dimensional model discussed in this paper. Space-
time fermion states for the c = 5 representation of the
spin-4/3 algebra are constructed in Ref. [10], where gen-
eral (representation-independent) spurious state decou-

pling arguments are also presented for scattering ampli-
tudes involving twisted-sector states.

The tree-level considerations of this paper and Ref.
[10] leave us with a certain amount of arbitrariness in
constructing spin-4/3 fractional superstrings. In partic-
ular, we are free to include or not the world-sheet S-
module untwisted-sector states; we can couple left- and
right-moving theories at will on the world sheet in type II
and heterotic constructions; and the choice of CFT rep-
resentation of the spin-4/3 FSC algebra is presumably
constrained by tree unitarity only to have central charge
less than or equal to its critical value c = 10. The in-
clusion of string loop amplitudes should remove much of
this arbitrariness. As is the case with the bosonic and
superstrings, one expects that loop amplitudes will only
be consistent at the critical central charge, and modular
invariance will determine which left- and right-moving
sectors, and at which values of their intercepts, can be
consistently coupled together.

The main difficulty in constructing a critical (c = 10)
representation of the FSC algebra is its nonlinearity dis-
cussed in Sec. II: the tensor product of two represen-
tations of this algebra is not itself a representation. In
particular, the tensor product of two copies of the c = 5
representation described above will not make a c = 10
representation of the FSC algebra. For certain repre-
sentations, one can, however, construct higher-c repre-
sentations &om a given representation by turning on a
background charge for one of the X"(z) coordinate bo-
son fields, corresponding to turning on a linear dilaton
background in space-time. Also, a set of representations
constructed from &ee bosons have been found, all with
central charges c & 8. These representations are brie8y
described in Appendix B. It may be that some gener-
alization of these constructions will yield c ) 8 (and in
particular c = 10) representations.

Once given a c = 10 representation of the FSC algebra,
one can imagine "sewing" tree amplitudes in the old co-
variant formalism described above to form one-loop am-
plitudes by a suitable generalization of the sewing proce-
dure for the bosonic string [17]. Such an amplitude would
not only have to be unitary, but also modular invariant.
The construction of a consistent one loop amplitude is
a crucial test of the existence of the spin-4/3 fractional

superstring theory.
At higher loops it seems likely that a clearer under-

standing of the "&actional moduli" describing the sewing
of tree amplitudes will be necessary. This is essentially
the question of determining the local world-sheet sym-
metry underlying the FSC constraint algebra. Although
the form of the FSC algebra provides a rigid guide to
such a symmetry, its identification remains an open ques-
tion. One approach to this problem is to construct a
world-sheet ghost system with a nilpotent Becchi-Rouet-
Stora-Tyutin (BRST) charge whose cohomology repro-
duces the physical state conditions analyzed in this pa-
per. The BRST charge would be expected to have the
form Q = cT +p+G +p |+ + where T and
G+ are the "matter" FSC currents, c is the dimension-

(—1) reparametrization ghost, and p+ are dimension-

(—s) fractional superghost fields. No such ghost system
and BRST charge have been constructed. Another pos-
sibility is that the BRST ghosts of the &actional super-
string and the matter fields are inherently coupled. In
this case one should seek a c = 0 representation of the
FSC algebra that contains both the matter and the ghost
fields and permits the construction of a nilpotent BRST
charge.

In this paper we considered the &actional superstring
based on the spin-4/3 FSC algebra. This world-sheet al-

gebra is associated with the su(2)4 Wess-Zumino-Witten
(WZW) model as explained in Appendix B. In general,
one can construct &actional algebras associated in the
same way to WZW models based on any Lie algebra
[6,1,12]. For example, the algebra based on su(2)i is

simply the Virasoro algebra, and its associated string is
the bosonic string; associated with su(2)q is the super-
Virasoro algebra which underlies the ordinary super-
string. These are special examples in that the resulting
algebras are local on the world sheet. Other local alge-
bras underlie the TV strings associated with any level-one
WZW model. Given the results of this paper, it is nat-
ural to speculate that there exist strings corresponding
to the nonlocal algebras associated with WZW models at
arbitrary levels.

The generic such &actional string, however, will be
technically more difficult to work with than the spin-4/3
&actional string. The main reason is that the general
fractional chiral algebra does not admit a splitting into
Abelianly braided currents as the spin-4/3 FSC algebra
did. This splitting was the main technical crutch that
allowed us to understand the properties of the FSC mod-
ules in. a representation-independent way. To deal sim-

ilarly with an inherently non-Abelianly braided current
algebra will require a more thorough understanding of
the braiding properties of their currents and the devel-
opment of the conformal field theory techniques needed
to derive their generalized commutation relations.

Two particularly simple series of &actional supercon-
formal algebras are those based on the so(N)2 models
for arbitrary %, and those based on the su(2)~ mod-
els for arbitrary K. Since conformally, su(2)4 ——so(3)2,
the former series includes the spin-4/3 fractional super-
string as a special case. The merit of this series is
that all the resulting &actional world-sheet algebras are
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Abelianly braided. Also they clearly have representa-
tions with global so(N) symmetry groups; however it
is not clear how to construct representations with N-
dimensional Poincare invariance. It is interesting to note
that, since so(4)=so(3)so(3), the world-sheet symme-
try algebra corresponding to so(4)2 is simply two copies
of the spin-4/3 algebra; however, the coordinate bosons
coupled to the so(3)2 model in our c = 5 representation
do not transform in the vector representation of so(4),
and so cannot give a Rat space-time interpretation.

The representation theory of the other simple series
of algebras based on the su(2)Jx models, though non-
Abelianly braided in general, have been more intensively
studied [12]. Since su(2)~ =so(3)xx~2 all these models
(trivially) have representations with so(2, 1) Lorentz sym-
metry. Whether there are any representations in which
this Lorentz symmetry can be extended to the Poincare
symmetry of three- (or higher-) dimensional space-time
is an open problem. One indication that such representa-
tions really may exist comes from the modular-invariant
fractional superstring partition functions proposed in
Ref. [2]. Although the precise connection between these
partition functions and fractional superstrings defined by
a fractional superconformal algebra as discussed above is
not clear, there are many suggestive points of contact; in-

deed, the construction of the explicit three-dimensional
c = 5 representation of the spin-4/3 algebra was origi-
nally motivated by consideration of the "internal projec-
tion" appearing in these partition functions [3,18]. Some
hints of the space-time structure of the critical su(2)x.
fractional superstrings have been gleaned &om &actional
superstring partition functions [2,3]. For example, the
low-energy physics of these strings is believed to describe
supergravity in six and four dimensions for K = 4 and
8, respectively. If this is true, then the critical spin-4/3
fractional superstring should have a six fiat space-time
dimensional representation. An interesting question in
connection with these new strings is whether their frac-
tional world-sheet structures "translate" into some novel
symmetries or physics in space-time. In this connection,
there are some suggestive hints from the fractional su-
perstring partition functions [18,19].
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APPENDIX A: UNTWISTED SECTOR OF
SO(2i1)2

We add standard cocycles to the free boson theory
compactified on the su(3) root lattice considered in Sec.
II. Following the notation of that section, define the ver-
tex operators V as

V = c(m): e' (A1)

where the colons denote normal ordering with respect to
the conformal vacuum. The cocycles c(m) can be chosen
to obey the properties [15]

c(m)c(n) = c(m+ n),
c(m)e' '~ = (—1) '"'e'"'~e(m),

[c(m)]t = c(—m),
c(0) = l. (A2)

These properties imply, in particular, that

(A3)

Using these definitions and the free field operator prod-
ucts (4.6), the basic vertex operator product expansion

V (z)V (m) = (—1) '"'(z —m) '"V +„(xx()+ (A4)

1
(pi (z) = (t ' —ipx ln(z) + i ) —xx'„z ",

neo
(A5)

can be derived.
Alternatively, the Hilbert space can be explicitly con-

structed in terms of the modes of the y(z) fields, defined
by the expansion
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and satisfying the commutation relations [p', px] = ig'x,
[xx'„,cx~ ] = ng'xb +„,and the Hermiticity assigiiments

(P)t = P, (p )t = p', and (a~)t = n~„.The cocy-
cles can be explicitly realized [14] by c(m) = (—1)
where p2

——g2ipx is a component of the momentuxn zero-
mode of rp(z). In terms of the modes, the normal-ordered
vertex operators can be written

. 1 1
V (z) = (—1) 'e'e' 'pz 'eexp —) —m. a z " exp —) —m. a z

+&0 n&0
(A6)

The basic operator product expansion (A4) follows easily.
All fields in the ~ CFT can be organized in so(2, 1) representations. All the Virasoro prixnary fields in the ~ CFT

up to dimension 4/3 are
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h = 1/3: E+
P

I= S: U„
( (—1,—1)1 (1)0)1 (0,1)) ) ( {1|1)& (—1,0)1 (0,—1)) 1

(V(1 1) + V( 1 1) & V{12) + V( 1 2) I V( 2 1) + V(2 1)) &

] ( 22BP(l, l) V(2, 1) V( —2,—1) V( —1,—2) V(1,2) )
2~p(1, 0) V{1,—1) V{—1,1)

2'LB(p(o 1) )
(A7)

/ : = (2,2) + (—2,0) + (0,—2) ~ 3 {—2) —2) + ( ,o) (o, )

( V(2 2) + s —
2 BV (2,1)V(0, 1)

t+ = V{-2,o)
—s+

2 Bp(1 2) V(i o)

20'( q q)V( i g)

V(0 2)
—8 )

f'-V(-2, -2) + ' 2BV (2, i) V(o, -i)
V(2,o)

—' 2&(&») V(—& o)

a&( —i ~) V(i ~)

V(0 2)
—8

Here we have defined the combination &p = m . g, so that, for example, B(p(2 1) = 2Bpi + B(02. We have also only
written half of the entries for the spin-2 6elds TV„„andt+„,since they are symmetric-traceless tensors.

From (A3) it follows that Hermitian conjugation is accompanied by lowering (raising) upper (lower) space-time
indices. For example, (E+")t = E„and (W„)t= W"".

The vertex operator OPE's can be worked out using the &ee field operator products (4.6) and the vertex OPE's
(A4). The results for some leading terms are listed below. For ease of writing, all the operator products are of the
form A(z)B(0), the right-hand sides of the OPE's are all evaluated at 0, and the dependence of the fields on their
arguments is suppressed:

EE:Z'Epv E +Z (28yv BE +gpvs +t )

E E = Z gpv + Z (2EpvpU + Wpv) + Z (sgp Ty v+ 4EpvpBU + 2BW„v+ H„v+ EpvpF )

(As)

—4/31 P —1/31B P + + —4/31 P + —1/32B
p 3 O' P 3 p 3 p'

s+=z 23~U —z —F s+e+=z 3-U +z —~OU +F ~
3 p 3 p& p 3 p 3k p pJ&

(A9)

s+s+ = z 4 3-s+ + z ~ ~Os+ s+s+ = z 8/' —+ z -T
3 3 ' 3 g V'~ (A10)

E& Uv = Z E&v Ep 2~pv BEp + 2gpv8
—1 p + 1 p

S U =Z —E +Z —BE, U 8 =Z —E +O(Z ),3 p

(A11)

(A12)

where g~ is the Minkowski metric in three dimensions
with signature (—+ +), E„„pis the antisymmetric ten-
sor in three dimensions normalized by coq2 ———1, obey-
ing E:„pE;"p ———g gpss + g pgp, and we have defined

2
8g p gIJ pg + 9~ 9 p 3g„gp . The fields F„and
symmetric-traceless H„appearing in (A8) and (A9) are
dimension-2 Virasoro primary fields. We can take (A8)
as their definition.

APPENDIX B: OTHER KNOWN SPIN-4/3 FSC
REPRESENTATIONS

The representation theory of the spin-4/3 FSC alge-
bra is related to the su(2)4 Wess-Zumino-Witten (WZW)
model in the saxne way as the Virasoro algebra represen-
tation theory is related to the su(2)1 model. In partic-
ular, the FSC algebra has a series of unitary minimal
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representations realized by the su(2)48su(2)L, /su(2)4+1,
coset models with central charges

bosons X". We repeat here the resulting form of the
FSC algebra currents:

24

(L + 2)(L + 6)
for I = 1, 2, . . . , (B1) G+ =

~

+OX"e„+——s+
~

.
3

(B6)

accumulating at the c = 2 su(2)4 WZW model. The
FSC algebra can be realized in this model as follows.
Let J (z) = Q„J„z" i denote the su(2)4 Kac-Moody
currents, 4 (z) the dimension-1/3 chiral primary field in
the adjoint representation, and q s the su(2) Killing form.
The FSC current is [6,1]

It is a nontrivial fact that when a background charge is
turned on for the X" GeMs in this representation, the
form of the fractional current can be modified in such a
way as to still satisfy the FSC algebra [20].

A c = 6 representation is the threefold tensor product
so(3)2 so(3)2 8 so(3) 2 with FSC algebra currents given

by
G+(.)+G-(.) =) q.,J,C'(z). (B2)

G' =
~

e'-&4UP g1g"P
The su(2)4 theory can be bosonized in terms of one free
boson and a Z4 parafermion theory [4], which is itself
equivalent to a single compactified boson. Thus the
c = 2 representation can be written in terms of two &ee
bosons X and p satisfying X(z)X((s) = —ln(z —(s) and

p(z) p((s) = —sin(z —(s), with p compactified on the unit
circle p = p+ 2x. The FSC algebra currents are given by
[13]

G+ +2iPgX + +4iPi 1

2
(B3)

The coset models can be realized in terms of this
bosonized theory by turning on a background charge for
the X boson [6], Tx = 2(BXB—X + iQBzX), so that
the total central charge of the representation becomes
c = 2 —3Qz. The expression for the FSC current with
background charge is given in Ref. [1].

The su(2)4 WZW model is equivalent to the so(3)2
model, whose two-boson construction was explained in
Sec. IV. This equivalence suggests other &ee field rep-
resentations of the spin-4/3 FSC algebra. In particular,
an inequivalent c = 2 representation can be realized in
terms of the two bosons of the so(3)2 model. The FSC
algebra currents in this representation are simply [11]

Q+ 3
2 ) (B4)

where the 8+ fields are defined in Appendix A. Other &ee
boson representations can be formed by taking various
tensor products of &ee uncompactified bosons X" and
copies of the so(3)2 WZW model.

A c = 4 representation is so(3)2 so(3)2 with the FSC
t.gebra currents given by

G+ =
~

e+' '~ Ue Be++See '~ ( ge+), (B5)
1 (

P

where ll. denotes the identity operator. This represen-
tation is related to the Goddard-Schwimmer construc-
tion [ll] of the subset of the spin-4/3 FSC algebra min-
imal models with I = 2K in (Bl) in terms of an
so(3)~ so(3)2 theory with a U" U„term added to
the stress-energy tensor.

The c = 5 representation discussed in detail in this
paper is a tensor product of one so(3)z with three free

+a+ '~4%(SU&(3~++ %131t38+ . 873
p

A c = 7 representation consists of two copies of so(3)2
and one set of three free bosons X" with

It is interesting to note that this representation has a
three-dimensional Poincare symmetry, and so, like the
c = 5 representation discussed in this paper, is a suitable
model for constructing spin-4/3 fractional string tree-
level scattering amplitudes.

A c = 8 representation consists of one so(3)2 and two
sets of three &ee bosons, X" and Y". Its FSC algebra
currents have the especially simple form

G' =+ a(XP+ ivy) . .1

Note that at c = 8 the FSC structure constants van-
ish: A+ = 0. Although this representation has a six-
dimensional global translation group, its largest global
"rotation" group is only su(3), and thus cannot describe
string scattering in six dimensions. Furthermore, since
the uncompactified boson fields appear only in the com-
plex combinations X"kiY", there are electively three
timelike directions in this representation.

No c ) 8 f'ree field representations (i.e., with no back-
ground charges) are known for the spin-4/3 FSC algebra.

Finally, note that the Hermiticity properties of the cur-
rents are constrained by the form of the FSC algebra. As-
suming that G+ and G are related by some Hermiticity
relations (which by no means has to be the case), it is
not hard to show that, up to rescalings of the currents,
the algebra (2.1) admits four inequivalent Hermiticity as-
signments:

(G+) t = G+

(G+)t = G+,
(G+)' = —G+

(G+)t

(B10a)
(B10b)
(B10c)
(B10d)

where in all cases A+ can be taken to be a positive real

G+ =
l

kv3ctX" Ilaw+ —U" go+ ——XC8Is+ ~.
( ~ ~ 3

~6 2

(B8)
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number. Note that, by (2.2), %+A changes sign at c = 8,
so the Hermiticity assignments (BIOa) and (BIOb) ap-
ply only when c & 8, while the assignments (BIOc) and
(BIOd) are allowed only for c ) 8.

For all the Hermiticity assignments one can construct
the Hermitian current G—:G+ + sgn(8 —c)G which
satisfies for c & 8, GG —1+.. . This shows that, be-
cause G is Hermitian, such c & 8 representations of the
FSC algebra are necessarily nonunitary. As mentioned

in Sec. I, the critical central charge of the spin-4/3 f'rac-

tional superstring is c = 10, and thus any critical rep-
resentation of the FSC algebra with simple Hermiticity
properties for the &actional currents will be nonunitary.
This, of course, is perfectly consistent for strings describ-

ing propagation in Minkowski space-times; however, it is

different &om what occurs in bosonic and ordinary su-

perstrings where there is no such automatic requirement
of nonunitarity at the critical central charge.
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