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New aspects of the Casimir energy theory for a piecewise uniform string
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The Casimir energy for the transverse oscillations of a piecewise uniform closed string is calculated.
The string consists of two parts I and II each having in general different tension and mass density but
adjusted in such a way that the velocity of sound always equals the velocity of light. This model was
introduced by Brevik and Nielsen, and the present paper contains new developments of the theory,
in particular, a very simple regularization of the energy density. Using the technique introduced by
van Kampen, Nijboer, and Schram, the Casimir energy is written as a contour integral, from which
the energy can be readily calculated, for arbitrary length s = Li;/L; and tension = T1/Ty1 ratios.
Also, the finite temperature version of the theory is constructed.

PACS number(s): 03.70.+k, 11.10.Gh, 11.10.Wx

I. INTRODUCTION

Consider, in Minkowski space, a closed string of length
L composed of two parts, of lengths Ly and Ljj, respec-
tively [1]. The tensions Ty and Ty and mass densities
p1 and py corresponding to the two pieces are in general
different, but they will be required to satisfy the condi-
tion that the sound velocity be always equal to the light
velocity, i.e.,

ve = (T1/p1)"? = (Tu/pu)* = c. (1)

Our purpose is to study the Casimir energy associated
with the transverse oscillations of this piecewise uniform
string. It turns out that the present model is, at least
from a formal point of view, a very interesting one; the
calculations can be carried out without encountering the
annoying divergences in the regularized result which so
often plague Casimir calculations when the geometry is
nontrivial (curved boundary surfaces, typically). A basic
point in this context is condition (1). It renders the string
relativistically invariant, and is analogous to requiring
the “refractive index (eu)'/?” to be equal to unity. In
this sense, it is basically of the same kind as the “color
medium” proposed by Lee [2] for the region exterior to
a hadron. If, by contrast, condition (1) were abandoned,
then divergence problems would certainly show up in the
formalism.

From a physical point of view, there is well-founded
hope that this simple model can help us to understand
the issue of the energy of the vacuum state in two-
dimensional quantum field theories in general, a quite
compelling goal. The model was introduced by Brevik
and Nielsen in an earlier paper [1], to which the reader is
referred for specific details. There, the zero-point energy
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was regularized by means of an exponential cutoff. It was
also pointed out, that the use of more formal regulariza-
tion procedures—such as the {-function method—might
lead to delicate problems; in particular, that (a naively
minded, straightforward) use of the Riemann ¢ function
could lead to an incorrect result. This problem was re-
considered and solved in an elegant way by Li, Shi, and
Zhang (3], who showed that the appropriate ¢ function
to be used in that case was the generalized form com-
monly known as the Hurwitz { function. The final results
obtained in [3] were in agreement with those of [1]. The
whole situation concerning the use of the {-function regu-
larization procedure in this and similar cases is discussed
in [4] in great detail.

The main results that will be obtained in the present
paper are the following.

(i) The Casimir energy at zero temperature, T = 0,
will be found as a double function of the length ratio
s = Ly1/Ly, for any value of s, and of the tension ratio
z = Ti/Ty, for arbitrary z. To compare, in Ref. [1]
the solution was given explicitly for a few lowest integer
values of s and a few selected values of z, only (and this
after considerable work). To achieve our goal, we shall
employ here a quite elegant technique, based on a well
known theorem of complex analysis, and which was first
introduced—in a context related to the present one—
by van Kampen, Nijboer, and Schram some years ago
[5]. It consists in rewriting the Casimir energy under the
form of a very simple contour integral. This technique,
when applied to the present problem, must be used with
some care, in order to avoid an unphysical divergence
in the form of a surface term. However, as we shall see
below, the suppression of the surface term can be done
consistently, through a proper choice of the dispersion
function for the system.

(ii) When using this technique, it becomes unnecessary
to take the degeneracies of the eigenfrequencies of the sys-
tem into account explicitly. This comes as a very useful
bonus. The reason is that the degeneracies precisely cor-
respond to the multiplicities of the zeros which appear
in the argument principle [cf. Eq. (6) below]. This fact
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makes the final theory much more simple, as compared
with the original procedure of finding and counting the
roots of the dispersion equation, that had been used in
Ref. [1] (see also [3]).

(iii) The Casimir energy for the string is calculated for
finite temperature, T' # 0, also, and the analytic approx-
imation for high T is worked out. This high-temperature
limit provides an immediate check of the procedure, since
it is easy to find analytically.

Readers interested in the general theory of the Casimir
effect can consult the very useful reviews by Plunien,
Miiller, and Greiner [6], by Barash and Ginzburg [7], and
by Mostepanenko and Trunov [8].

II. ZERO TEMPERATURE THEORY

We shall use the same notation as in Ref. [1]. The
total length of the string is L = Lj + Ly;. Denoting by =
the ratio between the two tensions,

T

= —, 2
o (2)

the dispersion equation can be written as

L
~+———(1 imm)z sin® (2—5) + sin (gf—l> sin (UJ__CII> =0. (3)

The physical requirements behind this equation are (i)
continuity of the transverse displacements across the two
junctions, and (ii) continuity of the transverse elastic
forces across the junctions. Since Eq. (3) is invariant
under the substitution x — 1/z, we can simply take
0 < z < 1 in what follows (the case x = 0 must be
considered with some care).

The Casimir energy of the system, E, is constructed
such that it describes the nonhomogeneity of the string
only, and is thus required to vanish for a uniform string.
Therefore, F is equal to the zero-point energy Epyq for
the two parts, minus the zero-point energy for the uni-
form string, i.e.,

E = EI+II - Euniform- (4)

It should be noted that, when subtracting off Eniform,
it is completely irrelevant whether the uniform string is
composed of type I or type II material. The physical
reason for this is that the frequency spectrum for the
uniform string is independent of the type of material, as
long as the velocity of sound is the same, and thus it is
in the present case a consequence of Eq. (1).
The zero-point energy of the composite string is

h
By = 5 Z W,y (5)

where the sum goes over all eigenstates, with account of
their degeneracy. Stationarity of the oscillating system
implies that all the eigenfrequencies w,, have to be real.
We can let all the w,, be positive, left-moving waves being
associated with negative wave numbers (not frequencies).
And here comes the first important point in this paper.
The sum (5) can be written in the form of a contour
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integral by means of a well known mathematical theorem
called the argument principle [7,9]. It states that any
meromorphic function satisfies the equation

1 d
5 w%lng(w)dw—ZwO“waa (6)

where wo denotes the zeros and wy, the poles of g(w) lying
inside the integration contour as shown in Fig. 1. The
argument principle is derived from Cauchy’s theorem. In
the end, the radius R of the contour in (6) is allowed to
go to infinity (as is usually the case for theorems of this
kind on the complex plane). The multiplicity of the zeros,
as well as that of the poles, is automatically taken care
of by the two sums in Eq. (6). The argument principle
was first applied to the Casimir theory (in the standard
configuration with two parallel plates) by van Kampen,
Nijboer, and Schram [5].

When applying the argument principle to our present
problem, we first notice that the appropriate dispersion
function g(w) must essentially be the function on the left
hand side of Eq. (3)—but it can be modified by a factor
not depending on w, e.g., an arbitrary function of z. But
this function g(w) has no poles; therefore, the last term
in Eq. (6) vanishes and thus the crosses on the real axis
in Fig. 1 refer to the zeros of g(w) only. As in Ref. [1]
we introduce the function

F(z) = 1 ia;:)z’ (7)

and the variable

Ly
5= (8)
to denote the ratio of the lengths of the two pieces of
the string. For definiteness we shall take L; to be the
smaller of the two pieces, so that s > 1. For the disper-
sion function of the composite system, we now make the
ansatz

R

-iR

FIG. 1. Integration contour in the complex w plane.
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F(z)sin® [(s + 1)wLy/(2¢)] + sin (wLy/c) sin (swLy/c)

9(w) = F(z)+1

(see the remarks following Egs. (12) and (15) below). For
given values of z and of the total length L, this expression
is invariant under the substitution s — 1/s. Thus, the
above restriction to values of s > 1 represents no loss in
generality. By making use of the argument principle, for
the composite system we have the zero-point energy

h d
Bun = o $ wz Inlo(w)] do, (10)

with the function g(w) given by (9). In writing this ex-
pression, we have taken advantage of the following impor-
tant correspondence between degeneracy of the eigenfre-
quencies w, and multiplicity of the zeros of g(w). As
noted in connection with Eq. (5), it is in general nec-
essary to take into account degeneracies when summing
over all states. In Ref. [1], the degeneracies were actu-
ally counted explicitly, for each branch of the dispersion
equation, in the cases of low integer s for which the solu-
tion was worked out. Within the present approach, the
handling of the degeneracy problem is, however, much
more easy since the argument principle (6), as we have
seen, already takes into account the multiplicity of the
zeros. There exists a one-to-one correspondence between
the degeneracy of the eigenfrequencies and the multiplic-
ity of the zeros. Therefore, the degeneracies are built in
automatically, in the integral (10).

III. REGULARIZED CASIMIR ENERGY
AND NUMERICAL RESULTS

In spite of these very interesting properties, one should
notice that, as it stands, Eq. (10) is not a useful expres-
sion. In fact, it is not difficult to see that the contribution
of the curved part, the contour of radius R (Fig. 1), to
the integral (10) grows without bound as R — oo. Since,
in general, in order to take into account all the modes in
the series (5), we must send R to infinity, it follows that
a divergence is hidden in the curved contour at infinity.
What one has to do is to subtract off the energy of the
uniform string. This corresponds to £ = 1 (the value of
s need not be specified). Since F(z) — oo as z — 1, we
obtain using (9)

h d .2 ((s+1)wLs
Eumform ami fwdw In sin ( % W, (11)

and thus the Casimir energy follows from (4),

. ; Flo) + sin(wLi/c) sin(swLy/c)

sin?[(s + 1)wL1/(2¢)]

F(z) +1 dw.

(12)

It is easy to see that when the two pieces have the same
length, Ly = Ly (i.e., s = 1), then E = 0, irrespective
of the value of z. This is just as it should be according

(9)

—

to the detailed considerations in Ref. [1], a fact that
actually was the reason behind our particular choice (9)
for the dispersion function. Notice also, as a corollary,
that Eq. (12) yields E = 0 when z = 1.

The contribution from the semicircle of Fig. 1 to the
integral in Eq. (12) is now seen to vanish in the limit
R — o0, and the remaining integral along the imaginary
axis (w = i) is integrated by parts, while keeping R finite
and taking advantage of the symmetry of the integrand
about the origin. We get

sinh(RLj/c) sinh(sRLy/c)

F(z) + —/=
o sinh®*[(s + 1)RL1/(2¢)]
E——i;rRln F(z)+1
. sinh(¢L;/c) sinh(séL/c)
o R] F(z) + Sinhz[(ls + 1)£L1/(2IC)] d¢
27 Jo 8 Fl@)+1 |

(13)

Here, the boundary term is seen to vanish when R — oo,
and thus we obtain, finally,

sinh(€Ly/c) sinh(s€L;/c)
sinh®[(s + 1)6Ly/(2¢)]
F(z)+1

F(z)+

= — In

d.

(14)

We assume that the total length L and the tension ratio =
are given quantities. Therefore, F(z) is known, and Eq.
(14) gives E as a function of the length ratio s. However,
this expression is easily calculable on a computer, and we
can equally well give E as a double function of z and s
(Fig. 2 below). As a corollary, we have checked that, in
the special case £ — 0, Eq. (14) gives results which are
in agreement with the analytic (well known) expression

whe 1
derived in Ref. [1].
A remark is in order concerning our inclusion of the

factor F(z)[F(z) + 1]7! in Eq. (9). Had we not intro-
duced this factor in g(w), namely, had we taken

(s +210)le]

+F(z)"'sin (“’TLI> sin (swcL‘) , (16)

we would have obtained

S
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sinh(€Ly/c) sinh(s€L1/c)

hore d
E”“E&A Ed_sln‘ ¥ F(z)sinh? [(s + DEL1/(20)]

which means, for £ = 0, that

he

o > d sinh(t) sinh(st)
E(z=0) = 2le/0 t4n

sinh? [(s 4 1)t/2]

dg, (17)

(18)

Thus, (17) is valid for the whole range of possible values of z, 0 < z < 1.
As an additional numerical test, by introducing an upper cutoff K,

sinh(t) sinh(st)

he (K d

it turns out that for values of K between say K ~ 30 and
K ~ 10%, the result for E(K) does not change numeri-
cally (to 10 digits) and coincides with the value given by
(14). This has been checked for the whole range of val-
ues of z, 0 <z <1, and s, s > 1. The problem arises if
one performs a partial integration in Eq. (17): then the
resulting first term (i.e., the surface term) turns out to
be divergent. In other words, the cutoff K must be kept.
This is the drawback associated with expression (17).

As regards the symmetric behavior with respect to the
values of s, i.e., the coincidence of the results correspond-
ing to s and 1/s, for any s, it is easily seen to hold for (17)
explicitly [as for (14)]. Therefore, our choice above of let-
ting s to be restricted to values > 1, does not represent
any loss in generality.

These conclusions are very nice indeed, and give sense
to the introduction of the z-dependent factor in g(w),
and to the final formula (14) itself as a very simple, reg-
ularized expression for the Casimir energy.

The numerical results are collected in Figs. 2 and 3.
Figure 2 is a three-dimensional plot of the Casimir energy
as obtained from (19) or (14) (both figures are visually
undistinguishable). Specifically, it shows how the mag-
nitude EL/(hc) varies versus ¢ € [0,1] (first axis) and

FIG. 2.

Three-dimensional plot of the Casimir energy as
obtained from (19) or (14), since both figures are visually
undistinguishable. The magnitude EL/(#c) is plotted versus
the tension ratio z € [0,1] (first axis) and length ratio s €
[0,2] (second axis). The Casimir energy is generically seen to
be negative. Only for equal lengths (s = 1) is the maximum
energy F = 0 attained.

F(z)sinh® [(s + 1)t/2]

‘ dt, (19)

—
s € [0, 2] (second axis). The Casimir energy is generically

seen to be negative. Only for equal lengths (s = 1) is the
maximum energy F = 0 found, irrespective of the value
of z. In Fig. 3, several z sections of the previous plot
are depicted. It is shown here how the energy varies as a
function of s, for several fixed values of z, corresponding
tox =0,z =0.1, z = 0.5, and z = 0.9, respectively. All
of them give the magnitude EL/(hc) as a function of s
for the range s € [0, 20]. These figures must be compared
with Fig. 2 of Ref. [1] where, as mentioned above, the
solution (obtained after laborious numerical calculation)
was given explicitly for a few lowest integer values of s
and a few selected values of z. For low integers s up to
s = 7 and corresponding values for z, we have checked
that the results calculated from (14) are in agreement
with Fig. 2 of Ref. [1]. The advantages of the present
procedure are however unquestionable.

IV. FINITE TEMPERATURE THEORY

A. General formalism

Once the T = 0 theory is established, we can readily
generalize the situation to the case of finite temperatures,
by means of the substitution [10]

FIG. 3.

Several z sections of Fig. 2 are depicted, to show
how the energy varies as a function of the length ratio s, for
several fixed values of z, namely £ = 0, £ = 0.1, = = 0.5, and
z = 0.9, respectively. All curves give the magnitude EL/(kc)
as a function of s in the range s € [0, 20].
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h/ d¢ — 2mkgT " 20
A B 2;% (20)

where the prime means that the contribution for n = 0

sinh(€,L1/c) sinh(s€,L1/c)
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has to be taken with half weight. The discrete Matsubara
frequencies are §, = 2mnkgT/h, n = 0,1,2,.... From
(14) we then get for the Casimir energy at an arbitrary
temperature T,

oo F(z) +
E(T)=kpT» 'In

sinh?[(s + 1)€,L1/(2¢)]

(21)

F(z)+1

n=0

If the string is uniform, z = 1 or F(z) — oo, then Eq.
(21) yields E(T) = 0. This is just as we would expect,
since the Casimir energy is intended to describe the effect
of the inhomogeneity of the string only. Moreover, also
the case Ly = Ly is seen to yield E(T) = 0, irrespective
of the value of z. Both these properties, noted earlier for
the T' = 0 theory, do therefore carry over to the case of
arbitrary T.

There are two characteristic frequencies in our system:

(1) The thermal frequency wr, which can be defined
by hwr = kgT. We may observe that wr is related to the
n = 1 Matsubara frequency &; through wr = §;/(27).

(2) The geometric frequency wgeom, associated with the
geometry of the string. We may choose to define wgeom
in terms of L1 as fundamental length: wgeom = 27c/Ly.

There would also be a third characteristic frequency
in the problem, if the microstructure of the string were
to be taken into account. It would correspond to the
absorption frequency(ies) in the dispersion equation for
an ordinary dielectric material. But we shall leave out of
consideration microstructure effects here. The limiting
cases of “high” and “low” temperatures are conveniently
discussed in terms of the ratio between wr and wgeom.

B. High temperatures

Assume that
wr

> 1. (22)

Wgeom
This is the natural condition for applying the high-
temperature approximation. Generally, high tempera-
tures are associated with contributions coming from low
Matsubara frequencies only. In our case, we have

L
6——" ! = 4n2n
c Wgeom

wTr

> 1, (23)

even for the lowest nonvanishing frequency (n = 1), so
that sinh(¢,Li/c) ~ (1/2) exp(£nLi/c), etc., in Eq. (21).
The contribution to E(T') from n > 1, in this approxima-
tion, is accordingly seen to vanish and we are left with
just the n = 0 term. The result is

_ kgT In F(z) +4s/(s + 1)? .

E(T) 2 F(z)+1

(24)

The main corrections to this expression come of course
from n = 1, and are of order kgT exp(—2£;L1/c). Equa-
tion (24) is seen to be a classical result, since it is inde-
pendent of i. Notice that E(T) < 0 always, the equality

[
sign being valid when s = 1, as we have pointed out
above.

Similarly to the considerations in Ref. [1], we can in
pictorial terms associate part I of the string with “our”
universe, and part II of it with a “mirror” universe. If
our universe is small and the mirror universe large we
get, since s = oo, the very simple expression

kgT

E(T) = -=3

In|1+ F(z)™Y. (25)
To get a feeling of the numerical magnitudes involved
here, let us first choose Ly = 1 pm, in which case
Wgeom = 2mc/Ly = 1.88 x 105 s™1. The ratio between

the frequencies wr and wgeom becomes then

YT _ 070 x 1074 T,
Wgeom

(26)

showing that T > 10* K (i.e., 0.86 eV), if the high-
temperature approximation is to hold. As another ex-
ample, let us take the extreme case of Ly = 1.62 x 10733
cm, the Planck length. Then wgeom = 1.16 x 10%* s71,
and

YT _113x10°B T.

(27)

Wgeom

This case thus requires extremely high temperatures, T >
10%% K (i.e., 0.86 x 102° GeV), for the high-temperature
approximation to be valid.

C. Low temperatures

This limiting case is characterized by

wTr

<1, (28)

Wgeom
and a large number of Matsubara frequencies comes into
play in Eq. (21). This equation, as it stands, is not
written in a convenient form for performing analytical
approximations when the temperatures are low. Rather
often, when the mathematics is manageable, it is quite
useful to exploit the Poisson summation formula (cf., for
instance, the paper by Brevik and Clausen of Ref. [2]),
whereby the series over n can be handled approximately
without much labor. However, in the present case the
logarithmic summand in Eq. (21) is too complicated to



5324 1. BREVIK AND E. ELIZALDE 49
TABLE I. Values of the Casimir energy E for some different values of T, assuming L; = 1 pm, s = 2, and F = 1.
T(K) 0 10 300 3 x 103 3 x10* 108
WT /Wgeom 0 6.95 x 107 2.09 x 10°2 0.209 2.09 69.5
nr 365 13 2
E (erg) —3.3770 x 107 | —3.3847 x 10" | —33848x 10 ° | —1.18 x 10| —1.18x 10" | -394 x 10" 2

permit an efficient use of the Poisson formula. At least
for practical purposes, the best way to proceed is to deal
directly with the series by means of a computer program,
even in the case of low frequencies. The necessary num-

J

F(z) +4s/(s + 1)?

F(.’E) + (1 _ e—an) (1 _ e——ZSnb) (1 _ e-(s+1)nb)k2

ber of terms of the series can be added up in very few
seconds, to attain any desired precision. A convenient
way of writing the series for low T', for making use of

EHU:kBT{%hJ Ll )

nr
+ Z In
n=1

where we have called

_ 2nkgTL

= At 1)c (30)

and where, for a given temperature T, the sum can be
safely cut at a value nt such that, e.g., nyb ~ 10.

Table I shows, as an example, how the Casimir en-
ergy changes with the temperature in the case when
Li=1pm, s =2, and F = 1 [ie.,, ¢ = 0.1716, ac-
cording to (7)]. To distinguish between the low- and
the high-temperature regions, the corresponding values
of wr /wgeom are given. For low but finite temperatures,
the values of the upper limit ny occurring in (29), cho-
sen as ny = 10/b, are also given. The T = 0 result may
be taken directly from Table IV of Ref. [1]. From the
present data, it is clearly seen that the Casimir energy
becomes more and more negative as the temperature in-
creases.

V. CONCLUSIONS

We have studied in this paper different issues related
with a most convenient definition of the Casimir en-
ergy for the transverse oscillations of a piecewise uniform
string. We have proven that, in fact, the calculations
can be carried out in a remarkably easy way, not only
because annoying divergences can be completely avoided
in the regularized result, but also because the expres-
sions leading to this finite result are very simple [see Eq.
(14)], and allow us to calculate the most general case (see
Fig. 2). Hence, simplicity is one of the main virtues of
the model. Generality of the procedure is another.

Notwithstanding the fact that it is so simple, we do
sustain the hope that such a model can actually help us
to understand the issue of the energy of the vacuum state
in two-dimensional quantum field theories, what is quite

F(z)+1

these techniques, is the following:
} ey
r

a compelling goal by itself. A specific result that has
been obtained in the paper is the Casimir energy at zero
temperature, as a double function of the length ratio s
and of the tension ratio z, for arbitrary s and . To this
end we have devised an elegant technique, based on the
argument theorem of complex analysis. This has led us
to a formula which, when applied to the present problem,
leads to a final result free of any nonphysical divergences
(in particular, of the surface divergence that was to be
expected). We have shown in detail that the suppression
of this divergence can be done consistently, by a proper
choice of the dispersion function.

Also, it has become unnecessary to take the degenera-
cies of the eigenfrequencies of the system into account
explicitly, because the degeneracies precisely correspond
to the multiplicities of the zeros which appear in the argu-
ment principle [see (6)]. This fact makes the final theory
much more simple, as compared with the original proce-
dure of finding and counting the roots of the dispersion
equation that had been used in Ref. [1].

Finally, the Casimir energy for the string has been cal-
culated at finite temperature T' # 0, the analytic approx-
imation for high T" has been obtained, and a formula well
suited for numerical calculations in the low-T' limit has
been given. The specific meaning of these limits in terms
of the characteristic frequencies of the system has been
discussed numerically.
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