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We point out that in general the Reissner-Nordstrom (RN) charged black holes of general rel-

ativity are not solutions of the four-dimensional quadratic gravitational theories. They are, e.g. ,

exact solutions of the R + R quadratic theory but not of a theory where a R &R term is present
in the gravitational Lagrangian. In the case where such a nonlinear curvature term is present with
suFiciently small coupling we obtain an approximate solution for a charged black hole of charge Q
and mass M. For Q (( M the validity of this solution extends down to the horizon. This allows us
to explore the thermodynamic properties of the quadratic charged black hole and we 6nd that, to
our approximation, its thermodynamics is identical to that of a RN black hole. However our black
hole's entropy is not equal to one-fourth of the horizon area. Finally we extend our analysis to the
rotating charged black hole and qualitatively similar results are obtained.

PACS number(s): 04.70.Dy, 97.60.Lf

I. INTRODUCTION

In the past few years there has been considerable in-
terest in black hole (BH) solutions and their properties.
One of the reasons is the development in our modern
physical theories, in particular in gauge field theories and
in string theory. On the one hand these developments
have enriched the palette of known fields that probably
play some role in nature and of course couple to gravity
because of the universal character of the gravitational
interaction. On the other hand, it is expected that Ein-
stein's theory of gravity gets effectively modified, at some
higher energy scale. We may have in the gravitational
Lagrangian nonlinear curvature terms and the effective
coupling with matter need not to be minimal. Also the
space-time dimensionality may be higher than four with
the extra dimensions compactified by some appropriate
mechanism.

Incorporation of such elements in gravitation turns out
to be particularly interesting and has already given rise
to new and, sometimes, surprising consequences for black
hole physics. In particular the discovery of a new family
of BH solutions for Yang-Mills fields [1] has set us free
from the so-called "no-hair" conjecture and its related
theorems. We now know that black holes do not neces-
sarily belong to the standard black hole families of so-
lutions, namely, the Schwarzschild, Reissner-Nordstrom
(RN), or the Kerr-Newman (KN) ones, and furthermore
that in general they are not unique. In other words, they
may have "hair. " The properties of the Yang-Mills fields
that are responsible for the existence of new black hole
solutions have been extensively analyzed in Ref. [2]. For
comments on the way classical no-hair theorems can be
avoided by the presence of some fields, e.g. , the dilaton
in effective theories inspired on string theory, see Ref. [3].

With the gravity theories modified one may of course
expect that also the thermodynamical properties of black
hole laws for generalized black holes may significantly dif-
fer Rom that of standard black holes. However, several

issues do survive. For example, the first law is still valid
for Einstein-Yang-Mills black hole solutions [2]. In this
paper we are interested in a somehow accidental prop-
erty of standard black holes, sometimes referred in the
literature as the area law. It is the simple proportion-
ality between the black hole entropy S and its geomet-
ric intrinsic quantity, the horizon s area A, namely, the
famous 8 = A/4 relation (in appropriate units). Inter-
estingly enough, this relationship is still valid for some
generalized black holes, but there are known cases where
this is not true. The underlying pattern, if any, is not
so clear. For references on cases where this relationship
is not valid see [4]. In the same reference an interesting
entropy formula is derived which, in some sense, system-
atizes the known results.

Of particular interest for this paper are cases where
the gravitational Lagrangian contains nonlinear curva-
ture terms. For higher dimensionality d ) 4 it seems
that the area law is generically not valid. It is interesting
that for Lovelock gravity, the entropy is still given by an
intrinsic geometric quantity evaluated at the black hole's
horizon [5]. It differs from the A/4 value by a sum of in-
trinsic curvature invariants integrated over a cross section
of the horizon. For d = 4 in a generic (Riemann) grav-
ity the area law is valid, but not in a generic (Riemann)s
theory [4]. We would like, however, to point out that the
above statements are true in vacuum. As we shall see in
this paper, when matter couples to gravity, e.g. , when an
electromagnetic field is present, the area law is not valid
in a generic four-dimensional gravitational theory with
(Riemann) z terms.

We consider the four-dimensional theory described by
the Lagrangian

g(R + o.Rz + pR„—„R" ) + EM,
16m

where R„„,R are the Ricci tensor and the scalar curva-
ture with respect to the metric g„and g:= det~g q~.

a and P are some coupling constants. We will finally
take as the matter part, l:M, the usual electromagnetic
Lagrangian.
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It is known that the gravitational part of such a theory
can be described in terms of a massless tensorial graviton
field, a massive scalar field if a g 0, and/or a massive
tensor field whenever p g 0, see [6—8], and references
therein. From the analysis of the field equations at the
linearized level, [8] and [9], it follows that the "source"
of the additional massive fields is, for the scalar massive
field, the trace T~ ~ of the usual matter stress energy-

momenturn tensor T~„ l; while for the massive tensorial

field the source is some combination of T„„components.
Using this fact we may understand the motivation and
some of the conclusions of this paper: the electromag-
netic field, having a traceless stress energy-momentum
tensor cannot excite the scalar massive field of the the-
ory. If, furthermore, P = 0 then the solution may well
not difFer from that in Einstein's theory, namely, it may
be the RN solution. Thus the no-hair conjecture seems to
hold in this case. In fact a no-hair theorem can be proven
[10]. However, it is immediately clear that this cannot be
guaranteed if P g 0. It is the purpose of this paper to
study this last case and to show that the charged black
holes of the theory with Lagrangian given by (1.1) do not
coincide with the RN or, if rotation is included, with the
KN metrics. We will have to work in some approxima-
tion, which, however, in some limit will allow us to study
the thermodynamical properties of these charged black
hole solutions of the quadratic theory (1.1). In particu-
lar we shall consider only solutions expandable in small
a and P.

The paper is organized as follows. In Sec. II we present
the field equations in the exact and in some approximate
case. In Sec. III we proceed mainly with the solution of
the approximate field equations in the static and spheri-
cally symmetric case and discuss the range of the valid-
ity of the obtained black hole solution. This allows us to
study in Sec. IV its thermodynamical properties. In Sec.
V we extend the previous analysis to include rotation.
Finally, in the Appendix we give the proof of the basic
relations used for the solution of the field equations.

We use throughout this paper units in which 5 = c =
G = k~ = 1, metric signature (—+ ++), Riemann ten-
sor Rb,z .—— Bql'b, + an—d Ricci tensor R b .——R',b.
Finally Gaussian electromagnetic units are employed.

y
~

2a ~ —,g„„Rp'" —(2a + p) R,„„+. pR„„,p'"

R-g„„+2PR„,R„~„~
—16m bSM

4-g ~(g"")
(2.1)

II. FIELD EQUATIONS

A. Exact field equations

The gravitational field equations for the theory in Eq.
(1.1) read

(1 + 2aR) R„—g„„R + Rg„„— —( 1 ) a,
)

where T„„is the stress-energy-momentum tensor of the
matter fields in the Lagrangian of Eq. (1.1). In this paper
we will consider as a matter field the electromagnetic field

E„„,coupled minimally to gravity. The field equations
for E„„are the Maxwell equations

gV—„F""= 8„(g gF—"")= 4~—g gj—", (2.2)

where j" is the electromagnetic current.
Because of the complexity of these equations it is ex-

tremely difficult to obtain exact solutions even in cases
of high symmetry. Consequently one should be prepared
to work with some approximation scheme. We shall now
discuss the main elements of our approximation method.

B. Approximate Beld equations

We concentrate on the case where the quadratic the-
ory is slightly different from Einstein's general relativity.
In particular let us consider the case where we can ne-

glect squared Ricci terms in field equations (2.1). These
"linearized" field equations read

~ah ~ 8&~ah
I' pl—

~ 2a + — g b 0 R + (2a + p) R , b
—p 0 R. b

2PR qR—"b~

(2.3)

g&b = gOb + Xgob + PCIb1 (2.4)

More specifically, this linearization demands that terms
like Rz, R bR b, which are proportional to a, P parame-
ters, can be neglected on the one hand with respect to
R, R b ones and on the other hand with respect to second
derivatives of Ricci curvature terms, which are also pro-
portional to a and p parameters. The first requirement
can be achieved by choosing sufficiently small values of
a and P. Small values for these parameters is actually
what nature has chosen, as it is concluded from all the
tests general relativity (a = 0 = P) has so far success-
fully passed. The second requirement, however, may not
be achievable everywhere in space-time, since it depends
on the particular behavior of curvature components. We
will discuss it further below, when we will consider the
case of charged black holes. Finally, in the case where the
(Ricci) x (Riemann) term of Eq. (2.3), being a quadratic
curvature term, may seem not to fit so well with the char-
acterization of Eq. (2.3) as "linearized, " we would like
to remark that such a (Ricci) x(Riemann) term should
be retained, since it can arise or absorbed to the second
derivatives of the Ricci tensor with a simple commutation
of the derivatives.

Assuming that the above requirements are satisfied,
the space-time metric g p in the quadratic theory in the
presence of some matter field, is slightly modified &om
the respective metric gag in Einstein s theory with the
same matter field. We can write
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G„„(g s) = 8mT„„,
8'

( —m, )y = —T—,
3

(2.5)

(2.6)

= 16m
l
T„—Tg„—„ l,)

(2.7)

with lyl (( 1, l@ i, l
(( lg i, l. As is shown in the Ap-

pendix, by choosing appropriately y, Q i, the linearized
gravitational field equations Eqs. (2.3) are equivalent to
the system of equations

sider both static and stationary solutions. However, we
prefer to discuss in more detail the static case that will
allow the illustration of our method and the exposition
of our main results without particular technical compli-
cations. Then, in another section, we will extend the
analysis to include rotation.

We consider now the case where the matter field is
static and spherically symmetric generated by an electric
charge Q centered at the origin r = 0. The respective
space-time will be spherically symmetric and static and
therefore there is a coordinate system where the metric
can be written as

where

mo = 6n+ 2P, m, = —p. (2.8)

ds = B(r)—dt + A(r) dr + r (d8 + sin gdg ) .

(3.1)

Finally g„„should satisfy the condition

(2.9)

In Eqs. (2.5), (2.6), and (2.7) G„„is the Einstein tensor
for the metric g„„. T„„ is the stress-energy-momentum
tensor of the matter fields in the original Lagrangian.
However, in our approximation, where squared Ricci
terms are neglected, the energy tensor needs to be con-
structed using only the g b metric. Terms that are omit-
ted in this way are (BT~s/Bg„„)hg„, which although
they are linear in y and g s fields they are nevertheless
quadratic in Ricci tensor. For the same reason the met-
ric g„„in the right-hand side of Eq. (2.7) can be replaced
with g„„. Finally, in our appoximation the derivative
operators can also be taken with respect to g„metric.

To have positive mass parameters mo, mq we shall
hereafter assume the no tachyon constraints

Here 8 and P are the usual spherical angular coordinates.
The field equations for the Maxwell Geld F„„aregiven

by Eq. (2.2) where the current source has only a time
component equal to j = Qh(r)/(4vrr JAB). These
electromagnetic field equations are easily solved in the
background metric (3.1). It turns out that the only non-
vanishing components of the F"" tensor are the tr (rt)
ones with

gtr
r2 y'AB

(3.2)

2

8
(3.3)

We now look for solutions to the gravitational equations.

The stress-energy-momentum tensor for this field con-
figuration is

3n+P&0, P&0. (2.10) A. Exact static black hole solutions

The above field equations demonstrate the decompo-
sition of the quadratic gravitational theory into a theory
with a graviton field g b, a massive scalar field y and a
massive tensorial field g„„,all of them coupled with the
stress-energy-momentum tensor T„. In particular one
should notice here what we have remarked in the intro-
duction: the scalar field y has as the source the trace of
T„„and thus will not get excited by the traceless T„of
an electromagnetic field. On the other hand, the massive
spin-2 field g& in general will. Finally let us remark that
there are some issues regarding the equivalence of such a
decomposition with the initial theory. These will not be
discussed in this paper; see [8] and the references therein.
Instead we shall only view these equations as a convenient
mathematical reduction step for solving in some approx-
imation the initial fourth-order derivative theory dealing
only with second-order derivative equations.

III. SOLUTIONS

We are interested in charged black hole solutions of the
quadratic theory with the Lagrangian (1.1). We will con-

Case (i): n = 0, P = 0. In this case we have Einstein's
theory, where the solution is known to be unique. It is
the Reissner-Nordstrom (RN) black hole metric given by
Eq. (3.1) with

2M QB(r) = A(r) ' = 1 — + (3.4)

where M and Q are, respectively, the mass and the total
charge of the black hole.

Case (ii): n g 0, P = 0. Here we can check directly
[12] that the general relativistic RN black hole metric is
also an exact solution for this theory. The question is
whether it is unique. The answer seems to be yes, since
according to Whitt [10] a no-hair theorem can be proven
for theories with gravitational Lagrangian L = R+o.R in
vacuum and in the presence of electromagnetic matter in
the case where the condition A P —

2 holds everywhere.
Case (iii): P g 0. Now the direct check with the RN

solution [12], shows that the RN metric is not a solu-
tion, except for the vacuum case with zero charge Q = 0,
where one solution is known to be the general relativis-
tic Schwarzschild black hole. The field equations are very
dificult and have not allowed us to find an exact solution.
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B. Approximate static black hole solutions

We assume now that there exists some parameter space
where one may use the approximate system of second-
order field equations (2.5)—(2.7) instead of the original
fourth-order derivative equations. After finding solutions
to these equations one has to check whether they are com-
patible with the assumptions that we have made when
deriving these field equations.

For the stress-energy-momentnm tensor of Eq. (3.3)
the solution for g&„ in Eq. (2.5) is of course the RN met-
ric given by Eqs. (3.1) and (3.4). Now, in the background
of this g„„metric we have to solve Eqs. (2.6) and (2.7).
Notice, once again, that the y field is not excited because
T = 0. Taking into account the symmetries of our prob-
lem we are left with the following set of equations for the
field g„„:

(V —mzi)Q„„= 16nT„„, (3.5)

m2T2
1

2Q
sin 8.

mgT
(3.6)

With a straightforward calculation one can check that
the condition (2.9) is satisfied.

Finally replacing in Eq. (2.4) the components of the
Reissner-Nordstrom metric g„„and of the g„„field from
the last equation (3.6) we obtain the metric g„ for the
initial fourth-order gravitational theory. This can be
written as

where V is with respect to the RN metric, and the stress-
energy-momentum tensor T„„is given by Eqs. (3.3).

To proceed we shall consider the case of sufficiently
small ~P~ parameter such that M && mi (remember
mi:= —P). This implies that with r ) M we will
also have r )) mi . Using this fact we observe that we
can obtain the first leading term for g„„very simply.
Indeed, in the left-hand side of the field equations (3.5)
the mass term dominates over the derivative terms for
r ) M » mi . Thus, to a good approximation we can
neglect the derivative terms and arrive at the following
diagonal solution for g„„:

2qz ( 2M Q2)
+

2q' t' 2M q'l
2 4 1 — +

m]T T T

2 2

4Q2/(m2irs) in addition to the force that they feel in the
RN spacetime. Note, however, that null geodesics on the
8 = 0 plane coincide with those of the RN metric.

Up to now we have solved the approximate field equa-
tions (2.5)—(2.7) in the case where r ) M » mi
However, we still have to check whether the conditions
for using the approximate field equations are satisfied.
With straightforward but tedious calculations, we find
that these conditions are satisfied for the solution (3.7)
at sufFiciently large distances from the black hole's hori-
zon T )& M. However, if one is interested in a solution
that is approximately valid in the region from radial in-
finity down to the horizon, one has still to restrict it
to sufficiently small charges ~q~ && M. We will pro-
vide here only a dimensional argument, which leads to
this condition. Remember that for using the approxi-
mate field equations we needed the Ricci squared terms
to be negligible with respect to second derivatives of Ricci
terms. For our particular problem the metric is approx-
imately the Reissner-Nordstrom one, and thus a typical
Ricci term will be oc Q /r Th.erefore we must have
(qz/r4)2 « (1/r2)(Q2/r4). If this condition is to be sat-
isfied also near the horizon T M one gets the restriction
Q2 « M2. And this is what we assume in the following
section where we discuss the thermodynamic properties
of the approximate solution (3.7).

IV. THERMODYNAMIC PROPERTIES OF THE
SOLUTION

As we have seen in the preceding section the metric of
a charged black hole in the quadratic gravitational theory
(1) is not the Reissner-Nordstrom solution. To a good ap-
proximation the metric is given by Eq. (3.7). Its range of
validity extends down to the vicinity of the horizon pro-
vided that M )& ~q~ and M &) mi . This will allow us to
calculate some of the thermodynamic quantities associ-
ated to black holes. In particular, we are interested in the
entropy-area relationship. Since the metric is known to
be spherically symmetric and static, it is easy to employ
standard Euclidean techniques to obtain the temperature
associated to the black hole and an expression for its en-

tropy [13]. However the same results are obtained with
a more simple minded thermodynamical treatment [11].
We prefer here to follow this last method.

With the argument due to Hawking, which is based on
a semiclassical calculation of quantum eKects near the
horizon, one can associate with a black hole a temper-
ature T = e/(2n) where K is the surface gravity of the
black hole's horizon. Note that for our metric the horizon
is at a radial coordinate TH given by

rH = M+ QM2 —Q2 (4 1)
r2 j q m2r4j

2q' l+r
~

1 —
~

(d8 + sin 8d4 ).
1

(3.7)

The surface gravity of the horizon e(r~) is then easily
computed

It is easy to see that in this metric the "Newtonian"
gravitational potential is modified. At large radial dis-
tances, particles will feel an additional repulsive force

1 Bgtt/Br
IC rH

gtt ger

QM2 —q2

(M + gM' —Q')' (4 2)
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We notice here that rc(rH) has the same value as for the
RN black hole of general relativity. Consequently the
same is true for the temperature.

This coincidence should not create the wrong im-
pression that everything regarding the thermodynamics-
geometry relationship for our black hole is the same as for
general relativity. On the one hand the coincidence itself
is probably accidental in our approximation and does not
survive in the exact solution. On the other hand, even to
our approximation, the other important geometric quan-
tity of the black hole, namely, its area A, does not have
the same expression as in the RN solution and in our so-
lution given by Eq. (3.7). In fact, the horizon area of our
quadratic gravity black hole is given by

RNCg ——T = Cqt9T Q
(4.8)

Let us remark once again that this nice coincidence prob-
ably happens only in our approximation and will not sur-
vive in the exact quadratic charged black hole solution.

V. EXTENSION TO THE ROTATING CASE

itational Lagrangian theories. Notice, however, that io
terms of the black hole parameters M and Q, the entropy
S has the same value as in RN black hole. The same is
true, as we have seen above, for TH and O'H and also for
other derived quantities as, e.g. , the heat capacity, since

(4.3)

By replacing into this expression the r H of Eq. (4.1)
and solving the resulting expression for the mass M of the
black hole we obtain the fundamental relation of black
hole thermodynamics:

In this section we will extend our calculations to the
case of rotating charged black holes in the quadratic the-
ory (1). We will work in the approximation where we
can use the field equations (2.5)—(2.7). We will use the
same methods that we used in the previous sections for
the static case. The metric can now be written in the
form

M=
(

A
)

2 + 2@~ + q2

- 1/2 (4.4)
ds = giidt + 2g&~dtdg + g„„dr + g~~dP + gssd8 .

(5.1)

By differentiation of this equation we obtain the first
law of black hole thermodynamics:

dM = dA y dQ:= THdS+ 4HdQ, (4 5)
OM OM

BA g c)

where S and 4 represent, respectively, the entropy and
the electric potential at the horizon of the black hole.

Now the task is the proper identification of the quanti-
ties T~, S, 4~ and Q in (4.5) with the black hole pa-
rameters. The derivatives appearing in (4.5) can be
explicitly obtained using Eq. (4.4). The temperature
TH is naturally identified with the Hawking temperature
T = r(rH)/(2vr) that we have calculated above. Simi-
larly Q is the total electric charge of the black hole, i.e. ,
the same quantity that appears in our quadratic black
hole metric. On the other hand, the electromagnetic po-
tential 4H on the horizon can be computed by direct use
of Maxwell equations

(4.6)

Thus by inserting Eqs. (4.2) and (4.6) into Eq. (4.5) we
can, upon integration, identify the black hole entropy S
as

T(KN)
ml

(5.2)

where T„„ is the energy tensor of the Kerr-Newman{KN)

black hole. Finally the metric in the quadratic theory is
given by

gpv gpv + (('yv. (5.S)

Using the metric tensor and the T„ tensor of the(KN)

Kerr-Newman black hole in Boyer-Lindquist coordinates
[14), we obtain the metric g„:

AI(+) a sin
gtt ——

2 + 2 I(—) ~

p p
asin 6

gyp ——[AI(+) —(p + )I( )]
p

As in the static case we can almost immediately solve
the approximate field equations. Indeed, g„„will be the
known general relativistic Kerr-Newman rotating black
hole metric. The scalar field y will not get excited, since
the source is the traceless electromagnetic stress energy
momentum tensor. Therefore, we are left with the field
equations for the massive scalar field Q„„,which are to
be solved in the background of the KN metric. Then
with the same arguments as in static case we find that
the solution for g„ is approximately given by

A 8vr2Q2
S ~ + ~ KPHo

4 m2A (4.7)

Here we observe that extra terms appear when we con-
sider S as a function of A. Thus in general, the simple
relationship S = 4A no longer holds in quadratic grav-

2 2 2 2 ~ 2 Sln 0
gyp

——[(r + a ) I( )
—Aa sin OI(+)]

p
2

gee = p I(—)&

Pg„„——I(+),

where

(5.4)
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( 2Q' l
I(+) =

I 1+ 2 4
%Pip )

(5.5)

and p:= r2+a2 cos2 8, b, := r 2—Mr+a +Q2 Here a is
the usual angular momentum per total mass parameter.

As in the static case we shall take ]Q~ && M to be able
to discuss the thermodynamic behavior of the solution.
Having the metric it is now straightforward to calculate
the radius of the event horizon r~, the surface gravity
e(re) and the horizon's angular velocity DH. All of them
turn out to have the general relativity values: namely,

H =M+ QM2 Q2 o2

QM2 —a2 —Q2
~(rH) =

"H +~
6

OH ——

"a+~'

(5 6)

(5 7)

(5.8)

Straightforward is also the calculation for the area A of
the event horizon:

2

+ arctan
O,T~ \+Hj

(5.9)

BA q,J BQ A, J BJ A, q
:=T~dS+ C~dQ+ Bled J, (5.10)

where the new quantities not present in the static case
are the horizon's angular velocity O~ and black hole's
angular momentum J. The partial derivatives in (5.10)
can be explicitly calculated, and the T~, Q, C'~ are nat-
urally identified as in the static case. Hence we are left
with a difFerential expression for the calculation of the
entropy S in terms of the parameters A, J, and Q. Upon
integration of this expression we find

( )
A 87rzQ 8(4vr) Qz J

We observe that in general the entropy will not be a
function only of the area of black hole, but also of the
other parameters that characterize it.

It is interesting to notice that also in the rotational
case, the actual value of the entropy, that is the one in
terms of M, Q, J, is the same as in general relativity, since
S = 4mr~ still holds in our approximation. But probably
this is not true in the exact solution.

VI. SUMMARY AND DISCUSSION

We have looked for solutions representing electrically
charged, static and stationary black holes in the theory

Note that, as in the static case, this is different f'rom
the general relativity result. From this equation we can
obtain M as a function of A, Q, and J.

The first law of black hole thermodynamics now reads

This work was supported by the European Community
DG XII and the Alexander von Humboldt Foundation.

APPENDIX

The field equations of the quadratic theory in the ap-
proximation where Ricci squared terms are neglected, are
given by Eq. (2.3).

Let us now consider the metric transformation

gab + gab —gab Xgab tab) (Al)

with y and Q b as scalar and tensorial field perturbation,
that is with ]y] « 1 and g b « g b. Hereafter, quantities
with carets will refer to the g g metric.

For the purposes of the paper we will keep only linear
terms in y and @ b fields. Then the transformation in

Eq. (Al) implies that the Einstein tensor G b is related
to G g with

with the quadratic gravitational Lagrangian of Eq. (1.1).
The gravitational field equations, which involved fourth-
order derivatives for the metric, have been reduced to a
set of field equations with second-order derivatives for a
massless tensorial Geld together with a massive scalar and
a massive tensorial field. Solving approximately these
equations we have seen that the modifications &om the
general relativistic results come only from the massive
tensorial field. The scalar field does not contribute, since
its source is the trace of the matter stress energy momen-
tum tensor, which in our case is the traceless electromag-
netic energy tensor. This is in fact an exact result, since,
as we have directly checked, the Reissner-Nordstrom so-
lution is an exact solution of the initial quadratic gravi-
tational field equations only if the massive tensorial field
is missing [o. g 0, P = 0 in Eq. (1.1)].

Computing several thermodynamic quantities for our
black hole solutions we have found that these quantities
retain, in our approximation, their general relativistic
value. This coincidence will quite probably not survive in
the exact solution. However, it is interesting to note here
that for generalized charged black holes in other theo-
ries usually one Gnds corrections in the temperature and
other thermodynamic quantities, see Ref. [15] for a dis-
cussion in the context of string theory and Ref. [16] in
terms of Kaluza-Klein theories.

Finally, for our black hole solutions we have found
that their entropy does not follow the simple area law
S = A/4. Such a behavior is known for theories that con-
tain nonlinear curvature terms in their gravitational La-
grangian and have dimensionality higher than four. The
respective investigations have been mainly performed
with the Lovelock Lagrangian [5]. To have in this the-
ory nontrivial results in four dimensions one should have
an effective nontrivial coupling of the curvature to some
other field, see, e.g. , Ref. [16) in the context of Kaluza-
Klein theories. As we have shown in this paper, we can
have in four dimensions a violation of the area law just
by including a minimally coupled electromagnetic field in
the quadratic gravitational Lagrangian of Eq. (1.1).
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Gab = Gab + + Nab + (0p;ab gapa;b 4pb;a ) + gab(4 pq +Op ) + X;ab (I-jX)gab + O( 0 ~ X ) ~ (A2)

Here the derivative operators, being without carets, are with respect to the g b metric.
Substituting Eq. (2.3) in Eq. (A2) we obtain (to linear order)

pl
Gab 87|Tab 2A + —

I gab R + (2A + p)R ab . p I-j Rab 2pRpqRa b')
+

2
I-I 0 b +

2 (4i; b
—4i;b'" —

M&b; '") +
2

g b(0~q'"' —I-IOi ) + X; b
—(I-lg)g b + O(g', y'). (A3)

gb=2PRb +%Rgb, (A4)

Our aim now is to decrease the order of metric deriva-
tives that appear in the field equations (A3). This can
be done by selecting the tensorial field g b and the scalar
field y in such a way that the terms on the right-hand
side of Eq. (A3), which contain higher order than second
metric derivatives cancel out. Obviously, with Q b we
can cancel the term HR b. For this let us choose

p+),
l 2(P+ 2A)

(A11)

The field equations for g b can be obtained from Eq.
(2.3), and Eq. (A4)

The field g b should satisfy a set of equations resulting
&om the Bianchi identity

where A is some constant. Then it follows

Gab = 8vrTab (2a+ p+ A)gab Cl R+ (2a+ p+ A)R, ab

+ g;ab gab (A5)

In deriving Eq. (A5) we have made use of the Bianchi
identity R b' ——2R,

Now with the obvious choice

( —m, )g b = 16~Tab+ (A —4a —P) CI Rgab

+ —+ 1 Rg b + 2(2m + P)R, b.

(A12)

With the choice (A9) and using Eqs. (A6), (A10) and
(A4) we can write Eq. (A12) as

y = —(2u+P+ A)R,

we obtain from Eq. (A5) that

(A6) m2
(0 —m', )g b

—(1 — 2pp ), b =167l(T b
—Tg b).

(A13)

G b=8+Tb, (A7)

(6n + 2P) CI R —R = 8' T. (A8)

With the choice of A,

(A9)

and using Eq. (A6) we can write Eq. (A8) as

8'
og T

3 mo = 6n+ 2P. (A10)

which is indeed an equation with only second derivatives
in the metric g b. Note that the constant A remains un-

specified and can be chosen arbitrarily. The field equa-
tions for y can be derived from the trace of Eq. (2.3):

Thus our initial field Eqs. (2.3) are equivalent to the
system of Eqs. (A7), (A10), and (A13). In these equa-
tions the operator is with respect to the metric g b,
but it can be also taken with respect to g b in our ap-
proximation, where we keep only linear terms in y, g b.
This is the system of field equations used in the body of
the paper.

Note here that Eq. (A10) is not independent, since it
is just the trace of Eq. (A13). From the physical point
of view, however, it is interesting, since it clearly shows
that, at least in our approximations, the massive scalar
sector of the quadratic theory is missing whenever the
trace of the stress-energy-momentum tensor of matter
fields T is zero. The case of weak gravitational limit is
contained in our results, and one may compare with the
results of Teyssandier [9], which however are only valid
in a conveniently chosen coordinate system.
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