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Quantization of the Bianchi type-IX model in supergravity with a cosmological constant
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Diagonal Bianchi type-IX models are studied in the quantum theory of N =1 supergravity with a
cosmological constant. It is shown, by imposing the supersymmetry and Lorentz quantum constraints,
that there are no physical quantum states in this model. The kK =+ 1 Friedmann model in supergravity
with a cosmological constant does admit quantum states. However, the Bianchi type-IX model provides
a better guide to the behavior of a generic state, since more gravitino modes are available to be excited.
These results indicate that there may be no physical quantum states in the full theory of N =1 super-

gravity with a nonzero cosmological constant.

PACS number(s): 04.65.+¢, 04.60.Ds, 98.80.Hw

I. INTRODUCTION

Recently a number of quantum cosmological models
have been studied in which the action is that of super-
gravity, with possible additional coupling to supermatter
[1-11]. Itis sufficient, in finding a physical state, to solve
the Lorentz and supersymmetry constraints of the theory
[12,13]. Because of the anticommutation relations
(S4,S4]y~F 44, the supersymmetry constraints
S,¥=0,5,¥=0 on a physical wave function ¥ imply
the Hamiltonian constraint % , ¥ =0 [12,13].

In the case of the Bianchi type-I model in N =1 super-
gravity with a cosmological constant A=0 [8], only two
quantum states appear. Using the factor ordering of 8],
one state is #'/* in the bosonic sector, where h =deth;; is
the determinant of the three-metric, and the other state is
h ~'*in the sector filled with fermions. In the case of Bi-
anchi type IX with A=0, there are again two states, of
the form exp(+I/#) where I is a certain Euclidean ac-
tion, one in the empty and one in the filled fermionic sec-
tor [9,14]. When the usual choice of spinors constant in
the standard basis is made for the gravitino field, the bo-
sonic state exp(—1I/#) is the wormhole state [9,15].
With a different choice, one obtains the Hartle-Hawking
state [14,16]. Similar states were found for N =1 super-
gravity in the more general minisuperspace models of
class A [10]. [Supersymmetry (as well as other considera-
tions) forbids minisuperspace models of class B.] It was
also found in the general theory of quantized N =1 super-
gravity with A=0 that there are two bosonic states of the
form exp(—1I/#), where I is the wormhole or the
Hartle-Hawking classical action [17]. (There are also
many other bosonic states.) There are also two states of
the form exp([ /#) in the filled sector.

It is of interest to extend these results by studying more
general locally supersymmetric actions, initially in Bian-
chi models. Possibly the simplest such generalization is
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the addition of a cosmological constant in N =1 super-
gravity [18]. It was found that in the Bianchi type-I case
there are no physical states for N =1 supergravity with a
A term [11]. The Bianchi type-IX model with a A term
and with N=1 supersymmetry in one dimension was
studied by Graham [4]. Here we treat the Bianchi type-
IX model with a A term with the full ¥ =4 supersym-
metry in one dimension. We shall see that there are
again no physical quantum states. The calculations are
described in Sec. II. We also treat briefly in Sec. III the
spherical k =+ 1 Friedmann model, and find that there is
a two-parameter family of solutions of the quantum con-
straints with a A term. Nevertheless, as will be seen, the
Bianchi type-IX model provides a better guide to the gen-
eric result, since more spin-3 modes are available to be
excited in the Bianchi type-IX model, while the form of
the fermionic fields needed for supersymmetry in the
k= -+1 Friedmann model is very restrictive [6]. Section
IV contains the Conclusion.

II. QUANTUM STATES FOR THE
BIANCHI TYPE-IX MODEL WITH A A TERM

Using two-component spinors [6,13], the action [18] is
S= [d*x[(2k*)"\(dete (R —3g?) .
+ 17 e 4 4D, Y, +Hoc.)

—lg(dete)(¥* e ptep® PP, +H.c.)] . (2.1)

Here the tetrad is e®, or equivalently e *# . The gravi-
tino field (gbAunZ 4 x) is an odd (anticommuting)
Grassmann quantity. The scalar curvature R and the co-
variant derivative D, include torsion. We define K2=8.
Here g is a constant, and the cosmological constant is
A=1g”

There are two possible approaches to the quantization
of this model. One possibility is to substitute the Bianchi
type-IX ansatz for the geometry e AA'# and gravitino field
(p*,9*,) into the action (2.1). The components
d/A#eBB"‘ and JA'ﬂeBB"‘ are required to be spatially con-
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stant with respect to the standard triad [19] on the Bian-
chi type-IX three-sphere. One finds that, in order for the
form of the ansatz to be left invariant by one-dimensional
local supersymmetry transformations, possibly corrected
by coordinate and Lorentz transformations [6], one must
study the general nondiagonal Bianchi type-IX model
[19]. The reduced action could then be computed, lead-
ing to the Hamiltonian and supersymmetry constraints.
Finally the supersymmetry constraints could be imposed
on physical wave functions. They would be complicated
because of the number of parameters needed to describe
the off-diagonal model.

The other alternative, taken here, is to apply the super-
symmetry constraints of the general theory at a diagonal
Bianchi type-IX geometry [9]. This is valid since the su-
persymmetry constraints are of first order in bosonic
derivatives, and give expressions such as 8¥/8h,, (x) in
terms of known quantities and W. These equations can be
evaluated at a diagonal Bianchi type-IX geometry,
parametrized by three radii 4, B, C. One multlphes (e.g.)
by 8h,,(x)=0h,, /0 A and integrates [d’x() to obtain
an equation for ¥ /04 in terms of known quantities.
The need to consider off-diagonal metrics is thereby
avoided.

The general classical supersymmetry constraints are,
with the help of [13], seen to be

—oh /2 A iy TB
=gh anap¥

ijk Ispy A 4 15 2,0 A i

te€%e 407D F iKY D 44

A4’

(2.2)

and the conjugate S ,. Here n is the spinor version of
the unit future-pointing normal n* to the surface
t=const. It is a function of the e 44;, defined by

ni4e =0, n44n ,.=1. (2.3)

In Eq. (2.2), p,," is the momentum conjugate to e 44
The expression 3'SD denotes the three-dimensional co-
variant derivative w1thout torsion. Since the components
of ¥4, are taken to be constant in the Bianchi type -1X
bes1s, one can replace 3‘D ¥4, by o Bﬂ/} » where o Bj
gives the torsion-free connection [13].

The corresponding quantum constraints read, with the

help of [13], |
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5 W= —ifigh'%e4 ,in ;5 DO, hl/zaa‘I;
v
ijk By_ Ll;2 ) S
+e eAA'ia)ABj'/’ Y Zﬁ" ¥4 Be A4 =0,
2.4
. . oV
SA\y:ghl/zeAAlnBA’wgi\II—lﬁwABt h1/2 I
3y
1 . d ¥
+i#eDEA ) 120 -=
2 ji a¢aj Be A4
(2.5)
Here
DBA = —2ih V2B o p n <A 2.6)

and 9/0y®; denotes the left derivative [20]. We have
made the replacement 8 /8¢%;, —h'/%0¥ /3y®,. The
h'/? factor ensures that each term has the correct weight
in the equations. One can also check that this replace-
ment gives the correct supersymmetry constraints in the
k=+1 Friedmann model (without A term), where the
model was quantized using the alternative approach via a
supersymmetric ansatz [6].

In addition to the supersymmetry constraints, a physi-

cal state ¥ must also obey the Lorentz constraints
J4By=0, J4Py=0. 2.7)

These imply that W is formed from the three-metric h;;
and from scalar invariants in the gravitino field. To

specify this, note the decomposition [11] of
Y gy =epp'P:
¥ app=—2np¥ 4pc

+%(BAnBB'+BBnAB')_2eABnCB'BC , (2.8)

where ¥ 4pc =¥ (4nc) is totally symmetric and € 45 is the
alternating spinor. The general Lorentz-invariant wave
function is a polynomial of the sixth degree in
Grassmann variables:

W(e A4, 1) =Wo(h;)+(BB)¥y( ki) +(¥ 4y B (hy)

+(B BNy 3epV PPy (Bi)) + (¥ 4pc¥ PO Wiy hi))+(B BNy pepy PPV W hy;)

As described in [11], any other Lorentz-invariant fer-
mionic polynomials can be written in terms of these.

We now proceed to solve the supersymmetry and
Lorentz constraints. The diagonal Bianchi type-IX
three-metric is given in terms of the three radii 4,B,C
by

h;=A’E'.E',+B*E*E*;+C’E*E?; , (2.10)
where E!;,E?,E? are a basis of unit left-invariant one-
forms on the three-sphere [19]. In the calculation, we
shall repeatedly need the expression, formed from the
connection:

2.9)
r
4 pj_ i | C . B A |p1g
np = +——-2L_|ELEY
Camlt Be T4 4B €4 BC |
i| 4 C B
+ = [—= — 2 2j
4 BC+ AB CA E%E
i| B A C |3 Y
+ 4 |C4 <4 Tac BC AB E%E
(2.11)
This can be derived from the expressions for w“2;, given
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in [9,13]. _ BA' 172 BA'n
First consider the S, ¥ =0 constraint at the level ¢' in Caaj®  m= T hl’" Pticjuh ! n g :
powers of fermions. One obtains
(2.15)
3 ; .
Eﬁgh l/zeBA’ '/’Bi‘l’zl +eMe AA’jﬁ’ABk ll’Bi‘I’o One then notes, as above, that by taking a variation
5w among the Bianchi type-IX metrics, such as
+icZep o P —=0. (2.12)
8h;; Shy=—7—" —L85A4=24E"E' 54 , (2.16)
Since this holds for all ¥/%;, one can conclude
multiplying by 8¥,/8h;; and integrating over the three-
= fzgh 12 W, +elkie . ; 045 Y, geometry, one ob?ains a\yo/aA._ Putting this information
5w together one obtains the constraint
ey —r=0. (2.13) v,
Sh;; fic’——2 + 167 AWy + 6 HgBCY, =0 , (2.17)
Now multiply this equation by e24'™, giving ) . ‘
and two others given by cyclic permutation of 4BC.
——3-ﬁgh imp 12y, +ekie , . eBA M AL W Next we consider the S ,¥=0 constraint at order '.
/ One uses the relations d(B,8%)/3y% =—n ey, B*
5%, and 3(y 4pcy *P9)/3YP; = —2y gpcn e/, and writes
—#ix oh. =0. (2.149  out B4 and y ppc in terms of eZE’; and Y,. Proceeding
" by analogy with the previous calculation above, one again
The second term can be simplified using [6] “divides out” by z/; to obtain
J
gh l/zeA AljnBA’\PO_ %iﬁa’A Cih l/zeCB’ieBBlj\IIZI - l%i‘hw agih l/zeDA'j‘-’DA'i"*’ %ih(’)A Eih l/zeEA’jeB A1 ¥,
5¥ S , .
+ ﬁZK eCpinctepBle y gim 2L o2 —zﬁifns” +leBC,»nC” ecc’
8h,, 3 3
C o . . . 3\
—gncBeCA ,-eBBJ—é-nBBeCA ece’ |equm = Sh, 2-o0. (2.18)
One replaces the free spinor indices AB by the spatial index # on multiplying by n *,,.e 2", giving
_%ghl/zhjn\yo+%i‘hhl/2( U(L) Bn BeB _h (L)ABln BeBBJ+h]nCL) Bn Be ,i)WZI
+liﬁh Y22k ypin 15e BB +h"w spn g eBBi—hi"y pn4p.e BB W,
L g ds,,— 8,78, 4 hih ) — L2805, 18,78, I~ iy ) L Mao. a9
16 éh,, 3 oh,,, |
Multiplying by different choices 84;,, =(dh;,, /0 A )8 A, etc., and integrating over the manifold, one finds the constraints
ov ov v v ov oV ov
—1—h2K2A_‘ 20, 2, 2T 1,5 3972 2 2,070
16 04 dB aC 3 34 94 oB acC
A B C 24 B _C
162 2 4. 5 24 _ b _ =
16mgBCY,—m#BC | 2o+ oo+ [Yat (161r HBC | o=~ 5 [¥2=0. (220

and two more equations given by cyclic permutation of 4BC.
Now consider the § ;% =0 constraint at order ¥°. It will turn out that we need go no further than this. The con-

straint can be written as
1 , )
3hgh l/ZEBA']‘”CB eBB"Bc(?’DEFY )‘1’414‘5” €44'i0 Bﬂf’ Kl BCB ‘P21+(7’CDE7’ )‘1’2 ]

oV
1 CDE 22
(YCDEY )Se’“'~

i 1

%hzxzw", BcBC) =0. @21

The terms ¥%, and ¥, in the last two lines can be rewritten in terms of B, and ¥ gy, using Eq. (2.8). Then one can set
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separately to zero the coefficient of BC (¥ pgryPEF), the symmetrized coefficient of ¥ pgr (BcB€), and the symmetrized

coefficient of ¥ pgg (¥ cpe¥ “PF)

3 8 . , 4 :
Zﬁgh 1/2n CAr‘I/41 - ge"-’keAA:,-a)ABjnBC:e cc k‘l’22+ _3‘th’1 AB:e CB

)\

ijk A D _CB _ 5.2, D _CB 21
2€] eAA'iw Bjn B'e k‘l’z] ﬁKn B/e i BA'
de”4,;

. These three equations give

+(BCD—CDB)+(BCD—DBC)=0,

'8eAA’_

=0, (2.22)

(2.23)

and Eq. (2.23) with W,, replaced by ¥,,. Contracting Eq. (2.22) with n 4" and integrating over the three-surface gives

%( 16m2)ig ABCW,, + %( 1672)( A2+ B>+ C))W,, + %hkz

av,, a¥v,, ov,,
4 04 +B oB +C aC

=0. (2.24)

Contracting Eq. (2.23) with e24'n e, €™, multiplying by 8k,, =(3h,, /d A )5 A and integrating gives

ov ov ov ov
207 g 1| 4902 pOT O

3 04 04 oB aC

and two more equations given by permuting ABC cycli-
cally. The equation (2.25) also holds with ¥,, replaced by
Y,,.

There is a duality between wave functions
W(e44',,94,) and wave functions (e 44, §4',), given
by a fermionic Fourier transform [13]. The S, and S .
operators interchange roles under this transformation,
and the roles of ¥, and ¥¢, ¥, and ¥,,, and ¥,, and ¥,
are interchanged. We shall proceed by showing that ¥,,,
V¥,,, and ¥, must vanish for g0 (or A¥0), and hence by
the duality the entire wave function must be zero.

Consider first the equation (2.25) and its permutations
for ¥,; and ¥,,. One can check that these are equivalent
to

a4 2 3B

fi? | A =167 B%>— A*)¥,, (2.26)

and cyclic permutations. One can then integrate Eq.
(2.26) along a characteristic AB =const, C =const, using
the parametric description 4 =w,e",B=w,e" ", to ob-
tain

V,,;=h,(AB,C)exp —%(Az-f-Bz) . (2.27)
The general solution of
ov ov
2 2~ 22 R2
#ik* |B 3B o ac 167m(C*—B*)¥,, (2.28)
is similarly
— 87 L2, 2

Equations (2.27) and (2.29) are only consistent if ¥,; has
the form

2
W,,=F(ABC)exp —-%(A2+B2+C2) (2.30)

Similarly

—167’BC

C B A _
[
_ 87 2. p2, 2
¥ =G(ABC)exp |~ T (A2+B2+CY) | . @31

Substituting Egs. (2.30) and (2.31) into Eq. (2.20), one
obtains

16m°g Vo= —27*#( ABC) (A*+B?*+C?*)(exp)F
_3_ 2.2 ’
+ 16ﬁ Kk“(exp)F
+%(161T2)ﬁ( ABC)~ 2 42—B2—C?)(exp)G

(2.32)

and cyclically, where

2
exp=exp —%(A2+B2+C2) . (2.33)

Now V¥, should be invariant under permutations of
A,B,C. Hence G=0,i.e.,
¥,,=0. (2.34)

The equation (2.32) and its cyclic permutations, with
W¥),=0, must be solved consistently with Eq. (2.17) and
its cyclic permutations. Eliminating ¥, one finds

Mkt ., #E A+B4C?

F'+6m*#tgF
16(16m%g) 8g ABC g
#xr 1 #x* A*+B*+C?
- + F=0, (2.35)
4g B2C? 8¢  (ABC)?

and cyclic permutations. Since F=F( ABC) is invariant
under permutations, the (BC)™2F term and its permuta-
tions imply F =0. Thus
Hence, using Eq. (2.32),

\Pozo .

Then we can argue using the duality mentioned earlier,
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to conclude that

W, =V,=V¥,=0. (2.37)

Hence there are no physical quantum states obeying the
constraint equations in the diagonal Bianchi type-IX
model. This result will be discussed further in the Con-
clusion.

This shows that the Chern-Simons semiclassical wave
function of Sano and Shiraishi [21] for N =1 supergravity
with a A term can only be an approximate, and not an ex-
act state in the Bianchi type-IX model. If it were exact,
then one could make a Fourier transformation from the
Ashtekar variables used in [21] to the variables 4,B,C
used here, to find a nontrivial solution.

III. THE k =+ 1 FRIEDMANN MODEL
WITH A A TERM

The k = +1 Friedmann model without a A term has
been discussed in [2,6]. There are two linearly indepen-
dent physical quantum states. One is bosonic and corre-
sponds to the wormhole state [15]; the other is at quadra-
tic order in fermions and corresponds to the Hartle-
Hawking state [16]. In the Friedmann model with a A
term, the coupling between the different fermionic levels
“mixes up” this pattern [4].

In the Friedmann model, the wave function has the
form [6]

V=W A)+(BBIVL(A4) . (3.1)

As part of the ansatz of [6], one requires ¥4, =e 44 ¢ .
and $*';=e 44 4 ,; this is in order that the form of the
one-dimensional ansatz should be preserved under one-
dimensional local supersymmetry, suitably modified by
local coordinate and Lorentz transformations. Thus the
gravitino field is truncated to spin ;. Note that
BA=3n 14 .

One then proceeds as in Sec. II to derive the conse-
quences of the S, ¥=0 and S ,¥=0 constrints at level
¥!, by writing down the general expression for a con-
straint and then evaluating it at a Friedmann geometry.
Note that it is not equivalent to set 4 =B=C in Egs.
(2.17) and (2.20); the coefficients in the constraint equa-
tions are different. One then obtains

2 d¥, 2 2 2
#ik 74 +487° AV, + 187°fig A “¥,=0 (3.2)
and
dvy
i — A2 — 487 AV, —256m2g A2W=0 . (3.3)
These give second-order equations: for example,
AW d¥ | _ a8 (@8t
dA? dA #ik? #itict
4.2
$2X512me” s iy —o.  (.4)
#c*

This has a regular singular point at 4 =0, with indices
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A=0 and 3. There are two independent solutions, of the
form

Vo=ag+a,A*+a,4*+ -, 3.5

Wo=Abo+b, A’ +b, A%+ ),

convergent for all 4. They obey complicated recurrence
relations, where (e.g.) a¢ is related to a4, a,, and a,,.

One can look for asymptotic solutions of the type
W,~(B,+#B,+#B,+ - - - )exp(—1I /#), and finds

(3.6)

for 2g2 42 < 1. The minus sign in I corresponds to taking
the action of the classical Riemannian solution filling in
smoothly inside the three-sphere, namely, a portion of the
four-sphere S* of constant positive curvature. This gives
the Hartle-Hawking state [16]. For 42> (1/2g?2), the
Riemannian solution joins onto the Lorentzian solution
(22]

2 2 42__1\372
rig 4" 1) ——’5, ’ 3.7
g 4

which describes de Sitter space-time.

¥~ cos [ﬁ"l

IV. CONCLUSION

We have seen here that there are no physical quantum
states for N =1 supergravity with a A term, in the diago-
nal Bianchi type-IX model. The same result was found
for nondiagonal Bianchi type-I models in [11]. The phys-
ical states found in Sec. III for the k=+1 Friedmann
model, where the degrees of freedom carried by the gravi-
tino field are B 4, disappear when the further fermionic
degrees of freedom y 4. of the Bianchi type-IX model
are included.

One could also study this from the point of view of per-
turbation theory about the k = + 1 Friedmann model. As
well as the usual gravitational harmonics [23], gravitino
harmonics can be used [24]. For example, the Bianchi
type-IX model with radii 4,B,C close together describes
a particular type of “gravitational wave” distortion of the
Friedmann model; similarly for the y 45 of the Bianchi
type-IX model, which describes a particular ‘“‘gravitino
wave” distortion. Quite generally, in perturbation theory
[23,25] one expects to find a wave function which is a
product of the background wave function W( 4) times an
infinite product of wave functions ¥, (perturbations)
where n labels the harmonics. And one further expects
that the perturbation wave function corresponding to the
Bianchi type-IX modes must be zero, by a perturbative
version of the argument of Sec. II. (It will be interesting
to investigate this.) Hence the complete perturbative
wave function should be zero; then physical states would
be forbidden for a generic model of the gravitational and
gravitino fields with a A term. This suggests that the full
theory of N=1 supergravity with a nonzero A term
should have no physical states.
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