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Quantum dynamics of Lorentzian spacetime foam
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A simple spacetime wormhole, which evolves classically from zero throat radius to a maximum value

and recontracts, can be regarded as one possible mode of fluctuation in the microscopic "spacetime
foam" first suggested by Wheeler. The dynamics of a particularly simple version of such a wormhole can
be reduced to that of a single quantity, its throat radius; this wormhole thus provides a "minisuperspace
model" for a mode of Lorentzian-signature foam. The classical equation of motion for the wormhole
throat is obtained from the Einstein field equations and a suitable equation of state for the matter at the
throat. Analysis of the quantum behavior of the hole then proceeds from an action corresponding to
that equation of motion. The action obtained simply by calculating the scalar curvature of the hole
spacetime yields a model with features like those of the relativistic free particle. In particular the Hamil-

tonian is nonlocal, and for the wormhole cannot even be given as a differential operator in closed form.
Nonetheless the general solution of the Schrodinger equation for wormhole wave functions, i.e., the
wave-function propagator, can be expressed as a path integral. Too complicated to perform exactly, this

can yet be evaluated via a WKB approximation. The result indicates that the wormhole, classically
stable, is quantum-mechanically unstable: A Feynman-Kac decomposition of the %KB propagator
yields no spectrum of bound states. Although an initially localized wormhole wave function may oscil-
late for many classical expansion and recontraction periods, it must eventually leak to large radius

values. The possibility of such a mode unstable against growth, combined with the observed absence of
macroscopic wormholes, suggests that stability considerations may place constraints on the nature or
even the existence of Planck-scale foamlike structure, at least of Lorentzian signature.

PACS number(s): 04.60.Kz

I. INTRODUCTION

A quantum description of gravitation is one of the
most eagerly sought goals of present-day physics. Ap-
proaches to such a description may be loosely classified as
"grand schemes" and "small schemes. " The former are
attempts at a comprehensive quantum theory of gravita-
tion, such as supergravity or superstring theory, canoni-
cal quantization of general relativity with or without new
variables, etc. The latter are attempts to analyze the
quantum-gravitational physics of particular, simple sys-
tems, in hopes of understanding features expected to
emerge from a complete, general theory. These small
schemes include the extensive "minisuperspace"
quantum-cosmology program [1], the numerous calcula-
tions of the effects of Planck-scale spacetime wormholes
and "baby universes" on the constants of macroscopic
physics [2], and the present work, in which we seek to
probe the dynamics of such a Planck-scale "foam" struc-
ture itself. An outline of this investigation has been pub-
lished previously [3];here we present the calculations and
results in detail.

'Permanent address: Department of Science and Mathematics,
Parks College of Saint Louis University, Cahokia, Illinois 62206.

The concept of "spacetime foam, " first suggested by
Wheeler [4] some 35 years ago, has become standard lore
in our quantum picture of gravitation: On scales of the
Planck length, quantum fiuctuations of the spacetime
geometry become so dominant that spacetime takes on all
manner of nontrivial topological structure, such as
wormholes and handles; smooth, simply connected space-
time only emerges as a classical limit on larger scales.
Yet in the intervening decades our understanding of
quantum gravity still has not advanced suSciently to
prove or disprove this famous conjecture.

The difficulties inherent in such a proof, or in any de-
tailed treatment of spacetime foam, are well known. To-
pological change in a Lorentzian manifold necessarily en-
tails the complications of singularities or degeneracy of
the geometry, or of closed timelike curves [5]. To cir-
cumvent these problems one may consider Euclidean
manifolds instead [1]. Euclidean quantum gravity is
physically distinct from Lorentzian, unlike ordinary
quantum field theory in which the two formulations are
equivalent via analytic continuation. Indeed on a quan-
tum level it might be that spacetime is fundamentally Eu-
clidean, with familiar Lorentzian spacetime only a classi-
cal limit attained far from the Planck regime. But Eu-
clidean quantum gravity has its own formidable problems
[6], including the failure of the Euclidean action to be
positive definite or bounded below, the problem of inter-
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pretation, and the matter of recovering Lorentzian space-
time.

Both versions of spacetime foam continue to be sub-
jects of great interest. Much recent work on Euclidean
foam has explored its possible role in determining the
fundamental constants of nature [2]. The suggestion that
Lorentzian wormholes, extracted from microscopic foam
and suitably enlarged, might conceivably be used for
space or time travel [7] has inspired a great deal of recent
and ongoing work on issues of causality and consistency
in spacetime physics. Both sets of ideas have profound
significance for fundamental physics, but both regard the
spacetime foam itself as a given, neither probing the ques-
tions of its existence or structure substantially.

This work addresses the dynamics of Lorentzian space-
time foam, and the implications of that dynamics for its
existence and nature. We begin by envisioning Lorentzi-
an spacetime, filled on Planck scales with all manner of
wormholes and other structures —modes of topological
fluctuation —continually winking into existence, persist-
ing for microscopic time periods, and pinching off. The
moments of creation and disappearance of these struc-
tures, i.e., the actual points of topological change, may or
may not require a Euclideanized treatment; our analysis
does not attempt to deal with these points.

Classical wormhole geometries can be used to model
such a picture. In general such wormholes, persisting for
arbitrary lengths of time (in particular, sufficient to allow
passage of matter or energy), must involve stress-energy
distributions which violate the weak energy condition—
negative energy density in some reference frames must
appear somewhere in the wormholes' throats. Whether
this suffices to rule out wormholes on macroscopic scales
is unknown at present, but it is not expected to be a prob-
lem for microscopic structure, where quantum effects
could readily give rise to such stress-energy [7,8]. More-
over, it does not appear to present a barrier to the growth
of wormholes from Planck scales to large sizes, as the
present work indicates. Indeed, classical wormhole mod-
els which grow from microscopic to macroscopic sizes
via inflation have been constructed by Roman [9].

To make the analysis tractable we employ a brutally
simplified wormhole model to represent one mode of
spacetime-foam fluctuation. A class of wormholes can be
constructed by excising the world tube of some surface
from a (3+1)-dimensional spacetime region and joining
this to another such region, with like excision, at that
surface [10]. The join, the throat of the resulting
wormhole, contains a surface layer of stress-energy
specified by the Einstein field equations expressed as junc-
tion conditions [11]. Here we take the external regions of
such a wormhole to be flat, empty Minkowski space, the
throat a sphere of time-varying radius [10]. Our model is
thus an extreme version of a wormho1e in which the
spacetime curvature in the throat is much greater than
that in the regions surrounding the mouths. Our
simplifications reduce the geometric degrees of freedom
of the spacetime to just one, to throat radius. Thus, our
analysis is a minisuperspace model of a wormhole, analo-
gous to the minisuperspace models used in quantum
cosmology [1]. In fact, our model is simplified even fur-

ther than those: We treat the matter providing the stress
energy on the wormhole throat via an equation of state,
rather than as a separate dynamical field. The quantum-
gravitational dynamics of the complete wormhole system
becomes then the quantum mechanics of one variable, the
throat radius. The result we seek is the evolution, in time
as defined in the wormhole's flat exterior regions, of a
wave function for that radius.

In the absence of a general theory of quantum gravity,
there is no prescription from first principles for quantiz-
ing a system like this wormhole. The existence of an
external time, in terms of which the evolution of the sys-
tem is naturally to be described, makes unsuitable the
usual time-independent Wheeler-deWitt equation [12].
Instead we choose to "solve the constraint" explicitly,
i.e., to impose the Hamiltonian constraint classically, to
reduce the phase space of the system. Combining the
classical junction conditions at the wormhole throat—
consisting of the Hamiltonian constraint plus a dynami-
cal equation —with an equation of state for the matter on
the throat yields an equation of motion for the throat ra-
dius alone. We then construct an action for the dynamics
in the reduced phase space, i.e., depending only on the ra-
dius and its time derivatives, for which that equation of
motion is the Euler-Lagrange equation. This can be done
in a variety of ways, amenable to various forms of quanti-
zation. One such action, associated with gravitational
dynamics in a straightforward way, is obtained from the
scalar curvature of the wormhole spacetime. The
wormhole quantum mechanics described by this action is
treated in detail in this paper. Alternative actions and
their implications for wormhole dynamics are examined
in a subsequent paper [13].

The wormhole quantum mechanics which follows from
the "curvature action" is in some respects similar to the
Newton-Wigner first-quantized description of a relativis-
tic free particle [14,15]. For both the Hamiltonian is

nonpolynomial in the momentum, i.e., is a nonloca1
operator in the coordinate representation. Indeed, for
the wormhole the Hamiltonian is a rational function of
"velocity, " which is related to the canonical momentum
via a transcendental equation which cannot be inverted in
closed form. This unconventional form of the Hamiltoni-
an makes it impossible to deduce the behavior of the sys-
tern merely by examining the "potential" term; explicit
solution for the evolution of the wave function is needed.
Moreover, the corresponding Schrodinger equation for
wormhole wave functions cannot be written explicitly as
a differential equation. It can, however, be solved, at
least formally: The wave-function propagator is obtained
by using the action io a Feynman path integral. Exact
evaluation of this integral is problematic; the action is
complicated, and questions of the appropriate measure
and skeletonization (factor-ordering problems), as well as
the issue of the correct class of paths over which to in-
tegrate, arise. But the integral can be evaluated in a
%'KB approximation, as a sum of contributions from
classical paths and small fluctuations about them. The
measure and factor-ordering problems are thus avoided.
It is crucial, though, to include all the appropriate paths.
The analogy to the relativistic particle suggests that
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spacelike as well as timelike and lightlike paths must be
included in the integral [15,16]. Also, since negative
throat radii are undefined, a suitable boundary condition
must be imposed on the wave functions, i.e., on the prop-
agator, at zero radius. Zero radius acts as a reflecting
barrier, giving rise to classical paths —extrema of the
action —which "bounce" there one or more times. (Such
a boundary condition incorporates our neglect of any to-
pological change at zero radius. ) The WKB version of
the propagator, then, consists of a sum of several terms,
contributions of paths with diferent numbers of bounces;
cancellation of terms effects the boundary condition at
zero, just as for a particle in a half space. Explicit expres-
sions for all the terms are obtained here. With these the
evolution of a wave function is calculated via a convolu-
tion integral, evaluated numerically.

The results suggest that even with a matter equation of
state chosen so that the classical evolution of the throat
radius is bounded, the wormhole is quantum-
mechanically unstable. This is not unprecedented—
classically stable black holes, for example, are unstable to
Hawking evaporation. In this case a Feynman-Kac
decomposition of the wormhole propagator yields no
spectrum of bound states. The calculated evolution of an
initially localized wave function follows a classical trajec-
tory for many expansion-recollapse-bounce cycles, but
the wave function must eventually leak to arbitrarily
large throat-radius values. Its behavior thus resembles
that for a particle initially confined to a well with finite,
though perhaps high and wide, walls, or an a particle in a
heavy nucleus. This simple wormhole geometry appears
to represent a mode of spacetime-foam structure unstable
against growth to macroscopic size.

Though subject to the limitations of our model, viz. ,
the simplifications and approximations we have applied,
and the uncertainties associated with our quantization
scheme, such a conclusion is potentially very significant.
It indicates that Planck-scale gravitational physics might
be constrained by observations on much larger scales:
The apparent absence of any topological structure to
spacetime on scales accessible to observations, ranging
from particle physics to astronomy, could iinply either
that not all modes of topological fluctuation are possible
or that microscopic (Lorentzian) spacetime foam does not
exist altogether.

The wormhole model and its associated classical and
quantum dynamics are presented in Sec. II below. Evalu-
ation of the wormhole propagator in the WKB approxi-
mation is shown in detail in Sec. III. The implications of
the result for wormhole wave-function evolution are dis-
cussed in Sec. IV. Conclusions and caveats follow in Sec.
V. Units with G =e =%=1 are used throughout. Sign
conventions and general notation follow those of Misner,
Thorne, and Wheeler [17].

II. MECHANICS OF THE WORMHOLE MODEL

fluctuation in Lorentzian-signature spacetime foam. The
classical geometry of such a wormhole is constructed by
removing a ball of time-dependent radius r =R (t) from
two Minkowski-space regions and identifying the two
boundary world tubes, making them the throat of the
wormhole. The Einstein field equations are satisfied trivi-
ally in the flat, empty exterior regions. At the throat
those equations take the form of the junction conditions
[11]

S' = [K' —5,'K j,1

Sm
(2.1)

where Sl' is the stress-energy tensor of a suÃace layer on
the throat, and the right-hand side is the jump discon-
tinuity in the throat extrinsic curvature E, minus its
trace E . Here the nontrivial components of these equa-
tions are

(2.2a)

and

1 R R R

(1 R2)1/2 (1 R 2)3/2
(2.2b)

overdots denoting derivatives with respect to
Minkowski-coordinate time t (in a frame "centered on the
hole, " i.e., in which spherical symmetry is maintained).
The throat coordinates here are proper time A, and polar
angle 8; proper and coordinate time are related via
d A, =(1—R )'/ dt. Once a surface-layer equation of state,
relating surface density cr =S&& and pressure p =See/R,
is specified, Eqs. (2.2) give the classical equation of
motion for the wormhole. As is to be expected [7,8], Eq.
(2.2a) indicates that negative energy densities appear.

For simplicity we specify the equation of state as a
property of the model, rather than derive it from some
more fundamental description of the surface layer. It
could be chosen to make the equation of motion extreme-
ly simple. The choice p = —o l2, for example, would im-

ply R =0. The dynamics of such a model is trivial. Clas-
sically the wormhole throat either sits at fixed radius or
expands or contracts linearly. Its quantum behavior is
the same as that of a free particle; a wave function initial-
ly concentrated about some R value will disperse to
infinity. But this is not a model suitable for describing
structures in spacetime foam, fluctuating into and out of
existence. Rather we seek an equation of state such that
the equation of motion describes expansion from zero ra-
dius to some maximum value and recollapse. The simple
"dust" equation of state, p =0, implies the equation of
motion RR —R +1=0; the solutions of this are sine
functions, with the desired behavior. This equation, how-
ever, is not suited to the action construction we use
below. (It can be treated by other methods [13].) Instead
we choose

A. Classical dynamics

A spherically symmetric "Minkowski wormhole" [10]
provides a very simple model of a mode of topological

p =—cr/4,

which yields the equation of motion

2RR —R +1=0 .

(2.3)

(2.4)
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The corresponding classical trajectories are parabolic:

a (t —to}
R (r)= —1—

c1 4
(2.5)

where a and to are constants. These solutions likewise
behave as desired.

Thus, by restricting consideration to Minkowski-
wormhole geometries, and combining the classical
initial-value (Hamiltonian) constraint (2.2a) with the
dynamical equation (2.2b) and the equation of state (2.3),
we reduce the infinity of gravitational and matter degrees
of freedom of the wormhole spacetime to one, the throat
radius R. This is thus an extreme form of minisuperspace
model.

The equation of motion (2.4) can be obtained as the
Euler-Lagrange equation for extrerna of the action

5= RR ln —2R dt. (2.6)

4
z i' RRln . —2R

1+R
R(1—R )' 1 —R

1 d 2 1+RRzln
2 dt

&(p),

(2.7)

where p is proper distance normal to the throat, positive
in one exterior region and negative in the other. The cor-
responding gravitational action —the integral of A plus a
surface term [18] eliminating the total-derivative term-
is just Eq. (2.6).

The Hamiltonian dynamics of the wormhole, on its re-
duced phase space, follows immediately from the action.
With Lagrangian L given by the integrand in Eq. (2.6),
the canonical momentum is

dL 1+R 2R

M 1 —R 1 —R
(2.8)

The Hamiltonian is

H=PR-L= "-, -

1 —R
(2.9)

The Hamiltonian cannot be expressed in terms of R and
P in closed form, since the transcendental relation (2.8)
between R and P/R cannot be inverted explicitly.

It should be noted that the "energy*' corresponding to
this Hamiltonian is not to be identified with the
Arnowitt-Deser-Misner (ADM) mass of the wormhole,
which is zero by construction. To thus fix the "energy"
wou1d reduce the equation of motion to first order, and
the classical initial-parameter space to one dimension,

This choice of reduced-phase-space action is motivated
by the fact that it coincides with the Einstein-Hilbert ac-
tion for the wormhole spacetime. The wormhole's scalar
curvature% is nonzero only on the throat:

% =2(1t. ]5(p)

making canonical quantization impossible. In fact, the
Hamiltonian (2.9) corresponds to the classically con-
served "mass" 2(2mR 0 ) appropriate to the equation
of state (2.3). [The Einstein field equations imply the con-
servation law d (4n.R o. ) /d t +
pd(4mR )/dt =0; Eq. (2.3) then implies that R ~ cz,
hence H, are classically conserved. ] This can take on
various values for different wormhole states. In this
respect our treatment contrasts with the analyses of
Hajicek er al. [19] of the quantum mechanics of a col-
lapsing dust shell. Those authors take the Hamiltonian
to correspond to the ADM mass of the system, which
may take on different values in different states. They
treat the classically conserved proper mass of the shell as
a Axed parameter.

Of course the wormhole action is not uniquely defined
by the equation of motion specifying its extrema. A
variety of actions, of other than Einstein-Hilbert form,
can be constructed corresponding to Eq. (2.4)—or to
equations obtained from other equations of state. Ac-
tions can be obtained which avoid some of the complexi-
ties encountered with the geometric action (2.6), e.g., the
complicated kinetic term, and the transcendental relation
(2.8). The construction of such actions and their implica-
tions for wormhole quantum mechanics are examined in

another paper [13]. The rest of this paper treats the
quantum dynamics obtained from the geometric action.

B. Quantum dynamics

G[R r R 0]=f e"{""}n[R(r)],
C

(2.11)

with C denoting the class of paths over which the integra1
is defined.

The appropriate class of paths is an important issue.
The example of the relativistic particle [15], and more
general quantum-gravitational considerations [16], sug-
gest that all paths linking the initial and final points

In this minisuper space model, then, the quantum
wormhole is to be described by a wave function g(R, t).
With the Hamiltonian constraint (2.2a) imposed classical-
ly, i.e., incorporated into the reduction of the wormhole's
phase space, no Wheeler-DeWitt equation imposes "time
independence" of 1( [12]; instead its evolution in
wormhole-exterior time t is generated by the Hamiltonian
(2.9)

There is no hope of treating the corresponding
Schrodinger equation directly: The transcendental na-
ture of relation (2.8) and the form of H imply that the
Hamiltonian contains all powers of the momentum P, or
as an operator on g, of 8/BR. It is therefore a nonlocal
operator, similar to that for a relativistic particle, but
rather more unwieldy [15]. Operator ordering in 8 is
problematic as well. But the solution of the Schrodinger
equation can be treated. The general solution, i.e., the
time evolution of any wave function, can be given in
terms of a propagator:

p(R, t)= J G [R,t;RO, O]$0(RO)dRO . (2.10)

The propagator 6 is given formally by a Feynman path
integral
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should be included —spacelike as well as timelike and
null. [Spacelike paths, with ~R ~

) 1, correspond to
"negative-energy" contributions, in terms of the Hamil-
tonian (2.9).] Including spacelike paths implies that 6
need not vanish outside the "light cone" ~R —Ro~ =t,
i.e., that it may admit "acausa1 propagation. "

Moreover, the wormhole geometry is only defined for
non-negative R, hence only paths with R ( t}~ 0 should be
included. This restriction can be implemented as for a
particle confined to a half space, i.e., as if there were an
infinite potential wall at R =0. This implies the bound-
ary condition f(O, t)=0, hence that 6 [R, t;RO, O] should
vanish for R or Ro zero. (More precisely, f must entail
no current in the —R direction at R =0, so boundary
conditions more general than this are possible. For sim-
plicity we do not treat such here. ) By imposing this con-
dition we exclude consideration of topology-changing
processes, i.e., wormhole creation or disappearance, at
R =0. The treatment of such processes might require a
"second quantized" framework (actually "third quan-
tized, " outside the restrictions of a minisuperspace mod-
el), rather than the "first quantized" (actually "second
quantized"} description used here. Their bearing on our
results is discussed further in Sec. V. Here the boundary
condition on P and 6 gives the point R =0 the role of a
reflecting boundary for wormhole wave functions.

III. EVALUATION OF THE PROPAGATOR:
WKB APPROXIMATION

6' " '[R, t;R, ,O]=
classical 0

paths

iS[R lje

(3.1)

The exponential factors arise from the classical paths R,1

between the initial and final values. The prefactors come
from Gaussian integrals over small deviations from these,
giving semiclassical corrections [20]. To that order
6 ' is independent of the choice of path-integral mea-
sure. Specifying the regime in which this approximation
is accurate is problematic, since we have neither an exact
solution for comparison nor even an explicit form of the
Schrodinger equation. This question is considered fur-
ther in Sec. V below.

The first step in evaluating G' ', then, is finding the
appropriate classical paths. More than one type of path

Exact evaluation of the path integral (2.11) is out of
reach: The integral, with action (2.6), is non-Gaussian;
the operator-ordering problems involved in canonical
quantization with the Hamiltonian (2.9) would reappear
as ambiguities in the skeletonization of the path integral;
the appropriate measure on the space of paths is un-
known. But, over a suitable range of time intervals and
throat-radius values, it should be possible to calculate the
propagator via a WKB approximation. Then the path in-
tegral is taken to be dominated by the contributions of
classical trajectories —local extrema of the action —and
nearby paths. The approximate propagator takes the
form

always contributes. There is exactly one parabolic trajec-
tory of form (2.5), and taking only non-negative radius
values, between any initial and final points (RO, O) and
(R, t) Specifically, this trajectory has parameters

1/2
8 t2 Ro+Ra= — R0R +— (3.2a)0 2

and

(ROR+t l4)' R—
2 (ROR +tig4)in (Ro+R)/2

(3.2b)

and action

(0)
2

S = — 1 — (t 3tt —+3t )
2

2a 12 0 0

2—a(t —to)+ ln
2 2+a(t —t, )

Ro 2+uto
ln

2 2 Qtp

(3.3)

S"'=—
—,'[t, (t, +2R, )+(t t, )(t—t, +2R)]—

+—R ln
1 2 R
2

t1 —Ro
R 2

t —t —R1

(3.4)

For the bounced path to contribute to the WKB propaga-
tor (3.1), this should be extremal with respect to variation
of t, . That condition is

(t t, )'(t, ——R, ) —t', (t t, —R) =—0 . (3.5)

Each real solution of this equation with t, E [0,t] corre-
sponds to a contributing trajectory. Since the left-hand
side of Eq. (3.5) changes sign between t, =0 and t, =t
there is always one such solution, and may be three. A
classical path bouncing more than once, at times
t, , . . . , t„,has action

S'"'= ——t, (t, +2R, )+ g (t, t, ,)'—4 1 1 0 j j—1

+(t t„)(t t„+—2R )—
+—R ln

1

2 t —t„—R
t, —Ro—&0' 1n

0

(3.6)

That this be extremal with respect to all bounce times is
equivalent to the conditions

(n —1}ti—(t, —Ro)(t„t,}=0, —(3.7a)

Because paths are restricted to the half-space of positive
radius values, there are also classical trajectories which
are piecewise of form (2.5), but which "bounce" one or
more times at zero radius; extremizing the action deter-
mines the bounce times. Such a path which bounces just
once, at time t i, has action
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(3.7b)

and

{n —1)(r t„—)' —(t„t—, )(t t„——R) =0 . (3.7c)

t", =(t (/r' —4Rnt —)/(2n),

t„"=[(2n —1)t —'(/t 4Rnt —]/(2n),

t',"=(r +)/t' 4Rnt )/(—2n),
t„'"'=[(2n —1)t + (/t 2 4Rnt —]/(2n),

(3.8a)

(3.8b)

Any real solution to the coupled quadratic equations
(3.7a) and (3.7c) with 0&t( & t„&t yields an n-bounce

path contributing to G' '. For a given n there may be
zero, two, or four such. Conditions (3.5) and
(3.7a}—(3.7c) are equivalent to requiring that the parame-
ters a for all the parabolic segments of a bouncing path
be equal, which is to say that the wormhole "bounces
elastically. "

For any set of initial and final coordinates (R0,0) and

(R, t) there is a maximum number of bounces n

beyond which there are no appropriate solutions to Eqs.
(3.7a) and (3.7c) and no contributions to G' '. For ex-

ample, in the case RO=R, the four solutions of Eqs.
(3.7a) and (3.7c) are

"max(RO, R, t) p(n)p(n) 1/2

~p(„) k k

4mi
exp( iSk(")), (3.9}

For n between 2 and t/(4R), if any, all four solutions are
real and in the desired interval; four n-bounce paths con-
tribute to G' '. For any n between t /(4R ) and
(t +4R )/(4Rt) the a and b solutions are complex, and
there are no corresponding classical paths, but the c and
d solutions characterize two n-bounce paths contributing
to the propagator. For n greater than (t +4R )/(4Rt)
there are no n-bounce classical paths. (The values
RO=R =0, for any t, are a limiting case, in which four
n-bounce paths contribute for all n greater than 1.) It
must be emphasized that these particular bounds for n,
and the classification of the solutions a, b, c, and d, can-
not be applied for arbitrary unequal Ro and R, but there
are always some bounds on the n values of contributing
paths. This is because between bounces the paths are of
form (2.5}, for which there is a fixed ratio between max-
imum radius and the interval between zero crossings.
For any t value, then, there is time for only so many
bounces high enough to reach a given Ro or R value.

The evaluation of 6' ' proceeds from these results.
Expression (3.1) eventually takes the form

G(wKB)[R t.R 0]

t"
, =(t +2R +'(/t 4Rnt +—4R )/[2(n +1)],

t„"=[(2n+1)t 2R (/t —4R—nt +4R—i]/[2(n +1)],

with n the number of bounces, as above, and k labeling
the n-bounce paths, the range of k depending of course
on n. The classical actions S„'"'are given by Eqs. (3.3),
(3.4), and (3.6). The functional determinants Fk"' are

and

(3.8c)
(p) 32/(at)

4+a't, (t —r, )

with a and to from Eqs. (3.2):

{3.10a)

t',"' =(t +2R (/t 4Rnt +—4R )—/[2(n +1)],
t„'"'=[(2n+1)t 2R +(/t 4—Rnt +4R —]/[2(n +1)] .

t, /(t) —R() )

t +2R()t 6tt(+6t—(+2(R —R() )t,
(3.10b)

(3.8d) with t( from Eq. (3.5):

t', (t„r(}/(t( R,—)—
r f(4n ~ —2n —1)r( —(2n —1 )t„—2(n —1)RO]+R [t„—(2n —1)t(]+2n (t (+t„) 4n t(t„+R—o[(2n —1 )t„t(]—

(3.10c)

for n ~ 2, with t( and t„from Eqs. (3.7a) and {3.7c). The
phase factors are Pk"'=+1 if I'k"' has the same sign as
F' ' and Pk"'= —1 if it has the opposite sign. This choice
of phases ensures the boundary conditions
G' )[O,t;Ro, O]=0 and G' [)Rt; ,00)= ,0hence
the condition f(O, t) =0 for any wormhole wave function,
via the cancellation of contributions from paths differing
by one bounce. For example, as R approaches zero, the
contribution of the direct (zero-bounce) classical path be-
comes equal in magnitude and opposite in sign to that of

a one-bounce path' with bounce time approaching t.
This phase prescription accords with that used, for exam-

The absolute value of the argument of the logarithm is taken
in the action (2.6) and subsequent expressions to ensure that this
cancellation still occurs when the direct path is just timelike and
the one-bounce path just spacelike, i.e., for Ro=t and R ap-
proaching zero.
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FIG. 1. Amplitude of the wormhole propagator
G'w"s)[R, t;RO, O], for Ra=10 and t =20, all quantities in
Planck units.

FIG. 2. Squared magnitude of a wormhole wave function
f{R,t) evolving via the propagator G'wx '. The initial wave
function is a real Gaussian, as described in the text. All quanti-
ties are in Planck units.

pie, for the simple problem of a particle confined to a half
space [21].

Form (3.9) and the accompanying expressions show
that even the approximate propagator for this simplified
systetn is a complicated quantity. Some of its features are
illustrated in Fig. 1. The propagator has singularities on
the outgoing and ingoing or "bounced" light cones
R =Rp+t, R =Rp t, and—R =t —Rp, respectively. (It
has other singular points as well, described below. ) As
expected, given the inclusion of spacelike trajectories in
the path integral as discussed in Sec. II, the propagator is
nonvanishing outside the light cone. Thus, it admits
acausal, i.e., superluminal, propagation. Overlying these
gross features the propagator exhibits a great deal of
high-frequency structure.

IV. QUANTUM EVOLUTION OF THE WORMHOLE

In principle, the propagator contains a complete
description of the quantum dynamics of the wormhole.
Analysis of the approximate form G' ', carried out in

several stages, indicates that the wormhole is quantum-
mechanically unstable against growth to large size.

Straightforward numerical evaluation of the propaga-
tion integral (2.10), using propagator O' KB' as given by
Eq. (3.9) and a simple initial wave function, reveals
behavior of the wormhole over short and intermediate
time scales. Results of such calculations are displayed in
Fig. 2. For this example the initial wave function is a lo-
calized "wave packet, "

fp=(2/n)' "exp[ —(Rp —10) ],
all quantities in Planck units. For the purpose of numeri-
cal integration this is taken to be zero outside the interval
6&Rp &14. Although all terms in Eq. (3.9) have been

given analytically, the numerical integration is nontrivial
due to the existence of singular points in 6' + '. The
poles in the propagator on the outgoing, incoming, and
bounced light cones are treated numerically by replacing
the divergent term in G' ', in a small interval (denoted
5) in Rp about the light cone, by its average over that in-

terval. This is determined from an expansion in Ro of the
appropriate term about the light cone. In particular, we
obtain

' 1/2

fR-t+5
8 —t —6 4&l

I

1/2

(
.+(P) )dR

t (2R t) 4t-
4mi t (2R —t)

r

i t (2R t)—R —tX exp ~ —t(2R —t) ln
2 Rh +(R —t} ln

R
3l

t (2R —t)—
4

+O(b ink) (4.1a}

on the outgoing light cone,
1/2

f~+~+~
R +t —5 47Tl

1/2

(
.&(p))dR t (2R +t)

4m.i
4i

t(2R +t)

X exp —t (2R + t) ln
l t(2R +t}
2 Rh +(R +t) ln

R
R+t

3l——t(2R+t) .
4

+O(h Ink) (4.1b)
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on the ingoing light cone, and

P(& )F( &)

t —R —b, 4m.i

1/2
R +(t —R}

4mi

4i

R +(t —R)

i 2 R +(t —R))( exp ~
—R2ln2'' ( R)21 (t —R)b,

R'+(r —R)'

——[R +(t —R) j '+O(b, lnb, )
4

(4.1c)

on the bounced light cone (where only one single-bounce,
and no multiple-bounce, classical path contributes). In
the indicated intervals, then, these singular terms in the
propagator are replaced by 1/(2b, ) times the right-hand
sides of these expressions. We have checked that al-
though the integrals (4.1) depend on 5, the final integrals
(2.10) are independent of b, over a range of values from
10 to 10 ' Planck lengths. The %KB propagator has
additional singularities, caustics, where new bouncing
paths appear, i.e., where Eq. (3.5) or Eqs. (3.7a) and (3.7c)
have coincident roots. These are avoided by evaluating
Eq. (2.10}at t values which are transcendental to machine
accuracy; rational values of R and Ro are taken so the t
values at which caustics would occur are algebraic or ra-
tional. Figure 2, then, shows the resulting wave function
g(R, t) Its .most prominent feature is that the wave
packet follows an essentially classical bouncing trajecto-
ry. Some rapid spreading of the packet appears early on,
but this behavior does not seem to recur at later times.
Numerical difficulties hinder the reliable evaluation of P

at t values larger than those shown: Accurate numerical
integration becomes problematic as the propagator devel-
ops ever higher-frequency behavior, and the problem of
accurately solving Eqs. (3.5) and (3.7a) and (3.7c) with
large coefficients makes even calculating the propagator
difficult. To determine the long-term behavior and stabil-
ity of the wormhole a different sort of analysis is re-
quired.

The late-time behavior of the propagator can be exam-
ined analytically in a special, but very useful, case. For
arbitrary Ro, R, and t the explicit, form of G' ' is
intractable —the general expressions for the bounce times
t

&
and t„appearing in the S'"' and F'"' are too unwieldy

even for computer manipulation. But, for Ro =R, solu-
tions (3.8) yield manageable results, and nearby Ro and R
values can be handled perturbatively. The terms in the
sum (3.9) are then labeled a, b, c, and d, corresponding to
those solutions. In the limit t &&R,R0 with R =Ro+e
and ~s~ &&Ro, the functional determinants and classical
actions in those terms are

F(n) —F(n) 1
a b

4nR0 +
]6n 2R 2

+0
t2

n Ro3 3

+0
Ro

(4.2a)

2

4n 2nR0 nRo

3nRo—1— +0
n2R2

'

0
2

0
nRo

(4.2b)

and

S(n)— t' t + ln
4n 2nR0 nRo

3nRo—1— +0 n R 0

t2
R a+0 c.

nRo
(4.2c)

for n less than r /(4RO), and

4(n +1)Ro 2(n +1)(8n +3)RO n Ro1+ + +0n+1 t2 3
+0

Ro
(4.2d)

t2S(n)
4(n + 1)

Rot t Ro n —1 2nRo n Ro—Ro 1n + + +0
n +1 (n +1)RO 2 n +1 t

1
2(n +1)RO (n +1)RO

n

n+1
3nRo n Ro+0 , t

(n +1)RO
(4.2e)
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1+
n —1

4(n —1)R0 +
r

2{n —1)(8n —3)Ro n Ro'+0
2 t3

+0
Ro

(4.2f)

2Ro n+1
2 n —1

2nRo n Ro+0
t2

2(n —1)Ro (n + 1)Ro n —1

3nRo +0 n R 0

t2
2Roe+0 c, (4.2g)

for n less than (t +4Ro)/(4Rot) Th. e n =0 term is a c
term, given by Eqs. (4.2d) and (4.2e), and the n =1 terms
are a, b, and c terms given by Eqs. (4.2a)-(4.2e). The
order-c terms in the actions are obtained from the rela-
tion BS,&/t)R =I'(t) and Eq. (2.8) for the momentum P,
evaluated on the appropriate classical path. Terms of or-
der e and higher in the functional determinants give rise
to subdominant contributions and are not needed here.

The above expansions in inverse powers of t do not
converge for n =t/(4Ro). Indeed, the a, b, and c terms
in the propagator are singular for these parameter values,
at which the roots (3.8a)-(3.8c) coincide. But the contri-
bution of these singular terms to the evolution of a wave
function can still be estimated. At fixed Ro, such a singu-
larity or "caustic point" occurs at intervals in t of 4Rp,
the period of a classical bouncing trajectory with max-
imum radius value Ro. The singular contribution is thus
associated with the classically bouncing peak seen in Fig.
2. Unlike the similar singularity in a harmonic-oscillator
propagator [22], however, this singularity in G'wKa' does
not correspond to a 5 function. Rather, in the immediate
vicinity of the caustic, i.e., for c small compared to t
(in Planck units), the c term has functional determinant

Eo = — lim —lnG [R, i r; R,O]—1

r~+ oo 7
(4.4)

mate values for all terms. The actions vary slowest with
e, i.e., with Ro, for the largest-n terms, so it is these
which determine the width of the region in integral (2.10)
which gives a significant contribution to a wave function.
That width corresponds roughly to one oscillation of the
slowest-varying terms. For example, the integral of
G' '[R, t;R —e,0], with terms given by Eqs. (4.2),
over the interval eE [ n/R—, +rr/R], is shown in Fig. 3
for fixed R and various t values. These results suggest
that a wave function at fixed radius value continues to os-
cillate even for quite large t values, as might be expected
from a sum of terms with rapidly varying phases. Thus,
they still give no clear picture of the very-long-term
behavior of the wormhole.

But telling features of that behavior can be extracted
from the propagator as approximated by Eqs. (4.2). Did
the Hamiltonian {2.9) describe a bound system, its
ground-state energy (or, for a free system, the bottom of
its continuous spectrum) would be given by the
Feynman-Kac [23] limit

—8Rop(n)
1/3 2/33t c

and action

(4.3a)

of the propagator in imaginary time. This can be evalu-
ated via Eqs. (4.2). The propagator is still a sum of terms
with rapidly varying phases with respect to increasing v,
owing to the t terms in the actions. Consequently, it os-

S(")-—R t — o 2/3+
c 0 (4.3b)

0.35

The contribution to a wave function from this vicinity is
therefore of order t ~, not unity, as a 5 function would
yield. However, the form of the action (4.3b) suggests
that a significant contribution from this term may arise
from a region of width t ' in c.. Such a contribution
might be of order unity, as Fig. 2 suggests, but the expan-
sions used in Eqs. (4.3) do not suffice to calculate it pre-
cisely. The a and b terms do not, in fact, exist for
nonzero c about the caustic point; they give no contribu-
tion here. Another set of caustic points occurs where the
c and d roots coincide. Here again the a and b terms do
not contribute, those roots being complex, while the c
and d terms are similar in form to those given by Eqs.
(4.3).

Hence it is easiest to examine the behavior of G'
for parameter values such that no caustics occur at in-
teger n values. Then the expansions (4.2) give approxi-

0.3

0.25

0 ' 2

0.15

0.1

0 ' 05

9 106 71 2 3 4 5 8

t/10
FIG. 3. Magnitude of the dominant contribution f to a

wormhole wave function taken to be initially unity near the ra-
dius Ro =10 Planck lengths, evaluated at the same radius after
10 -10 Planek times.
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FIG. 4. Behavior of the %KB propagator at large imaginary
time ~, here in units of the Planck time. The initial and final ra-
dii are fixed at 10 Planck lengths. Shown are the real and imagi-
nary parts of the ~ derivative of lnG. If the Feynman-Kac
ground-state energy [Eq. (4.4) of the text] existed, the real part
would approach that value and the imaginary part would tend
to zero at large ~.

V. IMPLICATIONS AND LIMITATIONS

Spherically symmetric Minkowski wormholes [10] pro-
vide a simple model of a mode of topological fluctuation
in Lorentzian spacetime foam, a mode apparently unsta-
ble against growth to macroscopic size. The quantum-
gravitational dynamics of these wormholes is reduced to
the quantum mechanics of a single variable, the throat ra-
dius, by describing the matter at the wormhole throat
with a suitable equation of state and imposing the Hamil-

cillates forever; the limit on the right side of Eq. (4.4)
does not exist. This is illustrated in Fig. 4. This means
that the quantum wormhole possesses no spectrum of
bound states. The expectation value of R cannot be
confined in the late-time limit. As for a system with an
inverted potential diverging to negative infinity, or a
metastable system such as a particle confined by finite
walls, the wormhole wave function must eventually run
or "leak" to arbitrarily large radius values —the
wormhole is unstable against eventual growth to large
size. The previous results suggest that it is the slow leak-
ing behavior which characterizes these wormholes. They
appear reminiscent of a particles in a nucleus, oscillating
perhaps millions of times before escaping to infinity.

tonian constraint at the classical level to reduce the phase
space of the system. The corresponding reduced action is
used in a Feynman path integral to obtain the propagator
for wormhole wave functions; this is evaluated in the
WKB approximation. The result indicates that these
wormholes have no bound quantum states. Though their
throat radii are classica11y bounded, i.e., they are classi-
cally stable, they will nonetheless grow to large size by
quantum "diffusion. "

Many systems exhibit similar behavior. For a particle
with the familiar quadratic kinetic term in the action, the
form of the potential determines whether such diffusion
or spreading occurs: A potential well with walls or bar-
riers which fall off at large distances will allow a classical-
ly bound particle to leak out via quantum tunneling (as in
the case of a decay), while one which increases monotoni-
cally with distance will not. For these wormholes, with
more complicated action (2.6), so simple an analysis is
not possible. The more involved examination of the
wormholes' quantum dynamics described here is needed
to see that spreading of the wave function to large radii
will take place.

Our result suggests that dynamics, and stability con-
siderations in particular, may be of great importance in
understanding the quantum nature of gravitation. A
definitive demonstration of the existence of an unstable
mode of fluctuation in spacetime foam would have pro-
found implications. Since a macroscopic structure of
wormholes is not observed, i.e., spacetime appears to be
smooth and topologically trivial on all scales accessible to
laboratory physics, it would imply the existence of a
mechanism for suppressing such a mode, or even the ab-
sence of (Lorentzian-signature) spacetime foam altogeth-
er. Of course, the present work is far from such a
definitive demonstration; it serves to point up lines along
which these matters should be studied further.

The most fundamental limitation of our calculation is
the restriction of the gravitational degrees of freedom to
those of the spherically symmetric Minkowski wormhole,
i.e., the use of a "minisuperspace model" for topological
structure. In fact, our model is even more restricted than
the usual minisuperspace models [1], since the matter in
the hole is treated not as a dynamical field but by the use
of an equation of state. Moreover, we use the particular
equation of state (2.3), to simplify the calculations; other
possible choices are considered in Ref. [13].

We analyze our constrained model by quantization in
the reduced phase space, as described above. In the ab-
sence of a general framework for quantum-gravity calcu-
lations, this method seems best suited to the problem. It
does differ markedly, though, from the Wheeler-deWitt
approach [12].

Furthermore, we use the particular reduced action
(2.6). Other forms corresponding to the classical equa-
tion (2.4) are possible; the effect of this choice on the re-
sults will be examined elsewhere [13].

Moreover, our choice of action implies a choice of
Hamiltonian fundamentally different from that used in
similar calculations [19], corresponding here to a classi-
cally conserved "proper mass*' rather than the ADM
mass of the wormhole. This choice raises some interest-
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ing questions. For example, since the Hamiltonian (2.9)
is time independent, its expectation value is conserved.
Its form appears to suggest, then, that the expectation
value of the throat radius R should remain bounded. It
might be expected, however, that any initially localized
wave function must contain both positive- and negative-
"energy" (~R ~

&1) components; this is a well-known
feature of, e.g., the quantum mechanics of a relativistic
particle [14,15]. The interplay of these components could
account for the eventual spreading to large radius values.
More detailed calculations of the wormholes' quantum
dynamics should clarify this.

We employ the WKB approximation to evaluate the
wormhole propagator. WKB calculations of quantum in-
stabilities in classically stable systems, such as tunneling,
are well known. Here it is more difficult to be precise
about the accuracy of the approximation It .is certainly
to be expected to be valid in the late-time limit t »R, R o,
in which the instability is manifest. But the accuracy of
the numerical evolution of a wave function, as shown in
Fig. 2, is harder to establish. Lacking any exact solution
for comparison, we have tested the accuracy of the calcu-
lation via the composition relation

G' '[R, t;Ro, 0]
' R t Riyti O' ' Ri t Roy0 Ri,

(5.1)

with 0(t, (t. It can be shown analytically that this
should hold if the %KB approximation is strictly valid at
the intermediate time t, . We found, however, that for
some t, values relation (5.1) is not well satisfied. This
may indicate inaccuracy of the WKB approximation, or
inay be due to numerical difficulties associated with the
integration, given the rapidly varying phase of the propa-
gator.

A final limitation, of fundamental significance, is our
implementation of the restriction that throat radii are
non-negative. Here we do this as for a particle in a half
space, leading to the boundary condition lb(0, t) =0. Oth-
er implementations might be used, the most general con-
dition being only that the wave function g entails no
current in the —R direction at R =0. Our condition

eliminates from consideration any processes such as
wormhole creation or disconnection at R =0. Including
these processes would drastically alter the physics of the
model —essentially, from the quantum mechanics of one
variable to quantum field theory —and would require a
formalism for describing the topology changes. Howev-
er, it should not directly affect the existence of the insta-
bility suggested by our results. At issue is the stability of
the spacetime foam, of which an individual wormhole is
just one fluctuation. Certainly for any particular
wormhole, the probability of growth to large size is
affected strongly by the inclusion or exclusion of topology
change. Indeed, since the time scale implied by our re-
sults for the wave function to leak to large radii is much
longer than that for a classical bounce, the chance that a
specific wormhole grows large should be much smaller
than that it pinches off and disappears at zero radius, if
that is allowed with more than an extremely small proba-
bility. But given the possibility of topology change, the
form should contain an equilibrium population of holes
fluctuating into and out of existence. If it is possible for a
hole to grow large, this population will eventually give
rise to some large holes. Again the analogy may be
drawn to the a decay of a heavy nucleus: a particles con-
tinually form and disperse within the nucleus, on a time
scale typically much shorter than that of the decay; the
instability represented by the tunneling of an a particle
out of the nucleus remains.

The more sophisticated analyses needed to probe the
quantum dynamics of spacetime beyond the restrictions
and limitations of these calculations present a consider-
able challenge. Our results suggest, however, that this is
an aspect of quantum gravity theory well worth such con-
sideration.
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