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Perturbative method to solve fourth-order gravity field equations
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We develop a method for solving the 6eld equations of a quadratic gravitational theory coupled to
matter. The quadratic terms are written as a function of the matter stress tensor and its derivatives
in such a way as to have, order by order, a set of Einstein 6eld equations with an efFective T„.We
study the cosmological scenario recovering the de Sitter exact solution, and the first order (in the
coupling constants n and P appearing in the gravitational Lagrangian) solution to the gauge cosmic
string metric and the charged black hole. For this last solution we discuss the consequences on the
thermodynamics of black holes, and, in particular, the entropy-area relation which gets additional
terms to the usual A/4 value.

PACS number(s): 04.25.—g, 04.50.+h, 04.70.Dy, 97.60.Lf

I. INTRODUCTION

Higher derivative gravitational theories have been pro-
posed at the classical level as an extension of Einstein's
theory in an attempt to unify other fields with gravity [1]
and to avoid the cosmological singularity [2]. Quadratic
curvature counterterms also appear in the renormaliza-
tion of the one-loop semiclassical approximation [3]. The
pure quadratic theory is renormalizable [4] and asymp-
totically free [5] although it has problems with unitarity
[4]. Higher order gravitational theories can lead natu-
rally to infiation [6,7] and arise as the low energy limit of
string theory [8].

For the sake of definiteness we deal with the La-
grangian formulation of quadratic theories:

d x —g —2A + R+ Q.R + R„„R""+ kC

and

I„=—2R„.„+OR„„+2g„„R
+2R„R —2g„„R pR (4)

Note that the trace of Eq. (2) takes the simple form

2(3n+ p) n R R+ 4' =—-'kT . (5)

In Sec. II of this paper we develop a method to Bnd a met-
ric solution of the classical Beld equations of higher order
gravitational theories with sources by successive pertur-
bations around a solution to Einstein gravity, which will

represent for us the zeroth order. In Sec. III we apply
this method to find first-order solutions in the coupling
constants n and P for the straight gauge cosmic string
and the charged black hole. For this latter solution the
associated thermodynamics is studied and the corrections
to the Bekenstein-Hawking temperature and entropy are
discussed. %e end the paper with some further discus-
sion on this Brst-order solution.

where we have dropped the Rp pp term by use of the
Gauss-Bonnet invariant in four dimensions [9].

The Beld equations derived by extremizing the action
S are given by (we use the sign conventions of Ref. [10])

R„„—2Rg„„+Ag„„+nH„+ pI„

II. PERTURBATIVE SOLUTION

From Eq. (5) we can see that R satisfies a massive
scalar wave equation. For this field to have a real mass
we impose

2k BS
v' —g Bg&

3n+P &0, P(0, (6)

where we have chosen units such that c = 1 and k =
16~G, and where

H& = —2R.& + 2g& I:I R —2gpvR + 2RR&
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where the last inequality comes f'rom linearizing Eq. (2)
and asking a real mass for the massive spin-two field @„
related to R„„(seeRef. [11]). Conditions (6) are called
the no-tachyon constraints.

The coupling constants n and P have to be at most of
the atomic scale, since otherwise they could have observ-
able efFects in, for instance, the solar system or binary
pulsars. In Ref. [12] it was found that n ( 10 lp& by
requiring that the inBationary period be of suf6cient du-
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ration (where Ipi is of the order of 10 ss cm). A similar
bound for P can thus be obtained.

We will then consider only small curvatures in our
method, such that

a/R/ « 1, (PR„„/ « 1.
Thus, we can obtain perturbative solutions to the field
equations in a power series of o, and P. We will take
as the starting metric g„„) a solution of Einstein equa-
tions and then, systematically, successive orders of the
coupling constant a and P.

To zeroth order,

(8)

with trace

PV 2 PV PV

= kTw(g„".)) —~H~-(g('.)) —~1~-(g('.)) (»)
where to first order in n and P it is enough to consider

in Eq (.10) H„„and I„
By use of Eq. (8) the right-hand side of Eq. (10) can

be written as

where

(0) — 0) (0)„H„—H„„(g„„,T„„)

Z(') = 4W —kT(').

Once we solve for the Einstein metric g„„,we pursue the
iteration to first order.

k2T(0) 2g(0) Q T (0) + (0) (T(0))
2

-2kT ' T('„+SWT(0) —2WT(0) (') (12)

(0) (0) (0)
Pv =

klan&(gi&v

& ~b'av )

k= T„„—2T .„„+CIT„„.—g„„CIT + 4AT„„—AT g„„+—g(„)(T )rPV P)VCR

2kT(0)T(0)+2kT(0) T(0) —k (0)T( ) PT(0)
PV P tv 2 tv nP (13)

plays the role of an effective energy-momentum tensor in an Einsteinian field equation for g„„. It is
(1)efF ~ ~ ~ ~ (~)

easy to see that T„'~ "=0, i.e., . satisfies a conservation law (with respect to g„„). T„'+ also inherits the symmetry
properties of T„„.These properties will hold to every order of the approximation.

We can now generalize to the nth-order approximation

g(n) 1 g(n) (n) + A (n) kTeH'(n)
gkV 2 PV PV PV

(14)

Expressions (11)—(13) greatly simplify when T„„ is diagonal and its components depend essentially on only one
coordinate; let us call it r . This will be the case in the applications we will deal with in the next section (we will also
take A = 0 for simplicity). Thus, in this case,

~(0) 2 T P T T P T T2+ kTyP

and

—„I(„)= T,„„6„"—I'"„„T,„—2 (T„"„„+I"„(T„"„—T „))6„—I'"„„Ti',

—g„„2kTT„"—g""T„"„„+g I'" (T„" „—T„)+ g""T„„—T —2k(T„") +—TT—
where the metric dependence in this expressions is with
respect to the zeroth order, i.e., the solution of the usual
Einstein equations, Eq. (8). In Eqs. (15) and (16) the
s»m is over the a index but not over p.

III. FIRST-ORDER SOLUTIONS

We are now ready to compute the difFerent metric so-
lutions of the fourth-order field equations. Three main

astrophysical scenarios where gravity plays an important
role can be studied: cosmology, topological defects, and
black holes.

A. De Sitter universe

It is a solution of the vacuum Einstein equations with
a cosmological constant. This solution is useful for de-
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scribing an inflationary phase in the very early Universe
where higher order gravity terms are presumably worth
taking into account.

In our approximation, for T„„=0, we have that the
de Sitter metric is a solution of the fourth-order Geld
equations order by order [see Eq. (14)], without restric-
tions for the value of A. Thus, it is an exact solution as
can be directly verified from the field equations [13]. In
fact, in general, vacuum solutions to Einstein equations
(even with cosmological constant) are solutions to the
quadratic theory (the converse, in general, is not true).

The Robertson-Walker metric can be also replaced in
Eqs. (10) and (11) to find the corrections to the general
relativistic results. However, this approximation breaks
down near the cosmological singularity and we already
dispose of some exact solutions (see Ref. [14]).

B. Cauge cosmic strings

Our approximation is especially suitable for dealing
with the gravitational field of topological defects since
while its effects are of relevance they are relatively small
compared to the Planck scale; thus a first-order approx-
imation in a and P should provide acceptable results.

Topological defects are expected to be formed during
phase transitions driven by the evolving (and cooling
down) early Universe whenever the manifold of equiv-
alent vacua after spontaneous symmetry breaking is not
shrinkable to a point. We can model this process by
studying an n-internal component scalar Geld with a
Mexican-hat-like effective potential with an associated
energy scale of symmetry breaking, g, of order 10 for
the grand unified theory (GUT) scale [15] and coupling
constant A. Depending on the dimension of the vacua
manifold the topological defects can be domain walls,
cosmic strings, or monopoles and, depending on whether
the (internal) symmetry that breaks down is a local {or
gauge) or a global one, the formed topological defects will

be localized in a tiny core of size r, 1/)7iI A or infinitely
extended [17].

To see explicitly the effects of this higher derivative
theory of gravity we chose one particular topological de-
fect. Since in the next section we will deal with a spher-
ically symmetric system (a charged black hole) we will
deal here with the local (or gauge) straight cosmic string
that possesses cylindrical symmetry. The other topolog-
ical defects can be treated in an analogous way (see Ref.
[ll] for a thorough account of them).

A straight, static, cylindrically symmetric local string
lying along the z axis can be characterized by the energy-
momentum tensor (for r » r, )

2b r
T, '=T, '=—,T„"= Ts ——0 . (17)—

2~r QB(r)

For a generic metric of the form

ds = A(r)( —dt + dz ) + dr + r B(r)d8, (18)

the exact metric, the solution of Einstein equations is
given by [16].

A(r) = 1, B(r) = Bp ——
~

1 —k —
~

) 4j (19)

By plugging the generic metric (18) into Eqs. (10) and

(11) we can now write the solution to our first-order Ein-
stein equation with effective source T„'

A(r) = c, + 0 f r"Ar" Tefr 8 Tefi e
) (20)I T'

and

B(r) = c2—
r II

II d I I TefF8
r 2

—)3m+))) 2 T + A(r")l,

where cq and c2 are arbitrary constants to be conve-
niently chosen in such a way to recover general relativistic
results.

Explicitly replacing here the form of the gauge cosmic
string stress tensor given by Eq. (17) and upon integra-
tion and regularization of b squared terms, we obtain the
metric components up to linear terms in o. and P:

A(r) = 1 + (2n + P)kT, (22)

B(r) =
~

1 —k —
~

—4cik
~

1 —k —
~

T( )72)
'

/ rP') '

4) E 2r
n+& k'g4

(2ir)

We observe here that the corrections to the general rel-
ativistic metric due to including quadratic terms in the
curvature in the gravitational Lagrangian can be classi-
fied in two types. The terms in A(r) and B(r) propor-
tional to the trace of the matter stress tensor T, give lo-

calized contributions. They are different Rom zero only
in the core of the gauge string and vanish for r & r, .
This is essentially what was found in Ref. [11], where
we restricted the analysis to linearized terms in the cur-
vature and only considered its higher derivatives. It is
precisely the additional terms not considered in Ref. [11],
i.e., quadratic in the stress tensor, that generate the non-
localized term, proportional to r appearing in B(r)
The structure of this term is such that it is linear in the
coupling constants n and P (due to our approximation),
and if one considers they have an associated radius rq,
the dependence (ri/r) is the only extended possible one
not. divergent as r ~ oo. On the other hand the factor
k g4 already appears in processes such as particle pro-
duction by the formation of cosmic strings [18) and global
monopoles [19]. We see that due to the quadratic gravity
terms, the space outside a straight local cosmic string is
no longer flat as in general relativity, but curved with
curvature terxns typically going as r . This dependence
also appears when one considers the renormalized energy-
momentum tensor due to vacuum polarization [20—22].
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C. Charged black holes

ds = gqq(r)dt + g „(r)dr + r dA (24)

where g„(—r) = g„„(r) ' = (1 —2M/r + Q2/r2) and
dO~ = d82+ sin 8dy2

The nonvanishing components of the energy-
momentum tensor are [10]

2

(25)

The exact metric, solution of the Einstein equations with
source, can be written as [23] [in the Schwarzschild gauge,
Eq. (24)]

g«(r) = g„(r) exp If (T—," —Te) rg„„(r)dr) .

(27)

We shall now study spherically symmetric solutions to
the quadratic field equations in the first-order approxi-
mation Eqs. (10) and (11),which represent charged black
holes; starting &om the general relativistic solution, i.e.,
the Reissner-Nordstrom metric,

Te » Q P)— (31)

where r~ is the radial coordinate of the event horizon (in
Schwarzschild's gauge).

The geodesic motion acquires an additional small re-

pulsive term in the efFective potential since for the no-

tachyon constraint P & 0. This provides, in principle,
a way of detecting the physical effects produced by the
higher order corrections to the gravitational Lagrangian.

The radial coordinate of the horizon can be computed
directly Rom making vanish gqt (T~) given by Eq. (30):

Q'
~

r~ = T+ +p, r+ ——M+ QM2 —Q2 .

P terms to be different from zero, and expressions Eq.
(30) represent the O(P) generalized Reissner-Nordstrom
metric.

Direct inspection of metric (30) allows us to see the
improved result that generates the perturbative method
presented in this paper with respect to the "linearized"

approach of Ref. [25]. There, only terms up to O(r )
have been considered.

The validity of this metric will be assured if the con-
dition Eq. (7) holds. In our case, this takes the form
—PQ /r « 1. Thus, Eq. (30) will be a good approxima-
tion to the (even extremely) charged black hole solutions
in quadratic theories if

~Z eff ~ l, gyeff t 1. gyeff 8 &grpeff g
3 t

4)9Q2 2M Q=,„. (1 — „+„,) (28)

By use of Eq. (25) to compute the T'+ [Eq. (11)] we

find the first-order corrections to the energy-momentum
tensor

(32)

We observe that the quadratic black hole shrinks with
respect to the corresponding general relativistic one.

The extreme black hole will be now reached with a
maximal charge lower than the general relativistic one

(P & 0):

and replacing it into Eqs. (26) and (27) we obtain Q2 M2 + 2P (33)

2M Q2
g„„(r) ' 1—

r r
12PQ2 ) 1 M Q2 '))i- ——+r4 (3 2r Sr2 y

(»)

thus rH given by Eq. (32) will remain always bounded.

In fact [26], r~'" ——M + /3/5M .
The horizon area AH will then be given by

(r) g ( )
—1 2PQ~/g

Q2 2PQ2 t' M Q2 )
1 — + /1 ——+

T T T4 ( r 5T2)

(30)

%e observe here that the a coupling constant does not
appear. This is due to the fact that the trace of the elec-
tromagnetic energy momentum is zero. In fact, Whitt
[24] has shown that for the quadratic theories coupled
only to the n term [i.e., P = 0 in Eq. (2)] there exist a
"no hair" theorem stating that the only black hole so-
lution (with spherical symmetry), must be the Reissner-
Nordstrom family. This can be directly seen &om our
method, since order by order the o. contributions van-
ish, thus leaving us with the Reissner-Nordstrom solu-
tion. This is not the case, of course, when one allows the

.w ('- )
AH —47' F+ 1+ 4"+

(34)

Qdr
CH(r+) =

r g gttgr~—

Q 1
2PQ' &3 —2Q'/T+')
5"+ (, 1-Q'i" ).

Let us now turn to the thermodynamical properties

which is smaller than in the general relativistic case.
The electric potential on the horizon can be indepen-

dently computed by use of Maxwell equations in curved
spacetime Eq. (30):
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of black holes and see how they are modified by the
quadratic corrections.

We can easily compute the Bekenstein-Hawking tem-
perature &om the surface gravity x:

K 1 gag
TH

2vr 4vr i/ —grig„, „

Thus,

2) 4 2 2

4vrr+ I, r+2) 5vrr~+ q 1 —Q2/v+2)

dM = dA+ dQ = THdS+ 4HdQ (38)
OM OM

BA & cjQ

that can be used to obtain the entropy of the quadratic
black hole, S.

Since

OM 1 I' Q2)
BA & 16xr+ g r2+ )

and

(40)

we can obtain the entropy of the black hole given C H and
TH by Eqs. (35)—(37),

A 8' 2PQS= —— + 0 ~ ~

4 A
(41)

We observe here that the entropy of the charged black
hole is not simply one-quarter of the area, but in general
will be a more complicated function of A. The effect of
the corrections linear in P will then be that of increasing
the gravitational entropy by an amount proportional to
Q /A. We can also see that the other parameters char-
acterizing the black hole, such as the charge Q (and the
angular momentum if we had considered rotation (see
Ref. [25])) enter explicitly in the equation defining the
entropy.

Since P ( 0, we observe that the effect of the quadratic
gravitational theory corrections will be that of decreasing
the black hole radiation temperature with respect to the
general relativistic value (with the same M and Q), leav-

ing thus out open the possibility of switching off black
hole evaporation and leaving behind a charged remnant
with a mass of the order of the Planck mass.

By inverting Eq. (34) for M as a function of AH and Q.
We obtain the fundamental relation of black hole ther-
modynamics. Differentiation of this equation produces
the first law

IV. DISCUSSION

In this paper we have presented a perturbative ap-
proach to find solutions to the classical field equations
of a quadratic (in the curvature) theory of gravitation.
Since this theory can be considered a generalization of
general relativity, we start the solutions from the general
relativistic metric and then add corrections (presumably
small) of successive order in the coupling constants a and
P. It is worth to stress here that our method does not
obtain all the possible solutions to the quadratic theo-
ries, but only those expandable around a metric, solution
of the Einstein equations, in powers of the coupling con-
stants n and P. We have thus analyzed the three possible
scenarios of application, cosmology, topological defects,
and black holes, and obtained the first-order corrections
to the general relativistic results. Our method also al-
lows us to make a systematic study of the higher order
corrections by means of symbolic computing programs
[26]

The corrected metric (23) may be of relevance to study
the evolution of gauge strings in the early Universe for
both the structure formation scenario where the r 2 term
in B(r) could play an important role and for the colli-
sion simulations where the short-range contributions may
change the predictions of a string network. A detailed
study of these effects might provide a link between ob-
servation and the o. and P parameters.

The charged black hole metric in quadratic theories
gets only modified by the P coupling. The Reissner-
Nordstrom metric is no longer a solution to the prob-
lem and one must study a different solution [Eq. (30)].
The thermodynamics of these charged quadratic black
holes is different &om that of a Reissner-Nordstrom black
hole. The Bekenstein-Hawking temperature as well as
the other thermodynamical parameters acquire correc-
tions with respect to its general relativistic values (in
Ref. [25) they coincide with those of general relativity)
as one would expect for a diferent theory of gravitation
(see Ref. [27] and Ref. [28] for a discussion in the context
of string and Kaluza-Klein theories, respectively).

It is also interesting to remark that for the black hole
solution, the relation between entropy and area is no
longer the simple S = 4A, but that given by Eq. (41).
We stress that this modification of the entropy-area rela-
tion has been obtained by considering a four-dimensional
quadratic gravitational theory minimally coupled to the
electromagnetic field. We also expect that in an exact
black hole solution this simple equation will break down
leaving its place to a more fundamental relation [29,30].
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