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Quantum groups, gravity, and the generalized uncertainty principle
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We investigate the relationship between the generalized uncertainty principle in quantum gravity
and the quantum deformation of the Poincare algebra. We find that a deformed Newton-Wigner
position operator and the generators of spatial translations and rotations of the deformed Poincare
algebra obey a deformed Heisenberg algebra from which the generalized uncertainty principle follows.
The result indicates that in the K-deformed Poincare algebra a minimal observable length emerges
naturally.

PACS number(s): 04.60.Ds, 02.10.—v

I. INTRODUCTION

There are many indications that in quantum gravity
there might exist a minimal observable distance on the
order of the Planck length. The emergence of a minimal
length is usually considered a dynamical phenomenon,
related to the fact that at the Planck scale there are vio-
lent fluctuations of the metric and even topology changes,
as in Wheeler space-time foam [1, 2]. In the context of
string theories, the emergence of a minimal measurable
distance is nicely encoded in a generalized uncertainty
principle [3—9]:
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where n is a constant. (We have written explicitly h and
G and we have set c = 1.) Equation (1) has been ob-
tained from the study of string collisions at Planckian
energies, so again it has a dynamical origin (although
for strings the dynamical and kinematical aspects are
strongly correlated). The purpose of this paper is to in-
vestigate whether it is possible to understand Eq. (1) at
a purely kinematical level, independently of any specific
dynamical theory.

Our original motivation for this investigation is the
fact that in Ref. [10] we obtained Eq. (1) without con-
sidering strings, but rather discussing a Gedanken exper-
iment in which the radius of the apparent horizon of a
black hole is measured. In this context the generalized
uncertainty principle is rediscovered using only very gen-
eral and model-independent considerations, which would
presumably be fulfilled by any candidate quantum the-
ory of gravitation. As a matter of fact, the only physical
input is the existence of Hawking radiation [11] emitted
by black holes. This fact suggests to look for a mathe-
matical structure, which reproduces Eq. (1) in a natural
way. In Ref. [12] we have indeed found that a suitable
algebraic structure exists, and it is given by the deformed
Heisenberg algebra

[X,, Xi] = — ie,,i,JI„
4K2

P2+ m'i"
[X,, P, ] =ihb, , (
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The commutation relations of the angular momentum J,
with the coordinates I, and the momenta P, , as well

as between themselves, are the standard ones, [X,, Ji] =
ie;~I,Xy, etc. The deformation parameter K has dimen-
sions of mass, and in the limit ~ ~ oo the undeformed
Heisenberg algebra is recovered. In the following we

will identify ~ with the Planck mass, times a numeri-
cal constant. i The algebra defined by Eqs. (2) and (3)
is well de6ned, in the sense that the Jacobi identities are
satisfied. Moreover, we found in [12] that the require-
ment that 3acobi identities are satisfied is so restrictive
that, within rather reasonable assumptions, this is the
unique possible deformation of the Heisenberg algebra,
when the deformation parameter is dimensionful.

From Eq. (3) the generalized uncertainty principle fol-
lows:

(4)

(Here and in the following we denote operators by cap-
ital letters and their expectation values with small case
letters. ) Expanding the square root at lowest order and
using (P2) = p2+ (Ap)2 we find

A comment on the conventions is in order. In the above
formulas the deformation parameter always appears in the
combinatiou 2r Because of this, in [12] w. e have rescaled
~ by a factor of 2. In this paper we do not perform such
a rescaling, so that the parameter that we call e here agrees
with the one used in the literature on the K-deformed Poincare
algebra.
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Thus, in the regime p + m && K, Ap x we recover
Eq. (1). Instead, in the asymptotic regime pz (bp)

2 ))
e2, Eq. {4)gives

Ax & const x —.
K

(6)

The purpose of this paper is to illustrate the relation-
ship between the generalized uncertainty principle and
the quantum deformation of the Poincare algebra. This
investigation can be useful because, on the one hand, we
can find a kinematic framework in which Eqs. (2) and
(3) are satisfied. Independently of whether this specific
f'ramework will be relevant or not for quantum gravity,
we can expect to gain a better understanding of the phys-
ical meaning of the deformed Heisenberg algebra and of
the generalized uncertainty principle. On the other hand,
such an investigation can be interesting from the point of
view of quantum groups [13—18], since it indicates that
in such a structure a minimum length is automatically
built in (at least when the deformation parameter is di-
mensionful) .

The problem of finding a quantum deformation of the
Poincare group has received much attention recently, and
different approaches have been developed. An important
line of research is concerned with de6ning the diKeren-
tial calculus on quantum groups [18—21]; then one can
define curvatures through Cartan's equation, and try to
construct a q generalization of Einstein action.

A second approach consists in looking for a deforma-
tion of the algebra, rather than of the group [22—26].
A very interesting technique, which has been used in
this context is the contraction procedure first introduced
in [27]. One first considers the q deformation of the anti-
de Sitter algebra, U(O(3, 2)). This can be done with
the standard Drinfeld-Jimbo method [13, 14], and intro-
duces a diinensionless deformation parameter q. Then
one sends to in6nity the de Sitter radius B, while q -+ 1
in such a way that Alnq ~ r i, fixed. One therefore
recovers a deformation of the d = 4 Poincare algebra,
which depends on a dimensionfu/ parameter r In this.

way a fundamental length enters the theory.
For our purposes, what is needed is the knowledge of

the deformed algebra. We will consider the deformed
Poincare algebra given in [25]; however, our line of rea-
soning is more general, and could be adapted to di8'erent
deformations, as long as they introduce a dimensionful

parameter.
In the following, a fundamental role is played by the

Newton-Wigner position operator [28]. In the unde-
forxned case it represents the relativistic position oper-
ator of a particle. The main concern of this paper will
be to 6nd a proper generalization of this operator to the
deformed case. The plan of the paper is as follows. In
Sec. II we recall the main results concerning the quantum
Poincare algebra, which will be useful in the following.
In Sec. III we discuss the generalization of the Newton-
Wigner position operator to the deformed case and in
Sec. IV we discuss our results.

II. THE QUANTUM POINCARE ALGEBRA

Pp 1
[K,, K,] = —ie,,g ~

Jg cosh —— Pt,P J ~,4K2 )

[P;, K~ ] = i,b,~ K sinh ——.Pp

K
(8)

Here P„,J;,K; are the deformed four-momentum, angu-
lar momentum, and boost generators, respectively. In the
limit x -+ oo the standard commutators are recovered.
The first Casimir operator is [24, 25]

—
I

2tc sinh—(
2Kj

so that the dispersion relation reads

2

~

2rcsinh —
~

= m + PPp1
2r)

To study unitary representations, one considers the
Hilbert space with a positive definite scalar product in-
variant under e-deformed Poincare transformations,

We now brie8y recall the main properties of the ~-
deformed Poincare algebra given in [25] (see also [22—24]).
All commutators are the same as in the usual Poincare
algebra, except for the boost —boost and boost —3-
momentum commutators:

(ii @)=f 9(is )2ssb (p +m —4s sissh —
) $'(p}s)(p)

p
(2x) s2r. sinh(pp/r)
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where in the last line pp has become a notation for the
positive solution of Eq. (10). This scalar product has
the correct limit for K —+ oo. Limiting ourselves to the
spin zero case, so that the term P J in Eq. (7) does not
contribute, the representation of the generators of the
deformed Poincare algebra on this Hilbert space reads

q(NW) q(NW)

q(NW) p

q(NW) (Nw)= &&v~q~

(17)

0
J; = —i~,~I,p~ pI.

K, =ir. sinh( —)
pp t9

K Opi

(12)

III. THE NET TON-SIGNER POSITION
OPERATOR

A. The undeformed case

We now wish to represent the relativistic position op-
erator on our Hilbert space. Let us first recall how this is
done in the undeformed case. The concept of relativistic
position operator was first introduced in a fundamental
paper by Newton and Wigner [28], and further discussed
by Wightman [29] and Mackey [30]. (For a pedagogical
discussion see also [31].) For a massive particle, one con-
siders the Hilbert space of functions with the invariant
scalar product

(0, @) = d'p

( )
4' (P)4(r ) (13)

where pp is the positive solution of p = m . On this
space, the generators of the Poincare group have the well-
known realization (limiting ourselves again to the spin
zero case

P„=p„,

These operators are Hermitian with respect to the scalar
product (11).

The second term on the right-hand side of Eq. (15) is

chosen in such a way that Q, is Hermitian with the
scalar product given in Eq. (13). In the nonrelativistic
limit Q(Nw) = hK/m. The time derivative of Q(Nw) in
the Heisenberg representation is

~ ~(NW) & ~(NW) Pi
Pp ) (19)

where the relation Dpp/c)p; = p, /po has been used, since
we are working on-mass shell. Therefore, the time deriva-

tive of Q, is actually the relativistic velocity of the
particle, which is a necessary requirement if we want to
identify it with the position operator.

B. The deformed case

We must now find an operator Q, , which gener-(~)

alizes the Newton-Wigner position operator to the v-
deformed case. Two necessary requirements are, first,
that it should reduce to Q, in the K ~ oo limit and,
second, that it should be Hermitian with respect to the
scalar product given in Eq. (11). It is also natural to ask
that the commutation relations with J are not modified,
so that it remains a vector under space rotations. Then
the operator must be of the general form

QI"I =ih A (
—

)
pp pi

(20)

with A(0) = B(0) = 1. The hermiticity condition gives
immediately

2

t9
Ji = —it;~gp~

~pi
0

K; =ipp
pi

(14)
Gpp

In terms of the function A one computes the following
commutators,

The representation of the Newton-Wigner position oper-
(1vw) .ator Q,. is

(rc) ~(~) h A dA.
r. sinh(po/r) dpo

(22)

q(NW) .
h [~

~ pi

2po)

It satisfies the commutation relations

(15)
q,",P~ = i h,Ah, ~ (23)

In Ref. [12] a strong restriction on the possible forms of
the deformed algebra was obtained requiring that the Jacobi
identities are satisfied independently of whether P . J = 0
or not. Limiting ourselves to the case P - J = 0 we might in
principle introduce some extra solution. We will see, however,
that our final result is the same as the one found in [12].

It would be tempting at this stage to set A(po/r) = 1;
the corresponding operator

( ),h ((&pi

cosh(pp/r)
2r2 sinh (pp /K)

q(~) q(~) 0 Q,.",P~ = id, ~ .{~} (25)

is Hermitian with respect to the scalar product (ll) and
satisfies



QUANTUM GROUPS, GRAVITY, AND THE GENERALIZED. . . 5185

'
(pc) p q(e) pi

Ic sinh(pp/~)

, {26)
gm2 + p2 cosh(pp/2e)

where we have used the dispersion relation (10). We see

that, for a particle with mass m, ~q(")] is bounded by

q(")
cosh[pp/(21')] ( 4r2)

instead of being allowed to vary between zero and one
as we expect for a velocity. Furthermore, as a function
of pp, it reaches a maximum value smaller than one, and
then decreases exponentially for large po. Even if our
understanding of physics at the Planck scale is limited,
such a behavior seems rather nonsensical, and suggests
that one cannot identify the right-hand side of Eq. (26)
with the velocity of a particle. In turn, this means that
the operator Q,"), which satisfies the undeformed com-
mutation relations (25), cannot represent the relativistic
position operator in the z-deformed theory.

We therefore need a criterium, which allows us to iden-
tify the velocity operator. We suggest that the proper
deformation of the relation between momentum, veloc-
ity, and energy is

p; = 2rsinh po
2K

(28)

This assumption is rather natural, since it just amounts
to the replacement pp —i 2Ksinh(pp/2e), which is the
same that takes place in the Casimir operator. The re-
lation (28) has the correct undeformed limit, and v is
allowed to vary between zero and one and is a monotonic
function of energy. In fact, eliminating sinh(pp/2K) with
the use of the dispersion relation, one finds

p; =pmv;, (I 2)-i/2

Before interpreting it as the generalization of the position
operator to the e-deformed case, we must, however, check
if its time derivative is the velocity of the particle.

A priori, we do not know how to define the velocity
in terms of energy and momentum in the deformed case.
In principle, the relation p = pov can be modified. If
we take the time derivative of the operator Q(") given in
Eq. (24) we find

uct (ll), has the classical commutation relations with

J; and satisfies X = v, with v defined by Eq. (29). It
is now straightforward to compute the [X,X] and [X,P]
commutators:

[X;,P~] = iM;,. cosh —.
PO

2K

(32)

Using the dispersion relation, Eq. (10), we see that this
is just the algebra given in Eqs. (2) and (3). Note that
Eq. (3) is written in a form that is independent of the
specific dispersion relation. In the e-Poincare algebra it
takes the form (33), but we can as well consider Eqs. (2,3)
within the standard Poincare group, and then P +m
E2

The result that we have obtained does not come out
as a surprise, since we have shown in Ref. [12] that the
r deformation of the Heisenberg algebra is (essentiallys)
unique.

The fact that [X;,Xi] is nonzero is consistent with the
spirit of noncommutative geometry [32], which is at the
basis of the quantum group approach to physics at the
Planck scale [33]. The noncommutativity shows up only
at length scales on the order of the Planck length. It is
also important to observe that the deformed Heisenberg
algebra ties the generalized uncertainty principle with
noncommutativity of space-time at very short distances.

The deformation constant Ic can be estimated if we as-
sume that the uncertainty principle obtained &om quan-
tum groups at lowest order in Ap/e and E (( e, which
for i = j reads

Avdp& —
J
1+

2 ( 8~2 (34)

agrees with the one found in string theory, which reads
(apart from numerical constants of order one)

1
Axb, p ) —[5 + a'(Ap) ].

2

Here o.' is the inverse string tension, n' = A2/(2h), and A,
is the quantization constant of string theory; its relation
to the Planck length Lpi is somewhat model dependent.
In heterotic string theory Lpi = nGUTA, /4. In this case,
therefore, the comparison suggests

so that this classical relation is not deformed.
It is easy to see that, if we require the time derivative

of the position operator to be p;/(2Ksinh P20), we get

r ~ —aGi)TMpi ~ (10 —10 ) Mpt ~

1 —2 —3

8
(36)

A —= cosh —. (30)

The function H then follows &om Eq. (21). We are there-
fore leaci to propose the following genera1ixation of the
Newton-%'igner position operator, which we denote X;:

X,. = ihcosh —
~

pp/~ {31)
2~ (Bp; 8+2sinh (pp/2~))

which is Hermitian with respect to the scalar prod-

In Ref. [12] we also found a second possible solution of
the Sacobi identities, of the form [X,, P~] = ibad, ~.(l —(P +
nP)/(4r )) ~ . It is easy to see that one obtains this algebra
using the x-deformed Poincare algebra suggested in Refs [22, .
24] instead of the one suggested in Ref. [25], since the former
can be obtained from the latter with the formal replacement
K~1K.
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IV. DISCUSSION

We have found that the K,-deformed Poincare algebra
provides an explicit realization of the K-deformed Heisen-
berg algebra, Eqs. (2) and (3), once X is identified with
a suitably deformed Newton-Wigner position operator.
Other definitions of the deformed Newton-Wigner posi-
tion operator are possible (a different definition is sug-
gested in [34]). This ambiguity is due to the fact that
the definition of velocity in terms of energy and momen-
tum in the K-deformed theory is not fixed a priori, the
only requirement being that it should reduce to the clas-
sical relation as K ~ oo. Our definition is dictated by
the choice that the relation p = pm@ is not deformed,
see Eq. (29).

A very relevant feature of the K-deformed Heisenberg
algebra is the fact that it is not compatible with exact
Lorentz invariance at the Planck scale, as it is clear from
the fact that it implies the existence of a minimal Spa-
tial length —a concept that is obviously non-Lorentz-
invariant. The fact that at the Planck scale Lorentz
boost should saturate has been suggested recently by
Susskind [35]. The r-Poincare group provides an explicit
example of a kinematical framework in which Lorentz
transformations are modified. In this case Lorentz invari-
ance is broken by the parameter v. Note also that there
is no K-deformed Lorentz subalgebra of the v.-Poincare
algebra, since the boost-boost commutator involves the
momentum. This explicit example also shows clearly how
a fundamental length can emerge at a purely kinematical
level.

The fact that quantum groups can provide the kine-
matical f'ramework of physical systems was already re-
alized in [36, 37]. The authors of this very interesting
work consider the propagation of phonons in a harmonic
crystal in 1+1 dimensions, and discover that the d = 2
v.-deformed Poincare algebra is its kinematical symme-
try. Our approach could be considered complementary
to theirs, since we rather start with a K,-deformed alge-
bra and discover that a minimal length emerges.

The emergence of a minimal length obviously has
important consequences also concerning the possibility
that quantum groups provide a natural ultraviolet cutofF
mechanism for quantum field theory [38].

Finally, we note that Eq. (4) agrees with Eq. (1)
only at lowest order in Ap/Ic. In particular, asymp-
totically Eq. (4) gives Ax ) h,/r. , while Eq. (1) gives
Ax ) hhp/K2 It is .easy to see why the arguments pre-
sented in [10) fail in the region b,p )) r.. In our Gedanken
experiment Ap was on the order of the energy of the par-
ticle used to probe the black hole; and we cannot treat
semiclassically a particle with super-Planckian energy.
It would be interesting to see if higher-order terms in
Ap/K can be obtained in the string theoretic derivation
of Eq. (I).
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