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Energy-momentum conservation in gravity theories
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We discuss general properties of the conservation law associated with a local symmetry. Using
Noether s theorem and a generalized Belinfante symmetrization procedure in 3+1 dimensions, a sym-

metric energy-momentum (pseudo) tensor for the gravitational Einstein-Hilbert action is derived and dis-

cussed in detail. In 2+ 1 dimensions, expressions are obtained for energy and angular momentum arising
in the ISO(2, 1) gauge-theoretical formulation of Einstein gravity. In addition, an expression for energy
in a gauge-theoretical formulation of the string-inspired (1+1}-dimensional gravity is derived and com-
pared with the ADM definition of energy.

PACS number(s): 04.25.Nx, 04.20.Cv, 04.20.Fy

I. INTRODUCTION

The definition of energy and momentum in general re-
lativity has been under investigation for a long time. The
problem is to find an expression that is physically mean-
ingful and related to some form of the continuity equa-
tion

which leads to a conserved quantity

Q= f dVj (2)

provided f&rdS'j' vanishes at infinity. Therefore, to en-

sure conservation of Q, j' has to satisfy suitable boundary
conditions. In other words, to get a conserved quantity
from a continuity equation, we always need to specify
asymptotic behavior.

In field theory, conservation equations are usually re-
lated to invariance properties of the action, in which case
the conserved current is called a Noether current
The Einstein-Hilbert action is invariant under
diffeomorphisms, which are local transformations; more
specifically, it is invariant under Poincare transforma-
tions, which comprise special diffeomorphisms and can
be viewed as "global" transformations.

In 3+ 1 dimensions, asymptotically Minkowski bound-
ary conditions can be posed, so that we can associate en-
ergy, momentum, and angular momentum with the
Noether charges of global Poincare transformations. To
express the angular momentum solely in terms of
an energy-momentum (pseudo)tensor, the energy-
momentum (pseudo)tensor needs to be symmetric under
interchange of two spacetime indices. Our goal is to find
an expression for the symmetric energy-momentum

'Present address: UCLA Physics Department, 405 Hilgard
Ave. , Los Angeles, CA 90024.

(pseudo)tensor which is conserved as in (1), which is
given by the Noether procedure rather than by manipula-
tion of the field equations of motion and which is derived
without any statement about "background" or "asymp-
totic" metric tensors.

In (2+1)-dimensional Einstein gravity, asymptotically
Minkowski boundary conditions are not valid [1]. On the
other hand, there is a gauge-theoretical formulation of
the theory [2], based on the Poincare group [ISO(2,1)].
The Noether charges associated with the Poincare group
gauge transformations are identified as energy and angu-
lar momentum.

In 1+1 dimensions, we consider a gauge-theoretical
formulation [3] of the string-inspired gravity model [4]
and obtain an expression for energy arising from the
gauge transformations. Another way of finding an ex-
pression for energy in 1+1 dimensions is to use the
Arnowitt-Deser-Misner (ADM) definition [5); we com-
pare these two approaches.

In Sec. II, we analyze in a systematic way general
properties of the Noether charge associated with a local
symmetry and also symmetrization of the energy-
momentum tensor ("improvement").

In Sec. III, the (3+1)-dimensional Einstein-Hilbert ac-
tion is investigated and a symmetric energy-momentum
(pseudo)tensor, as an improved Noether current, is de-
rived and compared with other definitions that have ap-
peared in the literature. Also, we remark on the con-
served Noether current associated with diffeomorphism
in variance.

Since asymptotically Minkowski boundary conditions
cannot be imposed in 2+1 dimensional Einstein gravity,
we obtain in Sec. IV expressions for energy and angular
momentum in the context of the gauge-theoretical formu-
lations for the theory.

In Sec. V, we consider a gauge-theoretical formulation
of (1+1)-dimensional gravity. After getting an expres-
sion for energy, we show that it agrees with the ADM en-
ergy.

Concluding remarks comprise the final Sec. VI.
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II. CONSERVATION LAWS

P'(x) =e "@"'tI}(x), 5$= ieep—,

A„'(x)= A„(x)+a„e(x), 5A„=a„e .
(4)

The Noether current associated with a local symmetry
can always be brought to a form that is identically con-
served. This was shown by Noether [6], but unlike the
construction of conserved currents associated with a glo-
bal symmetry, her argument has not found its way into
field theory textbooks, and so we give a general proof in
the Appendix.

To illustrate the result in a special example, let us con-
sider the Maxwell-scalar system, with a Lagrange density

,'F„„F—""+(D"P)'D„P,

where D„p=(a„+ieA„)p and F„,—:a„A
Lagrangian X is invariant under a local U(1) gauge sym-
metry,

in a Poincare-invariant theory. Here we generalize his
method to the case that the Lagrangian contains second
derivatives, as is true of the Einstein-Hilbert action.

Thus consider

I= f dxa(y, a„y,a„a,y),

where P is a multiplet of fields, and suppose I is invariant
under Poincare transformations. Under the infinitesimal
action of these transformations, coordinates and fields

transform, respectively, by

x"~x'I"=xi"—eI" ~"—a~,

P(x)~P'(x') =LP(x),

where L, containing the spin matrix S (L = 1+ ,'E"P—"„),
is a representation of the Lorentz group and the con-
stants e"„S'„satisfy the relations

o S o 0

The associated Noether current E' i=E' o, S;—S o (12)

j"= 5A„+ 5/+ 5$*aa„A„" aa„y aa„y"

F"'a,e—(D "P )
'—ie 8/+ D "Pie 8$'

can be written with use of the equation of motion

ag'"=2e Im[(D"P)'P] (6)

e' = —ejj i
S' = —S~

J

5z = 5((}+ a„5y+ a„a,5y,az az ax
(13)

To derive the Noether current, let us consider the varia-
tion of the Lagrange density under the transformations
(11),

as

j "=a,(F""8), (7)

where 5$ denotes (('i'(x }—(}}(x}. Since the action is Poin-
care invariant by hypothesis, 5X can be written as a total
derivative without using the equations of motion.

which is certainly identically conserved, regardless
whether F"' satisfies the field equations, since the quanti-
ty in the parentheses of (7) is antisymmetric under the in-

terchange of the indices p and v.
The Noether charge is constructed as a volume integral

of the time component j .

Q= f dVa, [F' (x)8(x)]=f dS'F' (x)8(x) .
v av

%ithout suitable boundary conditions, this charge either
diverges or vanishes and in general does not lead to a
conserved quantity. Moreover, even if we get a finite
value for Q with some 8(x), the time dependence of Q is
completely determined by the specified boundary condi-
tion.

An example of boundary conditions for (7) is

5x =a„(f"2),
f"=e"~"+a" .—

(14)

On the other hand, using the Euler-Lagrange equation

, ax+aa
~aa„y+ ~ "aa„a,y

we can rewrite (13) as a total derivative.

(15)

az ax ax
aa„(}}

Equating the above two expressions for 5X, (14) and (16),
we arrive at a conservation equation

F -oo

r2
aoF -o — as r~~ .oi

r 3
(9)

a~ ara„f"x+ 5$+— a,5$

The first condition gives finite Q when 8 is constant at
infinity, and the second condition ensures that Q is time
independent. The asymptotic condition that 0 be con-
stant can be extended through all space, thereby arriving
at a Noether formula for the total charge arising from a
g1oba1 transformation.

Next, let us review the symmetrization procedure of
the energy-momentum tensor which was originally
presented by Belinfante [7] and which is always available

c}

"aa„a.y
Inserting now the variation [see (11}]

5y=f~a„y+

into (17), we get

a„[f O~" + ,'F. ~L"~ ]=0, —

(17)

(19}
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where 8& " is the unsymmetric, canonical energy-
momentum tensor,

8,&.= —s~+ a.y+ a.a.y

III. GRAVITATIONAL ENERGY-MOMENTUM
(PSEUDO)TENSOR IN 3+1 DIMENSIONS

The Einstein-Hilbert action'

and

' aa„a,y
a-~

L" 0=0,
LP' =LPO

0 s+'"s S'
aa„y

'~+
aa„a,y

' ~ "aa„a„y

aj ar
aa„a,y

'~+
aa„a,y

'~

ax s, + ax s, a
Bx

aa„ys '+aa„a,ys "~ a"aa„a„ys
T

(20)

(21)

d x —go+I
16~k

(26)

1 4 G (27)

where G is given in terms of the ChristofFel connections
I,

G=g~"(r prp. r„„rp—,) . (28)

To be specific, let us take the matter action for a massless
scalar,

where k is the gravitational coupling, R the scalar curva-
ture, and I~ denotes a matter action, can be put into a
form involving only first derivatives through an integra-
tion by parts of terms involving the second derivatives.
The explicit form of the first-derivative action is

aa„a,y
'~ aa„a, y

~~ I~=2 d X gg~ (29)

h» = '[1.» L. »-L,P —~]— (22)

so that it is antisymmetric in p and a and —,'e I3L
"~ is

identical to e ph
"p . Using these properties of h "p and

e,p= —aJ'p (P is lowered with ri p), we finally get

a„[f (8,"+ay"")]=0 (23)

(a is raised with ri p). Upon taking f =a, we arrive at
the conserved energy-momentum tensor

8~"=8 '+a h~"
C a (24)

As is seen, Lorentz invariance of the action needs no
reference to a background Minkowski metric. But for-
mulas (12}and (21) can be presented compactly by mov-

ing indices with the help of the fiat metric
r) „=diag(1, —1, . . . , —1). Thus, with the definitions

e~&=g~„e"&, S ~=S „g"~, and L" P=L" „q"~, we see
that the newly defined quantities are antisymmetric in a
and P.

Next, we define h "P as

The same equation of motion follows from I and I,

(30)

where T„, is the matter energy-momentum tensor
T„„=(2i& g)5IM l—5g"".

Although the action I is conventional in that only first
derivatives occur, its integrand 6 is no longer a scalar.
However, both I and I are invariant under Poincare
transformations. Therefore we can use the generalized
Belinfante method to find an expression for the sym-
metric energy-momentum (pseudo)tensor arising both
from I and I.

Note that the spin matrix for the metric field g„ is

given by

(Sapg )
—

( ~pzfia ~axfip )g + ( ~pzfia ~azfip)g

(31)

After some straightforward calculations following the
generalized Belinfante method and with a bit more alge-
bra using the equations of motion, we are led to the fol-

lowing symmetric energy-momentum (pseudo)tensor
from both I and I:

To prove that 8& is symmetric, take f to be e pxp.
Since (23) holds for arbitrary antisymmetric e p, it fol-
lows that

+n pg""—n"pg "}]. (32)

a [x 8~ —x"8~ ]=0.P (25)

The conservation law a„8" =0 and (25} imply that 8" is
symmetric.

In conclusion, we have derived an expression for a con-
served and symmetric energy-momentum tensor for a
Poincare-invariant theory whose action may contain
second derivatives.

Let us compare the above result to other formulas for
the symmetric energy-momentum (pseudo)tensor found
in the literature. Although there are many expressions
for the gravitational energy and momentum [8—10] there

Hereafter, we use the conventions of Landau and Lifshitz; see
Ref. [8].



5176 DONGSU BAK, D. CANGEMI, AND R. JACKI% 49

e' = a.a [( g—)(g~"g
1

16m.k

and the other by Weinberg [10],

o '= a.a [~~"~ i' ~-~»1

(33)

seem to be only two for a symmetric energy-momentum
(pseudo)tensor. These are obtained by manipulating the
Einstein field equation. The first one is discussed by Lan-
dau and Lifshitz [8];

other applications of Noether's method to general rela-
tivity. Observe that the action I is diffeomorphism in-
variant, a symmetry certainly bigger than the (global)
Poincare symmetry. %e are naturally led to inquire what
is the conserved current associated with this
diffeomorphism invariance F. rom (17), we can read off
the expression for the Noether current associated with
the diffeomorphism 5x"=—f"(x), where f" is an arbi-
trary function of x:

+~ i'~~" ~»~-] (34)
+ 5+ a5 —5'~= f" '

aa y"'aa a„pa
5~ 'aa a,y'~

P p v
(40)

where 3 ~= —h ~+2q ~h~z, g„,=g„+h„„and in-

dices are raised and lowered with the flat metric.
Although obtained by totally different methods, 8' and

8" agree with 8 in (32) up to first order in h. The
difference between 8' and 8 is

Starting from the action I and after some straightforward
calculations, we get

1 . „1jg= T"„f"+ [f"R D,(D—"f'+D"f"v' —g
~ "

16m k

8'"' 8""=— a a [1""1~ 1»1 "—
] -o(h )

1

16~k
(35)

2g""D.f—}]

(41)

where 1" =&—gg"' —ri"', while the difference between
8"and 8 is

8"~" e"=— a a [~~"B i' ~ "B»1

Using the equation of motion (30) and the relation
[D„,D")f"=R"„f",we get a remarkably simple expres-
sion

-o(h ),
+ri ~B"' ri»B '—

]

(36)
jf"= D„[D"f"" D f"], —1 .p 1

—g 16m k

where B ~= —h ~+ 'ri ~br ——&—gg~~.
2 y

The corresponding expression for the energy derived
from 8 is, at order h,

E=f d r 8 = f dS'[a;1i,"—a)h,, ]+o(hi),oo

(37)

while the angular momentum reads

J d r(x~e J xJ8 ~)
LJ

1

16mk f dS"[(x'a h k
—x'akho, +5„,ho )

(i~j )]+—o(h ) . (38)

%e evaluate these expressions on a solution to the
Einstein s equation with a rotating point source —the
Kerr solution —whose line element has the following
large-r asymptote:

ds = 1 — +o(r ) dt

1+ + ( ) dx'd
r

We find E=m and J,"=Jr, 3 [E, E', and E"". (similarly
J,&. , J,~, and J~') could be different from one another if the
order h terms in (37}and (38) vanish and the terms of or-
der h survive; this of course does not happen for the
Kerr solution. ]

%e conclude this section with comments on several

which was first given by Komar [9] and is extensively
discussed in the literature. In spite of the simple and ap-
pealing formula (42) for the current, we encounter the fol-
lowing dif5culty in attempting to use it in a definition of
energy. For f"=5), Ez= Id r jI gives only half of the

expected energy for the Kerr solution (39} [note that Ez
is not obtained from a symmetric tensor while E in (37)
is]. But we cannot simply "renormalize" jg by a factor of
2 and get universal agreement with previous formulas.
This is because if we construct the angular momentum
generator from (42), fd rj&, f'=E', x', the expression

agrees with that from (38) at order h and gives the correct
answer in the Kerr case. The resolution of this problem
is known [12]. One needs to supplement the Einstein-
Hilbert action I with a surface term I„which, however,
is not diffeomorphism invariant, but respects some re-
stricted symmetry group, e.g., the Poincare group. One
then applies Noether's theorem to I+I„but of course
one is no longer discussing arbitrary diffeomorphisms,
but rather the restricted invariances of I+I, . The result-

ing constant of motion no longer arise from a locally con-
served current, since they include a contribution from I, .
With this procedure, one can supplement the Komar ex-
pression and arrive at the accepted values of energy and
angular momentum.

Note that our use of the Belinfante-improved Noether
method yields the same symmetric (pseudo)tensor (32),

~Komar*s formula is actually twice of (42). Presumably, he

reached his expression by guesswork, and so he did not obtain
the factor 2, which comes from the normalization of the action.

Later, Bergmann [11]derived (42) with the correct factor.
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IV. ENERGY AND ANGULAR MOMENTUM
IN (2+1)-DIMENSIONAL GRAVITY

Consider the (2+1)-dimensional Einstein-Hilbert ac-
tion

(45)

Because the Einstein and curvature tensors are
equivalent, spacetime is fiat outside sources. Therefore
all effects of localized sources are on the global geometry.
In the presence of such global efFects, spacetime is not
asymptotically Minkowski. For example, we can solve
the Einstein equation for a rotating point mass (string in
3+1 dimensions). The solution is described by the line
element [1]

ds =(dt+4kJdq&) dr (1 4k—m) r —d—qP, (46)

and there is no coordinate choice in which the asymptote
is Minkowski spacetime. The best one can do is to make
the line element "locally Minkowski, "

ds =dH —dx' —dy'

through the redefinitions

w= I;+4kJy,
x'=r cos(1 4km )qr, y'=—r sin(1 —4km)y .

(47)

(48)

However, the angular range of (1—4km)p is diminished
to (1—4km )2n, while r jumps by Sm kJ whenever the ori-

whether or not a surface term is included (i.e., whether I
or I is used}.

The action in (26} may alternatively be presented in
first-order Palatini form

1
~aBCDe~ e13R ~&

4 aPy5 A B CD

(43)
R =—8 to +co co —(y 5)

where e„"and c0„" are the Vierbein and spin connection.
We assume that the Vierbein is invertible, with inverse
E„" and e =dete„" equals &—g. Then the scalar curva-
ture is EzEBR„",. Since this action is invariant under
Poincare transformations, let us again construct the sym-
metric energy-momentum (pseudo}tensor. Noting that
the spin matrices for e„"and co„" are given by

(gPae A) (5P av 5a~Pv)e A

(44)
(@Pa Aa) (5P~av 5a Pv) Aa

s

and going through the generalized Belinfante procedure,
one finds that the symmetric tensor vanishes. This
is because the added superpotential, needed to to symme-
trize the nonsymmetric, canonical energy-momentum
(pseudo)tensor, exactly cancels it. One can in fact show
[13] that for world scalar Lagrangians involving only first
derivatives, the improved energy-momentum tensor (24)
vanishes identically. This is not the case if the Lagrang-
ian is not a scalar [cf. (27)], or contains second-order
derivatives [cf. (26)].

gin is circumnavigated. Such geometry is conical and not
globally Minkowski.

For another viewpoint, let us consider this theory as
the Poincare ISO(2, 1) gauge theory of gravity [2]. Here
we can exploit the possibility of relating charges associat-
ed with gauge transformations to energy and angular
momentum.

The commutation relations of the Poincare ISO(2, 1)
group are

[PA Pa]=o [JA Ja]=&Aa 'Jc

[JA Pal=eAa Pc
(49)

The Chem-Simons action for this connection is

(50)

I & A, dA+-', A'), (51)

with (, ) denoting an invariant bilinear form in the alge-
bra,

& JA Pa & riAa & PA
—Pa &

—
& JA Ja &

—o (52)

One verifies that (51) is a first-order Palatini action
equivalent to (45).

The generator of gauge transformations is also an ele-
ment of the algebra: 8=a "PA+pAJA, with a" and p"
being infinitesimal parameters. The variation of A under
a gauge transformation is

5A =d8+[A, 8] . (53)

Note that the Lagrange density in the action changes un-
der the gauge transformation by a total derivative,

(54)

where X"=(1/16m k )E"'t'( A „88). Therefore the
Noether current associated with this gauge transforma-
tion is

(55}

Using the equation of motion (F =0},we get

which is an identically conserved current as expected and
totally dependent on the choice of gauge function 6.

The solution to F=0, which leads to (46), gives rise to

where indices are raised or lowered by g„B and e ' =1.
In Poincare-invariant field theories, P„'s are interpreted
as translation generators, Jo is interpreted as an angular
momentum generator, and the two J s as boosts.

If we introduce a connection one-form
3 =e "P„+co"Jz, where e" and co" are, respectively,
the Dreibein and spin connection, the curvature two-form
is given by

F=dA+A

=(de "+@A co ec)p +(dt0A+ i&A ~atoc)J
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the following Dreibein and spin connection [14]:

e =dt+ r Xdr,4kJ
r2

[P„J]=e, PI, , [P„Pb ]=Re,i,I .

The connection one-form A and the curvature two-form
I' are, explicitly,

4k'e=(1—4km )dr+ r(r.dr),
p

2

o 4km rxdr,
2

(57}

A =e'P, +coJ+XaI,
I'=dA+ 3

=(De)'P, +dcoJ+%(da+ ,'e'e,—&e )I,
(65)

60=0,

with ~=(x',x ). (The above expressions for e' and co'

are to be used in Cartesian coordinates. ) We inquire if
"charges" coming from (55) and (56) could be identified
as energy and angular momentum, with values m and J,
respectively, on the solution (57).

To proceed we must choose a "global" form for 8 in
(56). A natural choice is to take 8 to be 1 along the P
direction for defining energy and 1 along the J direction
for defining angular momentum. %"ith this one finds

where e' and co are the Zmeibein and spin connection, re-
spectively. The action

3

4nGIs= f g ri~F"
3=0

g, De '+g2d~+ q3 a+ 2e'@be 66

is equivalent to Ig with g2=2g and is invariant under the
gauge transformations

3 ~U 'AU+ U 'dU,
E—: It) dx'coo=m, J= f dx'e, =J .1;p 1

8~k ' ' 8~k
(58) H~U 'HU .

Another choice for 8 could be the following. We recall
the relation between a diFeomorphism implemented by a
Lie derivative on a gauge potential (connection) and a
gauge transformation [15]:

aJ PIHere U is the gauge function e 'e e~ with arbitrary
local parameters 8"=(8',a,P), and H=g "P„=ri,P'

Xr13J —Sri2I, —where the index of il„ is raised by the
metric

5, A„=L,,A„=f a.A„+ay A.

=f F „+B„(fA )+[A„,f A ] . (59)

ab P O

0 —X 0
(68)

In this theory, I' „vanishes on shell, and it is natural to
identify the gauge transformation generated by f A

with the infinitesimal diffeomorphism f . With this
choice, we find

Qf= fdx'(A, , A f ),
which with (57}becomes

which, although not the Cartan-Killing metric, is avail-
able in this model [3]. Note that the infinitesimal form of
a gauge transformation on A is, explicitly,

5e'= —e'&ae +e'b8 co+dO',
5co —G cx

5a = —8'e,be +dP/% .

Qf= dx'[a);f +(eon) +co;e )f/) .
1

(61)
The Noether current associated to this gauge transforma-
tion is

For energy, we take f =1 and f'=0; thereby, again one
finds

j"= 5e', + 5'„+ 5a,az . az a~

(62)

However, for angular momentum, where f =0 and

f '=e'Jx J, one gets Skm J We do .not have an explanation
for the dimensionless factor Skm.

V. (1+1)-DIMENSIONAL ENERGY
IN GAUGE-THEORETICAL FORMULATION

c)c)„A,"

Using the equations of motion and (69), we get

4~Gj"=e""a (~,8'+q &+q p)

=e~ a,(~„8").

(70)

(71)

In 1+1 dimensions, the action of string-inspired gravi-
ty theory [4] can be written as

4vrGI'= I d x&—g (i)R —A), (63)

where the "physical" metric is g„„/g, while R is the sca-
lar curvature constructed from g„.

This theory is reformulated as a gauge theory using a
centrally extended Poincare group [3],whose algebra is

5f A„=c)„(f A )+[A„,f A ],
5fH=[H f, A ] .

(72)

As anticipated, the current j" is identically conserved
and again totally dependent on the choice of gauge func-
tions.

Infinitesimal difTeomorphisms are performed on shell
by a gauge transformation with gauge function f A [cf.
(59)]:
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Therefore we get an expression for energy by taking in
(71) 8=f A, and f"=(1,0):

4mGj g =e"'B„(ri,ep+r12cop+Sr13ap),

4mGE=(q, e p+g2cop+S'g3a p)~

(73)

(74)

+ —,'X(p +m }] . (75)

{The potential a„ is determined by gravitational dynam-

To see what happens with an explicit solution, let us
consider the black hole solution in presence of infalling
matter. The inclusion of matter is discussed in Ref. [3]
and is described by the interacting solution

I~ = 7 pg6' ye p+ co~+ Qp x

ics as e"'B&a =&—g; the Poincare coordinate that en-

sures gauge invariance [3] has been set to zero by a gauge
transformation. ) Note the additional terms proportional
to A and 2L Setting them to zero gives the usual action
for a point particle of mass n in a background geometry,
g„=e„'g,&e . We present a solution to the classical
equations of motion coming from I +I . The geometry
is given by [x"=(r,o )]

e'=e~~5' a = — e ~~ a =01

2A.

cia — A, co —00

(76a)

with an arbitrary parameter A, . The point particle trajec-
tory is then

1 v 2A, (Am/8, )o r +r= —ln
e

—A[a(r) —r]+(QP} /g)~
(76b)

where P+ and P (p+, —P 0 if A, /$)0) are the two independent constants of motion of trajectory related to
translation invariance ofI . Finally, the Lagrange multiplier multiplet is

+ &+ ~, &+—e '+ —e '+ e +4nG8{cr —o(v)) —e '+ —e '+ —e"
ez v'2 V2 A,

e '— e '+4mG8(o —cr(r)) e '— e
2 2 2 2

1 C+ c XC3—A+ A, eA,
v'2 v'2 2A,

(76c)

g3=c3+4n G8(o —cr(r }),
where c+ and c2 3 are arbitrary integration constants. The invariant g g„ is given by

ri "r1„=2[c++4m G8(o a(~))P+ ][c —+4m G8(o —cr(r) )P ]

—[2czS+4m.G8(o —u(v ) }(2AS+2P+P —m ) ][c3+4n.G8{o—o (r) }], (77)

and also r13 is gauge invariant. (One can fix some of the
constants by requiring that the "physical" metric become
Minkowski at 0.= —Dc: For this, one should set
c+ =c =c2=0 and c3=4A, i%.) Inserting the above
solution into (74), we get the following value for the ener-
gy:

where the prime and dot denote derivatives on o and r,
respectively.

Note that the variation ofL is

ay ~ aa„y

~ —&P+P
(78) (5q, e p +5q2cop+%5r13ap )', (80)

Let us compare this result with the ADM definition of
energy. To get an ADM energy, we rewrite the Lagrange
density for the gravity sector as

41l GL —'r)~e i+'r)2coi+%'r)30 i

where P denotes all the fields. To eliminate boundary
contributions, we have to introduce in the action an ap-
propriate boundary term and a boundary condition such
that boundary variations cancel. The required boundary
term is then identified as the energy. Let us take the
boundary condition to be

+e p ( %'rI3e~ b e t + ci7 )e 'g b + 'r)~ )

+~p(e' bg. e', +q,')

+%apg'3 (g, ep+ risc—op+Xri, a p ) (79)

Ap~Aplr. .. as o ~+ao, (81)

where subscript "free" denotes an empty space solution
[(76a)]. The necessary boundary contributes to the



DONGSU BAR, D. CANGEMI, AND R. JACKDYV

Lagrange density a total derivative:

4rrG&~ =(g, eo lr„,+&2roolr. ++&3&o If )' .

Therefore the ADM energy is

4m GE~oM =(g,e'I r„,+ q2roolr ++'r)3~olr

(82)

(83)

diffeomorphisms of geometrical variables or gauge trans-
formations on gauge connections. Finally, observe that
our expressions are neither di8'eomorphism nor gauge in-

variant. At the same time, in all instances one Noether
tensor gives the "correct" integrated expressions.
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APPENDIX

The Noether current associated with a local symmetry
can always be brought in a form that is identically con-
served. This theorem is proved in Ref. [6], but the form
of the current in terms of the Lagrange density is not
given. Here we present the current explicitly for the case
that the Lagrange density contains at most first deriva-
tives of fields and the symmetry variation of the fields

does not depend on second or higher derivatives of the
parameter functions.

Let us consider an action for a field multiplet P,

I= dx (Al)

which is invariant under a local transformation,

VI. DISCUSSION
5$=6 8"+ b~q 8„8" (A2)

Noether's procedure for constructing conserved sym-

metry currents provides a universal method, which in
particular may be used to derive energy-momentum
(pseudo)tensors in various gravity theories. This allows
for an a priori symmetry-motivated approach to the prob-
lem, in contrast to the conventional construction, which
relies on manipulating equations of motion and which is
motivated a posteriori, even while a variety of results
emerges, rejecting the variety of possible manipulations
on the equations of motion [8,10]. In gravity theories
that are also gauge theories, as is possible for low dimen-

sionality, the Noether method yields a gauge current
from which energy and angular momentum can be recon-
structed.

However, the Noether procedure is not without ambi-

guity. Since a local symmetry is operating, the symmetry
current is a divergence of an antisymmetric tensor [6].
But the Noether method, which requires recognizing that
the symmetry variation of a Lagrange density is a total
derivative, EL= d„X", leaves an undetermined contribu-
tion to X, which also is the divergence of an antisym-
metric tensor. Moreover, as we have seen, a variety of
conserved currents may be derived, depending on wheth-
er one uses Einstein-Hilbert or Palantini formulations
and whether the coordinate invariance is viewed as

3See, for example, de Alwis in Ref. [5].

where 5„may depend on p and 8" is a gauge parameter
function. First, we note the Noether identity

5I 5I
A p 5y

A (A3)

5Z =M„8"+M~ 5„8"+M~.a„a,8",
where

M = 5 + 5 6
A

gy
A g5 y

a A

a
(A5)

In the last equation, M~& is decomposed into its sym-

metric [M„"'] and antisymmetric [—V~z"] parts. Using

the Noether identity, one easily finds the relation

M„=B„M~
—B„B~„'""',

which shows that 6L can be presented as a total deriva-
tive, since the transformation (A2} is a symmetry:

where 5I/5$=r}X/BP —r) (BL/BB P). Equation (A3) is

a consequence of the invariance of the action against the
transformation (A2) with arbitrary 8". 5X for arbitrary
e" reads
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w =a„(M~ e")+M&~"&a a,e"—a a~&~"&8A

=a„[M~e"+M„"&a.e A a—~&"&8A] . (A7)

Inserting 5$ in (A2) into (A8) and after a little algebra,
wherein use is made of the equation of motion 5I/5/=0,
we get the desired expression for j":

Therefore the Noether current is

j"= 5p [M—"8"+M'"'a 8 —a~'""'8"] (A8)
8

A A v A

jp a ( pvpe A
)

For the Maxwell Lagrangian, (A9) reproduces (7).

(A9)
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