
PHYSICAL REVIEW D VOLUME 49, NUMBER 10 15 MAY 1994

Solving Einstein's equations for rotating spacetimes: Evolution of relativistic star
clusters
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A numerical relativity code designed to evolve rotating axisymmetric spacetimes is constructed.
Both polarization states of gravitational radiation can be tracked. The source of the gravitational
6eld is chosen to be a con6guration of collisionless particles. The code is used to evaluate the
stability of polytropic and toroidal star clusters. The formation of Kerr black holes by the collapse
of unstable clusters is demonstrated. Unstable clusters with 1/M ( 1 collapse to black holes, while
those with J/M & 1 collapse to new equilibrium configurations.

PACS number(s): 04.25.Dm, 04.20.Jb, 04.30.Db, 97.60.Lf

I. INTRODUCTION

A major effort is underway to develop computer codes
that can solve Einstein's equations of general relativ-
ity for physically realistic systems. The spherical prob-
lem, where the field is nondynamical and no gravitational
waves are produced, is essentially solved. The current fo-
cus is on methods for dealing with multidimensional sys-
tems with dynamical gravitational fields. While a num-
ber of important results have been obtained by numerical
means, the field is beset by many technical difhculties.
In addition to the usual problems of solving multidimen-
sional partial diH'erential equations numerically, relativity
presents some unique complications. One of these is deal-
ing with the appearance of singularities and black holes,
which frequently form during gravitational collapse. The
development of a singularity, for example, forces a nu-
merical simulation to terminate. Another complication
in numerical relativity is extracting information about
gravitational waves when the wave amplitudes are typ-
ically much smaller than the background gravitational
Geld variables. Because of these technical complications,
developing and testing codes that solve Einstein's equa-
tions is a difBcult enterprise.

So far, results from simulations using such codes have
been presented for only a handful of nonspherical, asymp-
totically flat computations. These include calculations
by Smarr [1], Eppley [2], Nakamura [3], Stark and Pi-
ran [4], Abrahams and Evans [5], the NCSA group [6],
Shapiro and Teukolsky [7—9]. All of these calculations
considered systems with axial symmetry. Of these, only
those of Nakamura and Stark and Piran included rota-
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tion, for which both polarizations of the gravitational
field are present. Both of these calculations treated fluid
systems. In this paper we extend our earlier treatment [8]
of axisymmetric systems with collisionless matter to in-
clude rotation.

The routines we construct to solve Einstein's field
equations can be used for general axisymmetric space-
times, including vacuum and fluid systems. Here we cou-
ple them to collisionless matter sources, for which the
matter equations of motion are simply the geodesic equa-
tions and hence easy to integrate. The resulting code is
useful for addressing a number of interesting questions
that arise in the theory of relativistic stellar dynamics,
as well as exploring the formation of black holes and the
production of gravitational waves.

The exploration of nonspherical relativistic star clus-
ters begins with a study of their equilibrium properties.
Only recently have equilibrium models of such clusters
been constructed. Shapiro and Teukolsky [10] have pre-
sented nonspherical models with no net rotation. Such
models have equal numbers of corotating and counterro-
tating particles. They subsequently constructed models
with net rotation [11]. These calculations could not ad-
dress the dynamical stability of these equilibrium clus-
ters, nor could they follow the fate of unstable systems.
Such a study requires a truly dynamical code, and this
is one of the principal applications of the code presented
here.

The stability of spherical nonrotating clusters has been
studied extensively (see Ref. [12] for a detailed discussion
and references). For these clusters, the onset of dynam-
ical instability occurs at the point of maximum bind-
ing energy along a sequence of increasing central density.
Does this simple criterion carry over to rotating equilib-
ria? Can rotation stabilize an unstable spherical cluster?

Collapse of an unstable rotating cluster to a Kerr black
hole is another problem of considerable interest. Such
collapse has never been treated for collisionless matter.
Moreover, the earlier studies of axisymmetric rotating
collapse of fiuid stars [4] used a choice of coordinates
that precluded the appearance of a black hole horizon.
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The coordinates used in our new code admit the pres-
ence of apparent horizons and so black hole formation
can be diagnosed. Black holes that form are expected
to settle down to Kerr holes at late times. Therefore,
in principle, we can compare our numerically generated
spacetime against Kerr as a check on the calculations.

Since it is impossible to form a Kerr black hole with
angular momentum per unit mass a/M ) 1, the collapse
of highly rotating configurations is an interesting topic
of study. Such collapses in axisymmetry (where angu-
lar momentum cannot be radiated) must result in new
stationary, nonsingular configurations, Kerr black holes
surrounded by high angular-momentum matter, or naked
singularities.

In Sec. II we present the basic equations we use. Also
included in this section are several diagnostics for testing
and calibrating the code, as well as an outline of the nu-

merical scheme. In Sec. III we give results from represen-
tative simulations, including tests of gravitational wave

propagation, studies of stability of rotating clusters, and
collapse to Kerr black holes. Section IV summarizes our
conclusions.
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where the trace-free extrinsic curvature is defined as
A' = K' —sb'K (K = K,'). It is interesting to note
that, when written in terms of orthonormal components,
the inclusion of rotation does not change the form of
Eqs. (11), (12), (19), or (23) below, just the physical
meaning of some of the terms. In the field equations we

commonly use the conformally transformed components
denoted with carets: A(;) (~ )

——&p A(, ) (~ )
.

II. EQUATIONS AND NUMERICAL
ALGORITHM

Here we discuss the coordinates and basic variables
employed in our simulations. Gravitational units with
G = c = 1 are used throughout. We choose a rotating
version of the quasi-isotropic spatial gauge along with the
maximal time slicing condition. Many of the field equa-
tions in this gauge have been derived earlier in similar
form [13] and the regularity and asymptotic properties of
this gauge have also been previously investigated [13—15].
Here we give a consistent set of field equations in our no-
tation. In the absence of rotation, these equations reduce
to those presented in Ref. [9]. The spatial line element
for an axisymmetric spacetime in quasi-isotropic gauge
takes the following form in spherical-polar coordinates:

dt = A (dr + r d0 ) + B r ((d0+ sin9dg), (1)

where the metric variables A, B, and ( are functions of t,
r, z:—cos 0, but not P. It is useful to define the auxiliary
variables

A. Gravitational Beld equations

In the 3+1 decomposition, Einstein's field equations
break down into 4 coordinate conditions for the kinemat-
ical variables, 4 constraints, and 6 evolution equations
each for the metric and extrinsic curvature components.
Since a correct evolution of consistent initial data pre-
serves the constraints, it is only necessary to use a sub-
set of the constraint and evolution equations. In the fully
constrained scheme used in this code, all four constraint
equations are used: one to obtain a metric component
and three to compute extrinsic curvature components.
The remaining two metric and two extrinsic curvature
components necessary in axisymmetry are evolved.

The shift vector components P' are determined on each
slice by the requirement that the quasi-isotropic spatial
gauge conditions be maintained in time. This results in a
mixed parabolic-elliptic system of equations for the three
components:
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The variable g represents the even-parity radiative com-
ponent of the metric in the sense it approaches h+ at
large distances kom the source. The interpretation of
( is somewhat more complicated, but at large radii
O(/Or ~ —Oh„/Ot assuming purely outgoing radia-
tion [14,15]. Here h+ and h„are the asymptotic even-
and odd-parity wave amplitudes.

The extrinsic curvature is projected on to the natural,
rotating orthonormal basis yielding the components

,OP& OP' nrgl —x2 + r( = 2 A(i)(s).Br Br AB2

The lapse function o. , determining the temporal coordi-
nate system, is found from the maximal slicing condition
K = BqK = 0. This leads to the following linear elhp-
tic equation, written in a Poisson-like form [16], which is
solved on each time slice:
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[See Sec. IIB below for definitions of the source quantities p*, S, S', and S,~.]
th

The extrinsic curvature components A(~)(~), A(3)(3), and A(q)(3) are found by solving the momentum constraint
equations on each slice:
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The scalar Hamiltonian constraint, written in terms of the quantity Q, takes the Poisson-like form
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The evolution equations for the "radiative" metric variables are
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We note that, in contrast with Eq. (19), this last equation must be used in conjunction with the constraints for the
establishment of correct initial data for a radiation-&ee, stationary configuration since A(2)(3) can be nonzero even if

=0
2n -,BP4'

AB2A(3)(3) = —{1—z ) 8 (21)

P

Physically this can be justified by looking at a weak-field expansion; A(2)(3) can include nonradiative current moments
not present in $, e.g. , a stationary octupole moment. (The condition q = 0 does preclude the existence of a static
quadrupole moment. ) In practice, like Stark and Piran [4], rather than evolving ( itself we use 8(/Br as the principal,
evolved variable and compute ( with a radial integration. This choice is made because the asymptotic expansion for (
includes an instantaneously propagated gauge term that does not fall off with radius [13,15] making it more difEcult
to apply outgoing wave boundary conditions. Differentiating Eq. (20) with respect to r and substituting Eq. (13)
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yields
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The variab]e g can a]so be evolved in order to provide an initial guess for Newton iteration of the nonlinear

Hamiltonian constraint Eq. (18):
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Finally, extrinsic curvature components A(1)(2) and A(2)(3) are each evolved, corresponding, respectively, to the
even- and odd-parity gravitational radiation degrees of freedom:
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In Sec. IID we discuss the order of solution and the differencing techniques used in numerical implementation of
this system of equations.

B. Matter evolution

The geodesic equations for the motion of the collisionless matter particles are written in first order form as

and
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The quantity u is defined via the normalization condi-
tion for the four-velocity:

(g2 + (2+2)u2
tc = 0!tc = 1+ + +A2 p2A2 p2 sin gA2B2
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These quantities are conformal rescalings of the standard
Arnowitt-Deser-Misner (ADM) stress-energy tensor pro-

jections [16]: p* = &p p, S, = psS;, and S;~ = p S,~.

m(u) x,

~ - (r 2 sin 8dr d8dg) x,
' (29)

m+ik
(r2 sin8drd8dg)s ' (30)

Note that the particles can rotate (u4, can be nonzero)
but in axisymmetry the angular momentum of each par-
ticle is conserved; i.e., u~ is constant in time.

The matter source terms are found by first binning the
particles (each of xnass m), and then computing the sums

C. Diagnostics

During the course of numerical evolution, a set of phys-
ical diagnostics are computed which comprise the princi-
pal checks on the reliability of our dynamical calculations
in the nonlinear regime. We compute the mass and an-
gular momentum of the spatial hypersurfaces and look
for trapped regions. If we choose a two-sphere in the
asymptotic weak-field regime, surrounding a source of
gravitational radiation, the Brill mass of the spatial slice
may be computed by the expression

MB ———— dVA ln = — dV V' ln + 472 s ~ 3~A(3)(3) + 3A(3)(3) + A(&)(2) + A(&)(3) + A(2)(3)

where the integral is taken over the interior coordinate-
volume and 6 and V' denote the three-dimensional,
Bat-space Laplacian and gradient operators, respectively.
The Brill xnass, corrected for the mass Hux in the form
of gravitational radiation that leaves the grid during the
simulation, is a conserved quantity. The radiated mass
energy is approximated by

MB —— dt dnT'AB A'+ 4A(2)(3) ~16' (34)

1

d~(1 ~2) x/2
2 0 T (35)

The alternative expression is a volume integral over the
rotating matter:

The mass MB is compared against an estimate of the
ADM mass read off from the 1/r term in the conformal
factor P.

Since in axisymmetry gravitational radiation carries no
angular momentum, the total angular momentum of the
collisionless rnatter system is another conserved quantity.
We compute the angular momentum via two independent
expressions. From the definition of angular momentum
in an axisymmetric spacetime, we have a surface integral
expression valid in the vacuum exterior:

J = dVS,
(0 l*
E~ r

R
= 4& dr dxr Sp.

0 0
(36)

This is equivalent to summing the individual angular mo-
menta of all the elements. Thus, this expression is au-
tomatically conserved as u4, is constant [see Eq. (27)].
However its conservation in the code is a test of how well
the particle binning algorithm (which produces S4, from
u4, ) represents the actual particle distribution.

It should be noted that J cannot be found simply by
looking at the asymptotic behavior of the shift vector
component P4' for nonstationary spacetimes. The near
origin behavior of P~ is determined only up to a possibly
angle-dependent constant of integration [see Eq. (13)].
Correcting the dipole part of the shift vector to give the
usual post-Newtonian behavior P4' m —2J/rs could be
done as postprocessing but requires knowledge of J and
results in a slight irregularity in the form of angular de-
pendence at the origin.

A final, crucial probe in our study of black hole forma-
tion is the apparent horizon solver. It turns out that in
the orthonormal basis, the apparent horizon equation is
unchanged from the nonrotating case, though the phys-
ical meaning of some of the extrinsic curvature compo-
nents is changed. Thus, the same equations and algo-
rithm described in Ref. [9] can be employed.
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D. Numerical method

Here we give a brief discussion of our numerical
method; more details about the code in its nonrotating
form may be found in Ref. [9]. The spatial derivatives ap-
pearing in the equations of Sec. II are diKerenced using
standard second-order methods for uniform grids. All
time evolutions are performed with a leapfrog scheme.

We choose code variables based on regularity considera-
tions. The regular behavior of variables at the origin was
originally worked out by Bardeen and Piran [13] and is

summarized in the Appendix. For instance, A(i) (z) / sin 0

and A(z)(s)/sin 0 are the evolved components of the ex-' 2

trinsic curvature. Our spatial diH'erencing also pays close
attention to the regularity. For instance, the evolution
equation (25) for the A(z)(s) is rewritten as

A
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The order of solution for the field and matter equa-
tions is as follows. First the coordinate velocities and
the accelerations of the particles, the right-hand sides
of Eqs. (26) and (27), are calculated. Then the metric,
extrinsic curvature and particles are evolved forward in
time. Next the matter density and stresses are recalcu-
lated and used in the solution of the constraint equa-
tions. To solve the momentum constraint system, first
the "rotation" momentum constraint Eq. (17) is inte-

grated, yielding A~i~~3~ which in turn is used as a source
in the integration of Eqs. (15) and (16). The evolved
variables are then used as sources for the Hamiltonian
constraint, lapse, and shift equations. To compute the
shift vector, the elliptic subsystem for P" and P is solved
first followed by the parabolic integration for P&.

In order to maintain resolution of both particles and
fields the radial and angular mesh locations are allowed
to move in time. Specifically, a fraction of the radial mesh
(typically more than one half) is constrained to be in the
source region. In toroidal cases (see Sec. III) the mesh is
most concentrated at the outer edge of the matter. The
angular mesh is also allowed to fan in time to track the
matter.

There are a number of subtleties involved in finite dif-
ferencing the field equations. For example, the even par-
ity quantity g goes like r near the origin, and enforc-
ing this via Eq. (19) requires a delicate numerical can-
cellation on the right-hand side. Similarly, the regular-
ity requirements of the metric evolution equation (22)
must be addressed. The quantity 8(/Br has an r de-

pendence near the origin while OA(z)(s)/o)r and A(i)(s)r/
each go like r (see the Appendix). This incompatibility
(owing to axisymmetry) requires a delicate cancellation
in Eq. (22) if regularity of ( is to be maintained. This
cancellation is enforced numerically via the momentum
constraint Eq. (17). The coefficient of the leading order,

part of A(q)(s) (known from evolution) is calculated

near the origin and used to set the value of A~i~~3~ on
the first radial zone, improving enormously the cancel-
lation of the leading order radial parts of these quanti-
ties near the origin. This process reduces the error that
would otherwise drive an instability near the origin. Fi-
nally, to further control the growth of unstable modes, we
add Kreiss-Oliger [17] dissipation terms to the evolution
equations for both the even- and odd-parity metric and
extrinsic curvature variables. Our experience has been
that the odd-parity equations require both angular and
radial dissipation while for the even-parity parts of the
field it is sufhcient to add only radial dissipation. For
the angular dissipation, we use a second-order derivative
operator on the field quantity; a fourth-order operator
is used for radial dissipation. In each case the opera-
tors are constructed to preserve regularity of the evolved
quantity.

III. RESULTS

In this section we present various numerical results ob-
tained with the rotating code. Except when noted other-
wise, the computational mesh consisted of 200 radial and
16 angular zones (for one quadrant) and 3000 particles
were used. Verification runs were performed in several
cases with 32 angular zones and 6000 or 12 000 particles.
The outer boundary of the mesh is placed at 50M, well
outside the edge of the matter distribution. Typical run
durations were 2 x 10 time steps although in some
cases of stability evaluation the runs were several times
longer. For the runs discussed here, the mass indicators
were conserved, and consistent, at a tolerance level of a
few percent. Calculations were performed on IBM ES-
9000 and RS/6000 computers. A typical run with these
resources took 10 CPU hours on the ES-9000.

A number of vacuum test runs were carried out, pri-
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merical (solid line) solutions for a linearized odd-parity wave

e u er frame shows a snapshotpropagating in vacuum. The upp
of the odd parity variable 8„(times the radius r as a function
of r/M. The lower frame shows the small even-parity wave

produced in g by nonlinear interactions.

A. Dynamical stability of rotating clusters

f(E, J,) =g(E)h(J, ), (38)

where E = —uo is the particle energy and J, = uy is
the angular momentum, both per unit mass. For the
polytropic configurations, t e en gyener distribution takes
the form

g(E) = t

«&max
2- —8-

E I2-8
( Emax ) Em~x )

(39)

0) E & Em~„) (40)

where anh K d E are constants and b is relate to the
polytropic in ex n y n =d by n = b'+ 3/2. The adopted angu ar
momentum distribution has the Gaussian form

h(J, ) = exp(pJ, /Jo),
1 2 2

~1/2 J (41)

We considered two types of collisionless matter config-
leI we ivea

lete list of the cases considered in this paper, in-compe e is o
om actness,eluding the type of configuration, initia comp..nal state. First we describe

'lit ofthe use of the code to study the dynamical stability o
equilibrium models.

The details of the construction of equilibrium initia
data for these cases can be found in ef.ef. 11.To summa-
rize, the particle distributions are speci e y c

'
gb choosin

a phase space is ri u iond' t 'b t' function for the matter in the
form

TABLE I. Fates of selected collisionless matter configurations.

Case
1
2

4 +

6'
7Q

8
9
10
11
12
13
14
15*

Initial model b

Polytrope
Polytrope
Polytrope
Polytrope
Polytrope
Polytrope
Polytrope

Equilibrium toroid
Equilibrium toroid

Toroid, cut down 0.5
Toroid, cut down 0.65
Toroid, cut down 0.72
Toroid, cut down 0.80
Toroid, cut down 0.90

Equilibrium toroid

R, /M
12.0
8.0
11.0
11.0
8.0
8.0
8.0
7.0
7.0
4.5
4.5
4.5
4.5
4.5
4.5

J/M
0.00
0.00
0.61
0.94
0.55
0.95
1.75
0.0
1.07
0.65
0.89
0.98
1.05
1.18
1.34

Outcome
Stable

Collapse to Schwarzschild
Stable
Stable

Collapse to Kerr
Stable
Stable
Stable
Stable

Collapse to Kerr
Collapse to Kerr
Collapse to Kerr

Collapse to new equilibrium
Collapse to new equilibrium

Stable

Asterisks denote evolutions of initia g'1 data iven in Ref. [11]
dex n = 1.5 and are equilibrium configurations cons ruc e ro

E . (38) (42), d (43). I 0— h(41) Equilibrium toroids are constructed from Eqs. &38j, , an
velocities have been cut down by the indicated factor.
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where Jo ~ ao gives a spherical configuration, since the
distribution function is then independent of angular mo-
mentum. A positive sign in the exponential leads to
oblate clusters, while a negative sign produces prolate
clusters.

Toroidal clusters are produced with b function distri-
butions:

I
'

I

t/M = 24.3 t/M = 27 3

( c b$ L.

c,- .c ; ;
t ,

I I
I

I

47.8 t/M = 49.3

g(E) = Kb(E —E „),
h(J) = —,

' [iI(J, —J ) + b(J, + J )].
(42)

(43)

Here a positive sign in the angular momentum distri-
bution function leads to equal numbers of corotating and
counterrotating particles and no net angular momentum.
A minus sign leads to net rotation for the confi. guration,
with J = (Mo/m) Jo, where Ms is the total rest mass
of the configuration and m is the rest mass of one of
the individual (identical) particles. For both types of
distributions, 8

„

is chosen to correspond to the maxi-
mum energy of a particle in a spherical cluster parameter-
ized by radius B, (in Schwarzschild coordinates) yielding
E „=(1—8/8, ) i.

The field equations (assuming a stationary, axisym-
metric metric) are solved (see Ref. [11])yielding the met-
ric quantities A and B (r) is nonzero) and the extrinsic

P

curvature components Ali)13) and A12)(3) [19]. The met-
ric function ( and the other extrinsic curvature compo-
nents are all zero initially. Particle data in the form of
positions and four-velocities are found by random sam-
plings of the distribution functions.

The code was first run for a nonrotating spherical poly-
trope with index n = 1.5 to compare against the expec-
tations in Ref. [11]. The case with R, /M = 12 (case 1)
was stable as predicted, because it resides on the stable
side of the maximum in the binding energy curve, which
occurs at 8,/M 9. Run 2 with R, /M = 8 was un-
stable and collapsed to a Schwarzschild black hole. The
apparent horizon formed at a time of about 82M. Next
we consider a polytrope with J0 ~ oo so that the dis-
tribution is identical to the spherical model, except that
now all particles are made to rotate in the same sense.
As a result, the cluster is nonspherical and has net angu-
lar momentum. In case 3 B,/M = 11 and J/M = 0.61.
We evolved this cluster for a time greater than 100M
with no indication of instability. Even when the angu-
lar momentum was increased to J/M = 0.94 by setting
Jo ——0.4 (case 4) the configuration was still stable. This
configuration was evolved for a time 140M.

Making all the particles rotate with the same sense in
a configuration on the unstable branch of the binding en-

ergy curve does not provide enough angular momentum
to prevent collapse. Such a polytrope with R, /M = 8
and Jo ~ oo (case 5) collapsed to a Kerr black hole. In
Fig. 2 we compare this collapse to the nonrotating spheri-
cal collapse from the same initial radius (case 2). Increas-
ing the angular momentum suKciently does lead to sta-
bilization. We verified this in case 6 (J/M2 = 0.95) and
case 7 (J/M =1.75). As shown in Fig. 5(d) of Ref. [11]
this latter configuration is very Hattened and has a very
low density in the center. It is not dissimilar to the
toroidal configurations discussed below.

2
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c
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FIG. 2. Comparison of collapses of unstable polytropes.
The left column shows snapshots from the collapse of a spher-
ical nonrotating polytrope to a Schwarzschild black hole (case
2). This polytrope has equal numbers of corotating and coun-
terrotating particles so that there is no net rotation. The right
column shows the collapse of the analogous polytrope (case 5)
constructed by making all the particles rotate with the same
sense. While the evolution would be identical in Newtonian
theory, the collapse of the rotating polytrope eventually leads
to a Kerr black hole. An apparent horizon (solid line) forms
in the nonrotating case at t 80M and at t 120M in
the rotating case. Each frame shows a P = const slice of the
axisymmetric solution.

In the numerical evolution of a stable con6guration,
small perturbations in the initial data induced by nu-

merical inaccuracies lead to oscillations and the genera-
tion of gravitational waves. For example, consider the
most relativistic configuration, case 15, a toroid with
R„/M = 4.5. In Fig. 3 we plot an estimate of the even-

parity gravitational waveform 6+ (extracted using meth-
ods of Ref. [15]) as a function of time and see a distinct
pulse at t 20M followed by some further oscillations.
Also plotted in Fig. 3 is a measure of how the "mean
height" Z of the toroid above the equatorial symmetry
plane difFers from its initial value. With the waveform be-
ing measured at a radius of 10M, we believe that there
is a convincing correlation between the main wave pulse
and the oscillation in the minor radius of the toroid (anal-
ogous to the radius of the circle obtained by taking a
cross section of a toroid) There is also an oscillation in
the major radius of the toroid (analogous to the radius
from the axis of rotation to the center of the circle which,
when revolved, creates the toroid) as we will see later in
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1.10

l~
1.00

0.90 0 I I
I

I
I

t/M = 8.og ——

0.02

~ 0.00

—0.02 0 I I
I

I
I

10 20 30 40 50
t M

FIG. 3. Correlation of oscillations in the mean height Z
of a toroid with the h+ waveform for cases 9 (dashed lines)
and 15 (solid lines). In the upper frame, we plot the ratio of
Z to its initial value Zo. In the lower frame, we plot h+ as
measured at r = 10M. Note that case 15 undergoes larger
oscillations in Z than does case 9 and this leads to a larger
amplitude for h+.

Fig. 8. We also plot, in Fig. 3, results from the less
relativistic case 9, with R, /M = 7. This case appears
much more stable as measured by the fractional height
oscillation and the emitted wave. If these cases are truly
stable, stationary equilibrium configurations, then reduc-
ing the numerical error by increasing computational re-
sources should reduce the oscillations of the toroids along
with their gravitational radiation. Even with the mod-
est resources employed here, we can conclude that all the
equilibrium toroidal configurations studied in this paper
are stable against collapse to a black hole.

0
0 1 2 3 0 1 2 3

Equator Equator
FIG. 4. Collapse of a nonequilibrium rotating toroid

(case 10) to a Kerr black hole. The initial radius is
R, /M = 4.5 and the uy countdown is 0.5. Each frame shows
a P = const slice of the axisymmetric solution. The apparent
horizon is visible as a solid line in the 6nal frame.
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I I ) I
I

I I I I
I
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0.96—

B. Collapse of toroidal clusters

In order for the toroidal configurations to collapse to
black holes it is necessary to produce nonequilibrium ini-
tial data, because all the equilibrium cases were found to
be stable. To accomplish this we "cut down" the equilib-
rium value of u4, for each particle, thereby reducing its
angular momentum and the total angular momentum of
the system. . The constraints are then iterated to obtain
consistent initial data.

In case 10, uy was cut down by a factor of 0.5, re-
ducing the angular momentum of the system to J/M2 =
0.65. We show the evolution of the particle distribu-
tion in Fig. 4. Initially the toroid collapses along its
minor radius to a thin hoop. Then, while undergoing
oscillations along the minor radius, it collapses inward
along the major radius. As the major radius passes
through a quasi-isotropic value of about 0.5M the ap-
parent horizon forms at a time of about 18M. As seen
in Fig. 5, the horizon grows as the collapse progresses

0.92—

I I I i I ) I I I I ) I I ) I I

17 18 19 20
t/M

FIG. 5. Area of the apparent horizon as a function of time
for the collapse shown in Fig. 4. The solid line shows the
computed horizon area. The dotted line shows the theo-
retical value of the horizon area for a Kerr black hole with
mass M computed as a function of time during the simula-
tion using Eq. (33) and angular momentum J computed by
Eq. (36). If mass were perfectly conserved numerically at the
initial value M = 1, the dotted line would be horizontal at
(A/16'') i = 0.928.
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sorship. That is, unstable configurations with J/M2 ( 1
can collapse to black holes, while those with J/M ) 1
cannot form a singularity. Note that the toroidal configu-
rations have b function angular momentum distributions
and there is no mechanism for the particles to transfer
or radiate angular momentum in axisymmetry. Thus the
numerical outcome of these collapse calculations is as ex-
pected; it is reassuring, however, to see this theoretical
expectation reproduced numerically.

Finally, we contrast four of the nonequilibrium toroidal
cases (10,11,14, and 15) with B,/M = 4.5 initially and
various P-velocity cut-down factors. In Fig. 7 we display
the even-parity gravitational waveforms from these cases.
The waveforms show similar shapes at early time because
of the minor radius oscillations. The configurations that
collapse substantially along the major radius, particu-
larly those forming black holes, do not rebound as much
in the minor radius direction so have smaller wave ampli-
tudes in that phase of the waveforms. Odd-parity E = 3
waves are emitted as well with smaller amplitudes but
also apparently correlated with the minor radius oscil-
lations. The energy radiated in gravitational waves was
less than 0.1% of the total mass energy in all cases. In
Fig. 8 we compare the behavior of the mean major-radius
B for these evolutions. For cases 14 and 15 we see indica-
tions of oscillation and no black hole formation, whereas
cases 10 and 11 (with J/M2 ( 1) clearly exhibit collapse.

APPENDIX: REGULARITY OF VARIABLES

Here we give the regular dependences of field quantities
near the origin [13,16]. These are derived by assuming
local flatness, expanding all functions in regular power
series in Cartesian coordinates, and applying axisymme-
try and equatorial plane symmetry conditions. In the
case of the metric functions, the spatial gauge conditions
are also applied. In what follows, the functions fi, f2,
fs, gi, g2, gs, and hi. hs, are assumed to be regular
functions of p = r sin 8 and z = r sin 8.

The shift vector, and any other vector field (e.g. , 8'),
has an expansion of the form

P" = r(sin 8fi + cos 8f2),

P = cos8sin8(fi —f2),

The metric variables are expanded as

(A1)

(A2)

Computations were performed at the Cornell Center
for Theory and Simulation in Science and Engineering,
which is supported in part by the National Science Foun-
dation, IBM Corporation, New York State, and the Cor-
nell Research Institute.

IV. CONCLUSIONS

We have presented a new numerical code that can solve
Einstein's equations of general relativity for the evolution
of rotating collisionless matter in axisymmetry. The code
is used to diagnose the stability of relativistic equilibrium
configurations. It is able to follow the collapse of unstable
rotating configurations to Kerr black holes.

A number of interesting problems that can be ad-
dressed with this code are now open for investigation.
For example, previous simulations [7] have studied the
collapse of axisymmetric collisionless matter configura-
tions without rotation. Compact clusters, both prolate
and oblate, collapse to form black holes. However, sufB-
ciently long prolate clusters collapse to spindle singular-
ities without the formation of apparent horizons. These
simulations suggest a possible violation of the cosmic cen-
sorship hypothesis. Later calculations of prolate collapse
were carried out with equal numbers of corotating and
counterrotating particles [8]. For sufficiently small rota-
tion, the results were indistinguishable &om the nonro-
tating cases to within the numerical accuracy. It would
now be interesting to explore the same question but with
net rotation in the collapsing cluster.

A = gl+ r sin eg2,
2B =gl,

( = r cos8sin 8—,4 g3

gy

T =1+r sin 0—
gl

—r sin 8—.
2 gl

(A4)

(A5)

(A6)

(A7)

(A8)

th

A(l)(l) ——sin Ohl + cos Hh2 + r sin Hh3

+2r cos Hsln Oh4, (A9)

A(i)(2) = cos8sin8(hi —h2+ r sin 8hs

+r (cos 8 —sin 8)h4), (A10)

A(i)(s) = r sin8(sin 8hs —cos 8hs)T,

A(2)(s) = r cos8sin 8(hs+ hs)T

2
A(3)(3) —T hg.

(A11)

(A12)

(A1S)

The extrinsic curvature, or another second-rank tensor
field, obeys
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