PHYSICAL REVIEW D

VOLUME 49, NUMBER 10

15 MAY 1994

Metric of a rotating, charged, magnetized, deformed mass
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An exact asymptotically flat five-parameter solution of the Einstein-Maxwell equations generalizing
the well-known Kerr-Newman metric is obtained in an explicit form. In addition to the independent pa-
rameters of mass, angular momentum, and electric charge it also contains two other arbitrary parame-
ters associated with the magnetic dipole and mass-quadrupole moments of the source. An important
peculiar feature of this solution that distinguishes it from other solutions for a magnetized rotating mass
recently discussed in the literature is its symmetry with respect to the equatorial plane of the source in

the general case.

PACS number(s): 04.20.Jb

Recently several exact asymptotically flat solutions of
the Einstein-Maxwell equations able to describe the exte-
rior gravitational fields of magnetized stationary massive
sources have been obtained [1] with the aid of the method
[2] based on the use of the integral equation whose nu-
cleus is constructed from the Ernst potentials [3] defined
at the symmetry axis and extended to the complex plane
of an analytical parameter. Although all the solutions
from Ref. [1] contain arbitrary parameters of mass, angu-
lar momentum, and magnetic dipole moment, their mul-
tipole structures are different due to different distribu-
tions of higher multipole moments determined by the
particular form of each solution at the symmetry axis. It
should be mentioned that these solutions are not sym-
metric with respect to the equatorial plane since, in addi-
tion to the magnetic dipole moment, they also contain the
magnetic quadrupole component which should not ap-
pear in the metrics possessing the reflection symmetry.
This fact, being non-negative for the physical interpreta-
tion of the solutions obtained (as is known [4], real astro-
physical objects such as neutron stars can have the mag-
netic quadrupole moment), still puts forward the problem
of finding the solutions for a magnetized rotating mass
which would be symmetric about the equatorial plane of
the source because such solutions are expected to have a
simpler explicit form, and are, thus, more suitable for the
modeling of the exterior fields of stationary magnetized
astrophysical objects.

The aim of our paper is to consider the simplest possi-
ble five-parameter solution of the Einstein-Maxwell equa-
tions able to describe the exterior field of a rotating,
charged, magnetized, deformed source which would pos-
sess the reflection symmetry in the general case. The new
solution generalizes the well-known Kerr-Newman
metric [5] for a charged rotating mass and contains two
additional arbitrary parameters associated with the mag-
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netic dipole and mass-quadrupole moments of the source.
The reported solution is defined at the symmetry axis
by two complex Ernst potentials of the form

z(z—m —ia)+b
z(z+m —ia)+b "’

_ _ _ gz tic
Plp=02)=F(z) z(z+m —ia)+b’

G(p=0,2)=e(z)=

(1)

where p and z are the Weyl-Papapetrou cylindrical coor-
dinates, and a, b, ¢, m, and q are arbitrary real constants.
With b =c =0 from (1) follow the expressions for the
Ernst potentials of the Kerr-Newman solution taken at
the symmetry axis (p=0), so that formulas (1) contain
naturally and in the simplest possible way two new physi-
cally very important parameters describing the mass-
quadrupole and magnetic dipole moments of the source
(b and c, respectively), the resulting stationary electrovac
solution not losing, as will be seen later on, the property
of being symmetric with respect to the equatorial plane
(z=0).

We shall now use the method [2] to construct the com-
plex potentials & and ® which satisfy the Ernst equations
[3], and whose behavior at the symmetry axis is defined
by (1). Recall that the required potentials can be ob-
tained from the integrals

€=Lfl plole()do
T Y -1 —o2

_1 1 wo)F(&do
i -

2 Viter
(2)

where e (£) and F (&) are the local holomorphic continua-
tions of the functions e (z) and F(z) to the complex plane;
£=z +ipo,0 €[ —1,1], and the unknown function u(o)
satisfies the integral equation
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:Fl [e(&)+e(n)+2F (E)F(n)]u(o)da =0 3)
! (E—m)
and the normalizing condition
f g(a)da . @)
1

In (3), ‘é('f))E[e(n‘)]"‘, n=z+ipr, 7€[—1,1}, and :F
denotes the principal value of the integral.

The form in which one has to search the function u(o)
depends on the roots of the algebraic equation

e(E)+2(&)+2F (£)F(£)=0 (5)

and, in our case, as follows from (1), Eq. (5) is the biqua-
dratic one, i.e.,

E+(a’+q*+2b —mHE+b +c?= (6)
with the roots
a,=(k;+Kk_)/2, ay=—a,=(k;—Kk_)/2,

d=(b2+c?)'2.

a1= -
ki =[m?—a’—q*+2(xd —b)]'7?,

The existence of simple roots of Eq. (5) is a remarkable
distinctive feature of our choice of the functions e(z) and
f(z) possessing five arbitrary parameters in the form (1)
(in the known magnetized generalization of the Kerr-
Newman solution from Ref. [1] an analogous algebraic
equation of the fourth order has very complicated roots
which are not given explicitly in that paper). It also
should be mentioned that the absence of all odd terms of
£ in Eq. (6) is a sufficient condition for the solution we are

¢, =[mBila,m,+b)—(gB% —ic)qa, +ic)]/(B% —a,)
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looking for to be symmetric with respect to the equatorial
plane, but we leave the discussion of the general questions
related to the construction of the solutions with the
reflection symmetry for the future [6].

Thus, the expression for (o) must have the form [2]

4
Ag+ S 4,(6—a,)!, ®8)

n=1

wlo)=

where the coefficients 4, and 4, depending on p and z
can be found from Egs. (3) and (4) (they enter into the
latter equations as parameters).

The substitution of (8) into (3) and (4) leads, after the
evaluation of the integrals and equation of the coefficients
at the independent powers of 7 to zero, to the following
linear system of five algebraic equations for the deter-
mination of 4, and 4,,:

+3 —"—=0,
0 2 B+ a,

n=1
A4,
Ayt 2 ——=0, 9)
n=1F-— -a,
$_Gh o
ney (a,m, +b)r,
& d, 4,

__“nn = 2 — 2
,21 (@m, +or, 0 Vpiti=a,r,

where we have introduced

d,=[mB*(a,m,+b)—(¢B% —ic)qa,+ic)]/(Bt—a,), (10)
m,=m +a,—ia ,
B being the poles of the denominator of the function e (£) (an asterisk denotes the complex conjugation),
Bi=L[—m +iatV(m —ia)—4b ] . (11)
The solution of the system (9) has the form
A0=7‘i—B, A,,=Lm;;—:2iv—"—, n=1,2734,
A=(a;—ayleyriry Hay—azlepgrirsHay—as)eqy)rars
Flay—aydeiyrirgHlag—ayleyrars+ag—aszleyrary
B=m {[ayc(34) T a3¢(42) T @sC23) Ir1 T a1c43) T aseiay Hagean I,
Hlajcy tascan tascay Irstlaes) taeqs +aseq I, (12)

Ni=c@yrateparsteayrs, Ny=cagyriteunrsteasrs

Ny=cuyriteanrateanrs, Ny=coyrteanrateayrs, cu=cdi—cdy .

Further, we find from (2) and (8) the form of the potentials & and ® in terms of 4, and 4,
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e=1 4 2ma, A, o= 4 (ga,+ic)Ad, 13)
n§1 (a,m,+b)r,’ n§1 (a,m,+b)r,
whence, accounting for (12), we find the final expressions for & and &:
A—B C
= , ¢=— )
6 A+B A+B

. (14)
CE[(qa2+iC)C(34)+(qa3+iC)C(42)+(qa4+iC)C(23) ]rl +[(qal+ic)C(43)+(qa3+ic)C(l4)+(qa4+lC)C(31)]r2

+[(ga;ticle g T (gayticleay) +(gasticle ) lry H(gatic)e 5y +(gay tic)e 13 +(gazticle ) Iry -

Formulas (14) and (12) define the desired solution of the Ernst equations whose behavior at the symmetry axis is given
by (1).

The potentials & and ® from (14) can now be used to obtain the corresponding metric functions f, ¥, and o entering
into the Papapetrou stationary axisymmetric line element [7]:

ds’=f"'[e(dp*+dz?)+plde*]— f(dt —wd@) . (15)

The function f is simply Reé +®®* [3], while the discussion of the derivation of the functions ¥ and w can be found
in Refs. [8,9]. Below we give the final expressions for f, ¥, and w, which turn out to have the form

AA*—BB*+CC* , _ AA*—BB*+CC*

= y € >
J (A+B)A*+B*) Koryryrar,
. —a, 4 ma,B} 4 (ga,—ic)By
o=—f —m+2 Ay |- 3 —F———+ g+ 3 —— |® ¢, (16)
n=1 n n=1 (anm:+b)rn n=1 (anm:+b)rn

where K is the constant which can be found from the regularity condition y | p=0=0, and B, satisfy the system of linear
algebraic equations which follow from the system (9) by changing the right-hand sides of Egs. (9), respectively, to

iz, iBy, iB_, —imBL, —imBr (17)
and substituting B, instead of 4,, and B, instead of 4,. The form of B, is
B,= Hanm, + b, L, =1,2,3,4
n - A +B ’ n - ’ »~y b

=m[(a3—aybyryrytlay—agbsryr, t(a,—az)byrsry]
+{m[(aym;+b)by—(aym,+b)bs]+cs(z +my)}r,
—{m[(aym,+b)b,—(aym,+b)by]+c 4 (z +m3)}r;
+{m[(aym,+b)bs—(aym;+bb,]+c3y(z +my)}r,
+(

a2m2+b)C(43)+(a3m3 +b)C(24) +(a4m4 +b)C(32) s

2=m —a3)byrirytHlag—abyriry+ay—ay)b ryry]

+{m alml+b)b4-(a4m4+b)b1]+c(4,)(z +m3)}r3

[(a
{m[ a3M3+b) (a4m4+b)b3]+C(43)(Z+m1)}rl
{
—{m[(aym,+b)by—(azm3+b)b,]+cy)(z +my)ir,

+(aym;+b)ezq) +(asmy+bleyy +Hagmy+bles,) »

Ly=m[(ay—a)byrir, Ha;—ay)b,riry+(a,—ay)bryry]
+{m[(aym,+b)b,—(aym,+bb, 1tz +m)ir,
—{m(aym,+b)b,—(aym,+b)b,]1+cay)(z+m;y)r,
+{m[(a1m1+b)b2—(a2m2+b)b1]+c(2,)(z +my)iry,
+(aym;+b)cgy) +(aym,+bleqyHlagmy+blcy, ,
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Ly=m((ay—ay)bsriryHaz—ay)byriry+(a;—a3)brors ]

- {m [(a2m2+b)b3_(a3m3 +b)b2]+C(32)(Z +m1 )}rl

+{m [(a1m1+b)b3—(a3m3+b)b1 ]+C(31)(Z +m3)]r2

- {m [(alml +b)b2_(a2m2+b)b1 ]+C(21)(Z +m3)}r3

+(a1m1 +b)C(23)+(a2m2 +b)C(31)+(a3m3 +b)C(12) ,

by=Bc,—B%d, ,

and one can see that the expressions for L, are more
complicated than the respective expressions for N, in
(12).

Therefore, formulas (16), (18), (14), and (12) fully deter-
mine the new stationary electrovacuum metric describing
the exterior gravitational field of an axisymmetric rotat-
ing, charged, magnetized, massive source which is sym-
metric with respect to the equatorial plane and possesses
an arbitrary mass-quadrupole moment. The multipole
structure of the solution obtained, as well as the physical
sense of its parameters, are well illustrated by the first
four relativistic Simon’s multipole moments [10] calculat-
ed from (1) with the aid of the Hoenselaers-Perjés pro-
cedure [11]

My=m, M,;=0, M,=—m(a’>+b), M;=0,
Jo=0, J,=ma, J,=0, Jy;=ma(a®+2b),
00=¢, 0,=0, Q,=—gq(a’+b)—ac, Q;=0, (19)

=0, p=aq, p,=0,
p;=—c(a*+b)—qga(a*+2b)

(M;, J;, Q;, and u; describe, respectively, the distribu-
tions of mass, angular momentum, electric charge, and
magnetic moment), whence it follows that the solution is
asymptotically flat (J,=0), and the parameters m, a, g, c,
and b define, respectively, total mass, total angular
momentum per unit mass, total charge, magnetic dipole,
and mass-quadrupole moments of the source. Because of
the symmetry of the solution with respect to the equatori-
al plane, all its odd mass and electric multipoles M,, .,
and Q,; 1, and all even angular momentum and magnet-
ic multipoles J,; and p,, k =0,1, ..., are equal to zero,
considerably simplifying the investigation of the physical
properties of this spacetime.

We believe that the metric obtained may be potentially
important for relativistic astrophysics since it contains all
the necessary parameters and admits all the required lim-

its to model correctly the exterior fields of the magnet-
ized rotating objects such as, e.g., neutron stars. It
should be mentioned that the potentials & and ® defined
by (14) and (12) have a remarkably simple form contain-
ing only the terms ;7; and r; with some coefficients (in a
recent solution [9] the mass-quadrupole parameter causes
the respective function & to contain the terms of the
fourth order in r) that is the consequence of a very for-
tunate form of the functions e(z) and F(z) in (1), which
has been discovered only after some other possibilities
(more complicated, as can be seen now) were analyzed
[1,9]. It should be mentioned also that the existence of
the equatorial plane in the solution considered above may
be advantageous for the consideration of the relativistic
effects in this new spacetime (now, for instance, it is pos-
sible to consider the motion of test particles in the equa-
torial plane, unlike in the case of solutions which have no
reflection symmetry).

It is interesting that Egs. (14) and (16) defining the
Ernst potentials of the new solution and the correspond-
ing metric functions admit further simplifications. Up to
now we have been able to obtain the simplified formulas
for all the particular cases of the potentials & and ®, the
main three of which are (a) the magnetic generalization of
the Kerr-Newman solution (b =0), (b) the Kerr-Newman
solution endowed with an arbitrary mass-quadrupole mo-
ment (¢ =0), and (c) a generalization of the Kerr solution
possessing an arbitrary magnetic dipole and mass-
quadrupole moments (¢ =0). In what follows we shall
give the resulting simplified expressions for the above
three cases and discuss some other limits of the solution
(14) which are a direct consequence of the formulas ob-
tained.

Case (a) has already been discussed independently in
Ref. [12]. However, since it can also be obtained from
the general formulas defining the solution (14) below we
shall write down the potentials & and ® defining the sim-
plest magnetized Kerr-Newman solution bringing the no-
tation of the parameters in accordance with the one used
in Eq. (1):
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A—B C
&= y b=———
A+B A+B’

A=kt [k —ag—cR_r_+R r )+ik, (a+q)R_r_—R r.)]

+i (k2 +ag+c)R_r, +R, r_)+ik_(a—q)R_r, —R,r_)]—4clag+c)R_R,+r_r.),
B=mx_x {(m?>—a’—q¢*)r_+r,—R_—R_ )+k_k (r_+r,+R_+R,)
+ig[(k+x_Nr_—ry )tk —k_NR,—R_)]}, (20)
C=«_k,{[gm*—a’—q*)—2ac)(R_+R . —r_—r,)—qx_k, (R_+R,+r_+r,)
+ilk,(g*+cXR_—R,+r,—r_)+r_(g>—c)R,—R_+r,—r_)]},

R.=Vp*+ [zt +k_)/27 ri=Vp*+[ztk,—k_)/2]*,
KiE\/mZ——az—-qzi% .
The Kerr-Newman solution is easily recovered from (20) by simply setting ¢ =0. Other nontrivial limits of the solu-
tion (20) are the magnetized Kerr solution (¢ =0), the magnetized Reissner-Nordstrom solution (a =0), the magnetized

Schwarzschild solution (g =a =0), and the solution for a massless magnetic dipole (m =a =¢g =0). In the latter case
the potentials & and ® assume an extremely simple form: i.e.,

o iV2e [(1=i)(R =R _)+(1+i)r, —r_)]
= (Ry+R_)ry+r.) ’

271172
] , riE

=1,

‘/_ 21172
R.= |p*+ P+ zi—zic—(l—i)} ] .

ziizzi(wi)

A remarkable feature of the solution (21) is that it has the only nonzero relativistic multipole moment (the magnetic
dipole moment u, =c), being an exact version of the classical pure magnetic dipole potential in general relativity.

In case (b) the simplified potentials & and ® are the following [here and later on we are using the same notations as in
the formulas (20) to define § and ® giving in each particular case the new expressions of the functions involved]:

g=A-B 4 C
A+B A+B

A=k>[(m?—2a*>—¢*>R_r_+R_ .r.)+2iak (R_r_—R .r.)]

+(m?—qH)[kA(R_r . +R,.r_)—4b(R_R . +r_r,)],
B=mxk_k,{(m*—a’—¢*)r_+r, —R_—R, )+k_x(r_+r,+R_+R,)
+ia[(ky+x_Nr_—r )+ki—k_NR,—R_)]},
C=qB/m ,

kK, =Vmi—a’l—q% k_=Vm?—a’—q*—4b ,

where the dependence of R, and 7. on k. is the same as Egs. (20).

The formulas (22) define the Kerr-Newman solution possessing an arbitrary mass-quadrupole moment that turns out
to be much simpler than some other known analogous generalizations of the Kerr-Newman solution earlier obtained
and containing the exponential functions of the coordinates p and z [13,14].

By setting in Egs. (22) ¢ =0, a =0, or a =q =0 one obtains, respectively, the generalizations of the Kerr [15],
Reissner-Nordstrom [16], or Schwarzschild solutions possessing an arbitrary mass-quadrupole moment.

Case (c) appears to be the most important from the physical point of view since it allows us to describe the exterior
field of a rotating magnetized source possessing arbitrary magnetic dipole and mass-quadrupole moments, thus contain-
ing four essential parameters defining the field of an axisymmetric neutron star. In contradistinction to the four-
parameter solution [9] whose Ernst potentials have a complicated form, the solution given below is determined by re-
markably compact expressions involving only the explicit form of the parameters m, a, b, and ¢: i.e.,
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A=«k*{[(m*—a*)d —a’h +c*(R_r_+R  r,.)+iax, (b+d)NR_r_—R,r.)}
+i% {[(m?—a®)d +a* —c*R_r +R r_)+iak_(b—d)XR,r_—R_r,)}

—4d(c2+m2)R_R,+r_r.),

B=mk_«, {d[(m*—a®’)r_+r,—R_—R_ )+x_x (r_+r,+R_+R,)]
+iab[(ky+x_Nr_—r )+ (ky—xk_XR,—R_)]}, 23)

C=ick_ky{(ki+k_)[b(r_—r )+d(R;—R_)]

+(ky—k_)b(Ry—R_)+d(r_—r,))+2iad(r_+r,—R_—R,)},

ki=Vm?—a®*+2(xd —b), d=V'b*+c?,

R, and r. similar to the previous case relating to «. as in the formulas (20).

Most limits of the solution (23) are apparently the same as already mentioned above for the cases (a) and (b) since
with a particular choice of the parameters the solutions (20), (22), and (23) “intersect.” The only limit of solution (23)
that cannot be obtained from formulas (20) and (22) corresponds to the case @ =0 representing a magnetized
Schwarzschild mass possessing an arbitrary quadrupole deformation, the resulting solution being magnetostatic.

As a concluding remark we would like to say that it seems likely to obtain the analogous simplified formulas for the
general case of the potentials (14) and metric coefficients (16) to make the new space-time suitable for quick estimates.
We hope to be able to give the desired simplified form of the solution considered in the present paper in a forthcoming

publication.
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