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Exact general relativistic thin disks around black holes
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The formalism for superposing two axially symmetric exact solutions of Einstein field equations,
namely, a black hole and a thin disk, is presented. Three diFerent families of disks are analyzed. The
most important family gives the first known exact solution for a black hole surrounded by a realistic
heavy disk of matter. This family is the last to be analyzed. The matter of the disks is made of counter-
rotating particles with as many particles rotating to one side as to the other in such a way that the net
angular momentum is zero and the disk is static. The first family consists of peculiar disks, in the sense
that they are generated by two opposite dipoles. The particles of the disk have no pressure or centrifugal
support. However, when there is a central black hole, centrifugal balance in the form of counterrotation
appears. The second family is formed by disks of finite extent, the Morgan and Morgan disks. Within
this family there are three parameters to play with: the black hole and disk masses, and the disk radius.
These two families develop regions where matter moves with velocities greater than the velocity of light.
The second family includes the remarkable configuration of a black hole surrounded by a disk made of
tachyonic matter up the edge, which is at the photonic orbit. In addition some configurations have re-
gions where the energy density is negative in violation of the weak energy condition. This is the analo-
gue of the strut that holds two particles apart in Weyl solutions, and which has a negative energy densi-
ty. The last family admits configurations which do not contain tachyonic regions and so has greater
physical relevance. The disks of this family have an inner edge and a well-defined behavior at infinity.
In the limit of a negligible disk mass one obtains the solution for an accretion (test-particle) disk.

PACS number(s): 04.20.Jb, 97.60.Lf

I. INTRODUCTION

After so much compelling, yet indirect, observational
evidence displayed by several telescopes [1], it is now
hard to doubt that giant black holes, with masses in the
range 10 Mo &MBH &10' Mo, inhabit the nuclei of ac-
tive galaxies and act as the central engines that power the
observed fantastic energy releases, most notably in qua-
sars and in Seyfert galaxies. Disks, either thin or thick,
are usually called on to explain the fueling mechanism
into those massive and supermassive black holes, al-
though, in contrast with binary systems of solar size
masses, there is no conclusive proof for or against the
presence of an accretion disk in active nuclei. However,
theoretical and observational scaling arguments indicate
an analogy between stellar scale phenomena, cluster of
star scale phenomena, and galactic scale phenomena.
Thus the black-hole —disk configuration is likely to occur
and has been studied extensively.

The black-hole —disk system is diScult to treat exactly,
and one must resort either to approximations or numeri-
cal schemes [2]. An approximation frequently used con-
siders that the disk has a negligible gravitational mass in
comparison with the black hole mass. This simplification
can be justified only sometimes, and one should consider
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configurations where this is not the case [3].
Our aim here is to report some results in this direction

by obtaining some pure general relativistic properties of
the black-hole —thin-disk configuration, without adopting
the mass-type approximations referred to above. We su-
perpose a Schwarzschild black hole to three distinct fami-
lies of thin disks: namely, (i) a peculiar dust family, (ii)
the Morgan and Morgan family [4], and (iii) an annular
disk family [5].

Our major simplification is that both the disk and
black hole do not rotate. This non-rotation condition
could be relaxed. Static disks can be interpreted in two
ways. In one interpretation the matter in the disk is sup-
ported by the hoop stresses. In the other the particles
move in the plane of the disk under the action of their
own gravitational field in such a way that there are as
many particles moving to one side as to the other. The
counterrotating interpretation is frequently employed
since it can be invoked to mimic true rotational e6'ects
[6). The gravitational field of finite disks of counterrotat-
ing particles was first studied by Morgan and Morgan [4].
Infinite self-similar counterrotating disks were analyzed
by Lynden-Bell and Pineault [7] and Lemos [8]. The
disks of Ref. [8] include a family of topological defects
which was examined by Lemos and Letelier [9]. Other
static disks have also been found [10]. All these disks are
infinitesimally thin [11].

Schwarzschild black holes and counterrotating thin
disks are static and axisymmetric solutions of Einstein
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II. THIN DISK SOLUTIONS
IN WEYL COORDINATES

The metric for a static axially symmetric spacetime in
Weyl's canonical coordinates (t, R,y, z) is given by

ds = e~dt +—e' ~(dR +dz )+R e &d (2.1)

where P and v are functions of the coordinates R and z
only. Einstein field equations R,„——,

' g,„R=8~T,b

(G=c=l) for the vacuum (T,b=0) yield

field equations and therefore belong to the Weyl space-
times [12]. Superposition of Weyl solutions has been ex-
tensively analyzed [13—18]. This method is very power-
ful, and it will allow us to discuss the gravitational prop-
erties of the astrophysically important thin disk —black-
hole configuration.

In Sec. II we discuss some generic properties of disks in
Weyl coordinates. In Sec. III we present Schwarzschild
black holes in Weyl coordinates to set the nomenclature.
In Sec. IV we develop the formalism for superposing
disks and black holes. In Secs V-VII we analyze the
di6'erent families of disk solutions with a black hole in the
center and discuss some physical features.

+~—.The quantity g,„means the value of g,b at
z=0. The discontinuities in the first derivatives of the
metric can be written as (see also [21,23])

+
bab g ab, z ~z =0 g abz~, z =0 (2.5)

by~
— 2«e &„,=o

b„„=b„=2e" (RA ~
—1)A, i, 0 .

(2.7)

(2.8)

From (2.6) and (2.7), one can work out (the discontinui-
ties of) the Christoffel symbols through the disk given by

[I a
] 1(5z ba +5z ba gazb (2.9)

where [I"b,]—:I +'b, —I 'b, at z =0. From the
Riemann tensor defined by

—1

abed 2 (gad, bc gbd, ac +gbc, ad gac, bd )

Call A+=A(R, z) for z) 0 and A =A(R, —z) for z (0.
Theng, +,

= —e andg, ,
= —e . Using (2.5), we have

b„= e—(A+, —A, )~, = —2e A, ~, =O, (2.6)

where we have used A, ~, 0= —A, ~, o and defined

A, ~, o=—A, ~, o. In the same way, we have

(t', ~R+ R +0,„=0

v[P]= ,' fR [(P—~' P, ')dR—+2/ „P,dz],

(2.2)

(2.3)

we can compute the Riemann distributional tensor given
as

where ( ) z
——8/BR and ( ),—=8/Bz. The integration in

(2.3) is taken from the point (R,z) along the path R(z) to
infinity.

We now discuss a general formalism to find the
energy-momentum tensor of a thin disk, given the metric
potentials. Throughout this work the symbols A and
v[A] represent the metric potentials of the disk and 1(

and v[g] represent the metric potentials of the black
hole. The symbols P and v[P] will be used generically to
represent any particular Weyl solution. Black hole solu-
tions in Weyl coordinates are C", while infinitesimally
thin disk solutions are C . The matter in such a disk
behaves as a Dirac 5 function in the appropriate direc-
tion. Distributions in curved spacetimes with support on
three-dimensional hypersurfaces are well defined, and we
use the distributional approach due to Papapetrou and
Hamoui [19], Lichnerowicz [20], and Taub [21]. A
different approach is given by Israel [22] where one
makes use of the extrinsic curvature of thin shells. The
distributional approach assumes that the metric functions
are C .

The disk at z =0 divides the spacetime into two halves.
The normal to the disk can be described by the covector
n, =c)z/Bx'=(0, 0, 0, 1). Above the disk near z=0, we
can expand the metric as

[R'b,d ]= ,'(5'b5;b—'„5'b5'db', +—g "5;bb„) . (2.10)

Defining the Ricci distributional tensor as

[R,b ]=[R;,b ] and the Ricci distributional scalar

[R]= [R', ], we can identify the distributional energy-
momentum tensor [T'b] on the disk through Einstein's

equations as

[R 'b ]——,
' 5'b [R ]= 8n [T'„] . (2.11)

We can write the "true" energy-momentum tensor as
T'b = [T'b ]5(z), where 5 is the Dirac 5 function with

support on the disk. With the b,b given in (2.6)—(2.8), we

find through (2.9)—(2.11) the components

e= —T', =e '(2 —R A „)A,5(z),

pdd,
= T~~=e R A „A,5(z),

T =T' =0
R z

(2.12)

(2.13)

(2.14)

III. BLACK HOLES IN WEYL COORDINATES

Equations (2.12)—(2.14) yield the volume densities, i.e.,
the energy density and pressures. However, one should
note that the coefficients of the 5 functions in Eqs. (2.12)
and (2.13) are not the true surface densities r'b. These
would be given by r'b =e I' '~ [T'b ].

+
p ~g ab

gab
—g ab +Z

clz

ab
82 +

+—z
p 2 'Bz

+ ~ s ~

z=p
The nonrotating Schwarzschild black hole metric func-

tion P is given in the Weyl coordinates of Eq. (2.1) by [24]
(2.4)

Below the disk an analogous expansion also holds with

R )+R2 —2m
=ln

R ) +R2+2m
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w ere, = — +R R =(m +z) +R .where R i =(m —z) ~ z

er metric potential is

R +R —2m)(R, +Rz+2m)i 2v=ln
4R )R2

(3.2)

'
ter retation of (3.1) as the potential of aFor a physical interpretation o . a f a
ee [24,25]. Itis ep uN t d,

expressions (3.1) an d (3.2). In or er o
the new potentials [26], R

const

R

p&=m —zi=m —z++(m —z} +R

P2= —m-z= —m —z++(m +z +R

(3.3}

(3.4)

k out other useful identities:From these we can wor ou o

p+R
2p

p; —R
z z=

2p

(3.5)

(3.6)

4

re resented by the rod in %eyl coordi-
of o st nt Sch hildnates (,z.) Also shown are lines of constan c

coordinates (r, 8).

e 1,2. R, is given as above, p, ; isThe subscript i can be

th h 1 of(3.3)-(3.6)
now simplify (3.1}and (3.2 into

P&=1n
P2

(R +P&Pz)

(p'+R ')(p,'+R ')

(3.7)

(3.8)

re the ones we use when we super-These two formulas are e
(3.8) can be

'
h black holes. Expressionpose disks wit ac

on using the property

=ln(, —
p2 a) as shown in Ref. [14].

W 1 oodirm the metric in e
(t, R,y, zi into sp, r

'
t pherical coordinates t, r,

directly found

v =v 2
— =v[ln ]+v[lnp&] —2v[lnpi, in@2],v[f]=v[in@2—in@, ]=vt np2 v

IV. FORMALISM TTO SUPERPOSE THIN DISKS
AND BLACK HOLES

v[g+ A] =v[g]+ v[A]+ 2v[f, A], (4.1)

ortant properties of th ye We 1 metric
.2)f th ot i i/i

1' '
1

e uation (2. or
e uation in cyin rica3 p '

n is linear, and t us iLaplace's equation
'

The simplest solutio
'

n of the Wey me
7. Su erposing two suc p

th
h h " t t bl ,

" d
28 b introducing a strut wit a neg

h o i 'o of d kshall see that it can appear in t e supe
an

[A]see that the metric function v
li . Hobe superposed since it is nonlinear. ow

show that it obeys the relation

2 z =(r —m)cos8 .R =+r —2mr sin8, z— (3.9)
where

formation puts the line element (2.1)p

3.9) d' 1 hFrom 3. ones
hild radius r =2m trans orm

(39} 1o ld th t thR=O, —m z m. „uation . a s
b' t r =3m transforms1'h h W 1

'
1 hotonic orbit a r-

at R =&3m. Figure s
fcoordinates are the natural coor in

h d to worry about theproblems in whic-
'

h one does not nee o
lthough a thin rodinside of the blacck hole. Moreover, a
sses from %'eyl tos here, when one passetransforms into a sp

thin disk will notSchwarzschi d- yp1 -t e coordinates, a t in
ttempts such a trans-a fat one when one a emtransform into a

a transformation, anUnder such a ra
ni

11 f h
disk wi11 a ways rem

'

We 1 coordinates a owy
position of solutions, ja sub'ect to w ic we

v[Q, A]= ,' JR [(g a—Aa A )dR

+(y„A,+l(,A „)dz] . (4.2)

Thus

Ia [yA] a '
az

= a. az, =o

=R4,~A, z~z=o (4.3)

er ose and A to obtain the energy-
d . F o (4.2)momentum tensor o the combine sys e

we have

v+[g, A+], =
—,'R(P a A, +P,+ A+ )

+ A a).v [f,A ],'= ,'R(fa A, +'{(', —
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a 1nIM+=A+ . (5.S)

=o= A, I =o—=A, I =o.

From (2.5) we can compute the components of b,&
..

b„=—2e ~+'A, ~, =o,
1

(4.4)

Then, if g is the black hole solution as in (3.1) or (3.7),
the solution of the composite system is
(I}+=1(+A+=In[(p+p2)/p, ]. Using (5.1), (5.5), (3.3),
(3.4), and (3.7), we find

b«= —2R e ~ A, ~, o, (4.S)

bzs =b„=2e" ~ [R(/+A) s —1]A, ~, o, (46)

where v=v[f+A]. From (2.9)-(2.13) and (4.4) —(4.6),
we have

&+
—m —z++(z+m) +R ~, z~, ~+~~~»~

e e
m —z++(z —m) +R

The solution for the potential v[P+ ] at z =0 is [30]

(5.6)

e= —T', =e"+ '[2 R—(/+A) „]A,5(z),

p«=T~, =e~+' "R(q-+A), A, S(z),
TR = Tz 0R

(4.7)

(4.8)

(4.9)

a4
vl, =o=, +ln

8R

R
R2+m2

m —&R'+m'+a
R (R +m —V'R 2+ m 2)2

The nonlinearity of Einstein's equations, which shows up
first in the interaction term v[Q, A] of (4.1), appears now
in (4.7) and (4.8) in a very simple way: The potential f of
the black hole, which corresponded to a vacuum solution,
interacts with the disk and acts on the matter.

m+&R'+m'
R (R —m QR 2+m 2)2

(5.7)

With the help of (4.7) and (4.8), we obtain the energy-
momentum tensor

V. PECULIAR DUST DISKS
AROUND BLACK HOLES

22a p ~
1

m

+R +m
(5.8)

2
+ az

2 2 3/2(z+R )
(5.1)

We now find a solution of a family of disks generated
by gluing two spacetimes associated with two opposite di-
poles. The corresponding disks are peculiar due to the
presence of the negative mass coming from the dipole
solution. Our aim here is to apply the methods of Sec. II
to a very simple system (see also [30]). This in turn shows
some interesting features associated with the superposi-
tion. To solve Laplace's equation, we start with the first
spherical harmonic (with axial symmetry),
P, (cos8) =cos8. In cylindrical coordinates we have that
the Weyl potential A is

2a y ~ m

&R'+m' ' (5.9)

where t)} and v are given in (5.6) and (5.7), respectively,
and should be evaluated at z =0. Note that pressure sup-
port (or centrifugal balance) has appeared due to the
presence of the black hole. Compare for this matter (5.4)
and (5.9). In this sense the black hole tends to stabilize
the disk, at least against ring formation.

An important quantity is the velocity V of counterrota-
tion of the particles in the disk. One can show that it is
given by [8], V =p«/e. If p«/e) 1, then the particles
in the disk travel at tachyonic or superluminal velocities.
From (5.8) and (5.9), we have

where a is a constant. For z (0 one interchanges z with
—z. On using (2.3}we find +R +m —m

(5.10)

a4R 4 z2
l —8

8(zz+R ~)4
(5.2)

From (2.12) and (2.13), the energy-momentum tensor of
the matter in the disk is

e
—a /8R

R
(5.3)

(5.4)

The disk has an energy density profile which is zero at
both extremes, R =0 and R = 00, and has a maximum at
a/(6)'~ . There is no pressure or centrifugal support.
Now we superpose a black hole to this disk, using the re-
sults of Sec. IV. In analogy with the p, and p2 potentials
of the black hole of Sec. III, it is helpful to define a p+
potential of the disk as

Thus for R (V'3m we obtain V ) 1. If we change to
Schwarzschild coordinates as given in (3.9), we find that
it corresponds to r (3m. This relates to the well-known
result that there are no circular orbits (stable or unstable)
inside the photonic orbit. Since we are superposing sys-
tems, the combined solution is giving the consistent result
that the centrifugal-gravity balance inside the
Schwarzschild radius r =3m can only be maintained for
superluminal velocities. From Eq. (5.8} we find e) 0 al-
ways. However, the analogue to the "strut problem"
mentioned in Sec. IV is the existence of tachyonic rnatter.
Although the existence of tachyonic matter has not been
dismissed [31],we do not press this matter further.

One can generate a family of disks from this first
member found through the first spherical harmonic P, .
One has simply to consider all the other harmonics with
axial symmetry, P2, P3 P etc.



EXACT GENERAL RELATIVISTIC THIN DISKS AROUND. . .

VI. MORGAN-MORGAN DISKS
AROUND BLACK HOLES

The Morgan-Morgan disks [4] have an outer edge. We
now have three parameters to play with: the mass m of
the black hole and the mass M and radius R of the disk.
This family has an infinite countable number of members
[14]. Here we superpose the first member of the fainily
with a black hole (the zeroth member has a singular sur-
face energy density at the edge); see also [32]. The source
of the gravitational field of the disk has the associated
Newtonian density

S= (a 2 R 2)1/2$(z)3M
27Ta

(6.1)

which corresponds to the monopole plus quadropole
term. The metric potentials were originally given in ob-
late ellipsoidal coordinates (g, rl) connected to the Weyl
cylindrical coordinates by

R '= a '( I+g')(1 —rt')

z =agrl,

(6.2)

(6.3)

X(3rlz —1)], (6.4)

9 M R Rv= — 8 (g) —(I+rt )A (g)

—2((1—7)') A (g)8(g) (6.5)

where R is given in (6.2) A =garccotg —1, and
8=—,'[g/(I+() —arccotg]. Note that A and v are con-
tinuous everywhere and vanish at infinity. However, at
the disk their derivatives are singular due to the 5 func-
tion in (6.1). One can also use the p formalism of Refs.
[13,14] by writing

with —1 & rl & 1 and 0 & g & ao. The t and p coordinates
are the same in both systems. The disk itself has oblate
coordinates given by (=0 and —1 & s) & 1 and Weyl coor-
dinates given by z=0 and R ~a. In oblate elliptical
coordinates, the metric potentials A and v[A] are

A= — [arccotg+ —,'[(3g + 1)arccotg —3g]
2M 2

down. Fortunately, we are interested in the plane z=0
where these formulas simplify considerably. On the disk,
Eqs. (6.4) and (6.5) reduce to

37TM 1R
2 a 2 a2

(6.11)

9 M R
V

a a

2 R 2

1+ -2
16 a2

(6.12)

Using now Eqs. (2.12) and (2.13) or otherwise, we can
compute the nonzero components of the energy-
momentum tensor:

' 1/2
Re=F 1—
a

377 MR g
4 3

(6.13)

1/2
R
a

377 MR
4 a' (6.14)

where F=(3M/2m. a)e ', with A and v given in (6.11)
and (6.12), respectively. One of the requirements of the
weak energy condition is e) 0 everywhere. It is easier to
violate this condition at the edge. Using (6.13), this gives
M/a & 4/3n. The counterrotating velocity is

P yy (3~/4)MR '/a '
1 (3~/r)MR—/a

(6.15)

1/2
R 2

e=G 1—
a

37T MR2 m

4 a3 ~mz+R2
5(z),

(6.16)

The largest velocity occurs at the edge R =a. Thus, if
the particles are to move with speeds less than the speed
of light, then M/a &2/3m. . This is a stronger limit than
the one given by the e & 0 condition above. For
M/a )2/3m, there are particles moving at tachyonic or
superluminal velocities V) 1.

Up to now we have made a summary of the work of
Morgan and Morgan. If we now superpose a black hole
of mass m at the center of the disk, then using (3.9); (6.4),
(4.9) and (4.10) we find the surface energy density and
pressure:

and

p=ia —z+s,
s=[(ia —z) +R ]'

(6.6)

(6.7)

1/2
R 3m MR + m

4 a +m +R

(6.17)

a/=Res,

ay= —Ims .

(6.8)

(6.9)

where G is a known, although long, expression, involving
the superposed Weyl potentials. The condition e&0 is
equivalent to

Then (6.4) with the help of (6.6)—(6.9) transforms into

A= — Im a +z — lnp+ —(3z+ia )s
3M 2 2 R 1

a 2 2

f(x) ~0, 0&x &x,ds, ,

where

f(x ) = }/x + 1( 1 —2A.o. x ) —1,

(6.18)

(6.19)
(6.10)

and similarly for the potential v, although it is a much
longer expression, which it is not necessary to write

with x =R/m, A, =(3n/8)M/a, and o =m/a. Equation
(6.19) has two zeros, the inner x, and the outer x, given
by
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and

X, =O (6.20) g(x) ~0,
with

(6.28)

1 —Acr —)/Ao (Ao +2)Xp-
2A, O

(6.21)

In between these two zeros th d y
' 't v

In order to havex'&0 F
e energy ensity is ositiv

q. .21) implies

4A.cr &1, i.e. ,
Mm 2

Q 3' (6.22)

One can simplify this further to give

')/Acr (Ao, +2. )(1—
A, (2+cr ) . (6.23)

Equation (6.23) is valid only if

( z( (1—2A)

4A, (1—
A, )

(6.24)

This tells u s that there is a maximum product between
the disk mass and
Mm /a =2/3'. The edge of the disk is at x d =a/m

h ve e 0 everywhere, we impose x
e is is at x,dg,

—a/m.
x d x, i.e.,

1 1 —
A,o —t/ko (A,cr +2)

C7 2ko

g(x)=+x +1(l—4A, cr x )
—2 . (6.29)

From E . (6.29q. . ~ one finds that there are two characteris-
tic radii: the inner and the outer li ht d".ig ra ii. atter be-

dius as tach onic
tween the event horizon R/a=0 d han t e inner light ra-

ius as tachyonic speeds. This is a necessary evil of this
type of solution. It means that if one put matter near the
black hole (as we are obliged to d

' h'

of exact solu
'

o o in t is superposition
o exact solutions), the matter orbits at exceedingly high
speeds in that region. Note also that the inner light ra-
dius is a discontinuous function of the bla k h
m = . en the black hole has zero mass m =0, there is
no inner light radius. However, for any other mass, no
matter how small, an inner light radius appears.

'g s, o ityoFarther out from the inner li ht d' h
e articles deereecreases up to a certain radius. Then the

gravitational field of the disk takes over that of the black
up, unti t ey againhole, and the particles start to speed u 'l h

move at ight velocities. This is the outer light radius.
One can impose that the outer edge of the di k

'

other li h
eo e is isat the

and M. In
ig t ra ius, which in turn gives a c d't'a COIl it1011 On m

n . ndeed, using (6.29), one finds that V (1 at
R =a gives

and

0 ~ ——2.1
(6.25)

'2

0( m & 1 —(3n /2)M/a
a 3[1+(ir/2)M/a ]

(6.30)

m & [1 (3rr/4)M—/a ]
(3m /2)(M /a )[1—(3m/8)M /a ]

(6.26)

When M a —+/a —+0 the right-hand equality in Eq. (6.26
holds for (m /a ) =v'2/3irM /a . If the black hole mass is

~ ~

greater than this value, there m t be mus e a region of an-
tigravity where e & 0, in violation to th ke wea energy con-

ation. On the other hand, for M/a=(4/3m 1 —25
with 5«1, the right-hand equalit holds f

us ig y diluted disks (M /a ~0) permit that rela-
tively massive black holes sit in their centers, while high-
ly compact disks (M/a~4/3m. ) allow only for the ex-
istence of li ht black

the e ~ 0 condition. However k h 'gth ~ . , we now the more tight
condition, sometimes called th d

~ ~

e e ominant energy condi-
tion, which states that the particles should move with
speeds less than the speed of light.

From (6.16) and (6.17), we find

From (6.25) one has 0(A.(—' i.e. M/ (4/3—„i.e., a 4y'3m. , which is

just the Morgan-Morgan condition. Withi
'n s for M the condition that actually holds for m is

(6.24), which can be written as

When there is no black hole, m =0, one has from (6 30)
/ ~, which is just the Morgan-Morgan condi-

tion. From (6.30) one can work out that there is a max-
imum value for the product M 2 I
MmMm /a (0.042(2/3n ). [Note that this is much tighter
than the maximum value given by Eq. (6.22) derived from
the e ~ 0 condition. ] When the equalit hold

a =0.042(2/3m), the inner and outer light radii
coincide. In such aa case, one has the remarkable

of ure tach
configuration of a black hole surrounded b a d' kn e ya is made

mass is m
o pure tachyonic matter. In this case the bl k h

is m/a =1/2. 63 and the ratio of the black hole

13

10

R/rn

region

Pyy (3rr/4)MR /a +m/(+m +R )

1 —[(3K/4)MR z/a 3+m /(+ +R )]

Th e condition V ~ 1 is equivalent to

(6.27)

5 6 7

m/M

10 1 1

FIG. 2. 0Outer edge and inner light radius of the Morgan-

Each system is specified by the ratio m/M. (B ex
a e ot er edge. )
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Morgan and Morgan

extreme disk

Extreme disk with

a small black hole

~pm
a

techyoruc speeds

inner light radius
V=1

—=—= 0.15M m
a a

m= 0.033a—= 0.20M
a

which does not have these problems. In the superposi-
tion of these disks with a black hole, tachyonic regions
develop because there is matter up to the event horizon.
Therefore, to suppress those regions, one has to have a
disk solution with an inner edge. Then one may impose
the less than the speed of light condition throughout the
disk.

The simplest way to achieve this is to make an inver-
sion (i.e., a Kelvin transformation [33]) on the Morgan-
Morgan family. Here we discuss the superposition of the
first member of the family with a black hole. Let A(R, z)
be a solution of the Poisson equation (2.2), with the asso-
ciated Newtonian density [see Eq. (6.4)] p=S(R)5(z).
Then, under inversion, R 2+z ~a /(R +z ) (where a is
some constant), one can show that

Extreme disk with mass

equal to the black hole mass
inner light rsdius

V=1

tachyonic speeds

V=1
2 2

A(R )
a

A
aR az

V'R +z R +z R +z

—= 0.38
a

V=1

inner and outer light radii

—= 0.58

—= 0.062

Extreme disk with coincident-

is also a solution with an associated Newtonian density
'0 3

aS(R)= —S 5(z) .
R

The inversion of the first member of the Morgan-Morgan
family gives the potential A" of the annular disk:

M
~—~ pa

Extreme disk with maximum
' black hole mass tachyontc speeds

A = — Im z ——R + lnp
4Ma 2 1 2 r

m-r' a

1 . r+ 3z+1 S
2 a

(7.1)

FIG. 3. Representative configurations of extreme cases
within the Morgan-Morgan plus black hole family. Weyl coor-
dinates (R,z) are being used.

where r=(R +z )'~

2—z+i—+R. r 2

a

1/2

mass to the disk mass is m/M=6 2 When M. /. a~0,
then m /a ~1/t/3; i.e., there is a disk made of test parti-
cles (negligible mass) with tachyonic speeds up to the
outer edge where V=1. This is the even more remark-
able configuration of a disk of tachyonic matter situated
in between the event horizon and the photonic orbit at
R =&3m. We can call it the "inverse accretion disk. "
In Fig. 2 we plot the inner and outer light radii as a func-
tion of the ratio m/M. In Fig. 3 we draw various
representative con6gurations for the case in which in-
equality in (6.30) is saturated. When the inequality in
(6.30) is not saturated, i.e., when the velocity of the
matter at the edge is less than the velocity of the light,
there are other possible interesting configurations. For
lower velocities at the edge, one can have ratios
M/m «1.

VII. ANNULAR DISKS AROUND BLACK HOLES

The previous three families, although displaying
surprising results, showed unwanted features such as ta-
chyonic and negative density regions. In order to over-
come this problem, we now comment on a family of disks

M 3 a
1——

R 2R'

m

&R'+m'
1/2

a M 3 a m
p =6 1— 1 —— +R2 R 2 R2 ~R2+m2

(7.2)

(7.3)

where, as before, G is an expression involving the super-
posed Weyl potentials. At R =a one has
E(a) =p&&(a) =0. For R ~ ~ the fields behave as

p = —z+ir /a+s, and M is the mass of the annular disk.
Asymptotically, r ~~, and one has A„= 2M/r, as ex-—
pected for a Chazy-Curzon particle. It is not trivial to
find the other Weyl potential v„by analytical methods,
and we do not attempt it here. However, the regularity
condition on the axis, v~0 as R —+0, can always be
satisfied by choosing appropriately the constant of in-
tegration for v„. Now if we use Eqs. (4.7)—(4.9), we find,
for the combined black hole plus annular disk system, the
following expressions valid for R & a:

' 1/2
ae=G 1— ~ 1—
R



5142 JOSE P. S. LEMOS AND PATRICIO S. LETELIER

e=O(1/R ), p44=0(1/R ). The condition e&0 is al-

ways satisfied for any values of M/a and m /a. One can
also look for the sign of p&& throughout the disk, al-
though we should note that there is no obstacle of having
any sign. The condition that p&&

~ 0 is
M/a &2m/a/[)/1+(m/a) ]. For rn/a =0 there is no
configuration with positive pressure everywhere, since in
the region a & R & ( —,

' )' a the disk is composed of matter
with tension. On the other hand, for any nonzero value
of m/a there are always configurations which have no
tension regions. As before, the condition that the parti-
cles move with speeds less than the speed of light is

which is worth comment is the test particle disk
M/a~0. The maximum velocity is at the inner edge
R =a. This particular configuration corresponds to the
non-self gravitating accretion disk surrounding a
Schwarzschild black hole. For m/a = I/&3, the max-
imum velocity is the velocity of light. This is precisely
the test particle disk which extends up to the photonic
orbit at R =v'3m. At R~oo the matter rotates with

speed V -m/R, as expected. If one wishes, one can
choose the parameters in such a way that the inner edge
lies at the last stable orbit, thus mimicking a true accre-
tion disk [34].

VIII. CONCLUSIONS

M/a 3 ! m/a
R/a 2 (R/a)2 Q(R/a)2+(m/tt)

M/a 3 1 m/a
R/a 2 (R/a)2 V'(R/a) +(rn/tt)

(7.4)

A careful study of Eq. (7.4) shows that there are some in-
teresting configurations free of tachyonic matter. For the
no-black-hole configuration m/a =0, the maximum ve-

locity of the matter is attained at R =(—,')'~ a =2. la. In
this case the equality in (7.4) holds when M/a =1.6.
Thus, from the inner edge R =a up to R =(—,

')'~ a, the
disk is composed of matter with tension. At R =(—', )'~ a,
the disk is made of dust matter; i.e., the particles do not
rotate. From then onwards they start to counterrotate
and achieve their maximum velocity at R =(—', )'~ a,
which for M/a =1.6 is equal to the speed of light. For
R ~ ~ one has that the velocity of the matter is
V -M/R.

A necessary condition to have tachyonic free disks is
0& m/R, „&I/O'3, where R~,„ is the radius in which
the matter has the highest veloci~t. An interesting possi-
ble configuration is m/a=i/v'2. The matter achieves
maximum speed at R /a =(—', )'~ which is equal to the ve-

locity of the light when M/a =0.7. There is no tension
region in this disk, and for R ~ Do one has that the veloc-
ity of the matter is V -(M+rn)/R. Another disk

In this work we have described a method which can be
used to superpose counterrotating thin disks and black
holes. We have also analyzed three families. The first
two families show in a clear way the existence of the
inner photonic orbit and the appearance of matter with
superluminal velocities in between this orbit and the
black hole. The second family yields solutions which can
be considered interesting since one can extract some pure
gravitational information from the systems. However,
these solutions give (inside the inner photonic orbit)
matter moving at superluminal velocities, which cannot
be considered realistic. In order to eliminate this prob-
lem, we have considered the superposition of an annular
disk with a black hole. This family, having an inner edge,
allowed us to present plausible configurations free of non-
physical regions. An effect that can also be analyzed is
the distortion of the event horizon due to the presence of
the disk [35]. Other effects needed to be discussed are
geodesic trajectories, the redshift of photons emitted
within the system, thermodynamics, and Hawking radia-
tion.
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