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Classical solutions in three-dimensional cosmological gravity
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Solutions, depending on only one variable, to three-dimensional cosmological gravity are shown to be
geodesics of an abstract three-dimensional Minkowski space. These geodesics are timelike, lightlike, or
spacelike for positive, zero, or negative values of the cosmological constant. The singularity structure of
the solutions depends on the position of the associated geodesics relative to the light cone in solution
space. The extension to the case of three-dimensional cosmological gravity with field-theoretical sources
is briefiy discussed.

PACS number(s): 04.20.Jb, 04.40.Nr

In three space-time dimensions, the Riemann curva-
ture tensor is uniquely determined by the Einstein tensor,
so that Einstein's equations with a (positive or negative)
cosmological constant A are solved by space-times of
constant curvature. It is well known [1] that all constant
curvature spaces of a given signature and curvature are
locally diffeomorphic, the equivalence classes being in the
case of Minkowskian signature de Sitter space for A )0,
Minkowski space for A=O, and anti-de Sitter space for
A &0. However, they can be globally inequivalent owing
either to the presence of point sources, or to inequivalent
topologies (e.g., wormholes). In a now classic paper [2],
Deser and Jackiw constructed static solutions to the
cosmological Einstein equations with several point
sources. Recently, interest in the subject has been rekin-
dled by the construction of a black-hole stationary solu-
tion to cosmological gravity with A & 0 [3,4]. The
research which shall be reported here was motivated by
the desire to gain a better understanding of the relation-
ship between these various solutions and yet other ine-
quivalent solutions.

In the present paper, we assume the existence of two
Killing vectors, so that the metric depends on only one
variable. According to their signature, such metrics de-
scribe stationary translationally symmetric or rotational-
ly symmetric space-times (the more general case of sta-
tionary space-times, with only one Killing vector as-
sumed, shall be treated elsewhere [5]), cosmologies (the
variable is time), or spaces with Riemannian signature de-
pending on one variable. As we shall show, all such solu-
tions of the cosmological Einstein equations are geodesics
of an abstract three-dimensional Minkowski space (the
solution space). These geodesics are timelike, lightlike, or
spacelike for A&0, A=O, or A&0, respectively. In the
case A ~ 0 these geodesics are further classified by their
geometric relation to the light cone of solution space, i.e.,
according to whether they do not intersect, are tangent
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The action for cosmological gravity (derived from the
known expressions of the Ricci tensor [6]),

Io = — ~+'x g R +2A1

2K
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Jd~x f dr —2e

2K dr

+—[—e Try +s(Try) +8A)
4

(3)

is invariant under the action on A, of the group SL(p, R ).
Specializing now to p =2, the invariance group

SL(2,R) is locally isomorphic to the Lorentz group
SO(2, 1), which suggests the vector parametrization of the
matrix A, [7],

T+X
Y T—X (4)

such that special linear transformations of A, correspond
to Lorentz rotations of the vector X=(T,X, Y}. The sig-
nature of the metric (1) depends on the sign of
deft =T —X —Y—:R, stationary space-times corre-
sponding to spacelike X with c, = —1, cosmologies or
spaces with Riemannian signature to past timelike or fu-
ture timelike X with e = + 1 (Fig. 1), so that in all cases of

to, or intersect the (future or past) light cone. For A &0
the stationary space-times thus constructed include, in
addition to generalizations of previously known solutions,
a new class of wormhole solutions.

We first consider the general case of a (p + 1)-
dimensional space-time. Assuming that the metric de-
pends on only one variable r, we choose the canonical pa-
rametrization [6]

ds =A,,b(r)dx'dx +edr

(e=k1), where A, is a symmetrical p Xp matrix, and
define
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ly to the residual invariance of the parametrization (1), (6)
under the five-parameter group of linear transformations

x' r', x', p ~detr~ 'p,

p~p+c (1 lb)

X

FIG. 1. The three sectors of solution space (the third dimen-
sion Y is suppressed).

I =—
0

interest e=sgn(R ). The parametrization (4) leads to the
following form of the action (3):

1
X f& ~ 2 Tr2 @~2 y'2 +4A 5

4~

so that the solution is essentially unique. However, if the
sections p=const have the topology )RXS' (for instance,
in the case of a cylindrical cosmology or of a stationary
rotationally symmetric space-time), only the transforma-
tions preserving the periodicity condition on the second
variable x are allowed, which restricts (1 la) by /2=5&,
so that we are left with a solution depending generically
on two parameters. If this topology is S'XS' (which is

the case of the toroidal cosrnologies of Ref. [8]},then only
the reparametrization (1 lb) is allowed, and the solution
depends on four parameters (more complicated topolo-
gies do not allow the existence of two global Killing vec-

tor fields).
Recalling the full expression of the physical space-time

metric
where we have used R =Etr, and a prime denotes d /dr
The introduction of a variable p such that ds =A,,b(p)dx'dx +R (p)d p (12)

odr=g 'dp (6)

(where g is a constant scale) further simplifies the action
(5) to

Io= — J d x jdp[g(T X Y)+—4A(—'],

T —I —P =4A (9)

showing that the solutions are geodesics of the Min-
kowski space of metric dX =dT dX dY, wh—ich-
are timelike for A)0, lightlike for A=O, spacelike for
A &0.

Integrating Eq. (8) with the constraint (9), we see that
the general solution

X(p)=ap+II (a'=4A) (10)

apparently depends on five arbitrary parameters. The ac-
tual number of independent parameters depends on the
topology of the sections p=const. If this topology isIXI, then the fivefold arbitrariness corresponds precise-

where an overdot denotes d /dp.
This form of the action shows that the full invariance

group of the solutions A,,b(p) is actually, for all values of
A, the Poincare group ISO(2, 1). Varying the action (7)
with respect to the "coordinates" X" (A =0, 1,2) leads
to the geodesic equations

X =0,
while varying with respect to the Lagrange multiplier g
and fixing afterwards the scale g= 1 leads to the first in-

tegral
ds = ,'(1 2cp)dt +—2—codtd8 2Ac ( I+—2cp)d0'

—(Ac +co' —4Ap ) 'dp (13)

(c )0) corresponds to a stationary de Sitter metric with
two antipodal massive and spinning sources, generalizing
the static de Sitter solution with sources of Ref. [2]. The
full space-time is obtained by following the solution-space
geodesic (Fig. 2) from the "future" singularity p=po with
p0=———'(c +co A ')' (a pole of the de Sitter sphere)
to the "past" singularity p= —

po (the de Sitter equator)
and back to p=po (the other de Sitter pole}. The source-
less de Sitter metric is obtained from (12) for the choice
co =0, c =2. Of course, de Sitter space-time is also
recovered from solutions with past timelike X, e.g. ,
T= —2A' p, X= Y=O, with p= —,'A '~ exp(2A' t),
leading to the well-known metric

we see that this metric develops a singularity whenever
the geodesic X(p) crosses the light cone detA, =R =0.
We shall mainly discuss the case of stationary rotational-
ly symmetric space-times corresponding to spacelike X.
Then the intersection of a solution X(p) with the future
light cone [inside which the signature of the metric (12)
would be Riemannian] corresponds either to a naked
singularity or to the origin r =0 of the polar coordinates
( r, 8). On the other hand, crossing the past light cone
does not entail a change of signature but only a simul-
taneous change of sign of the largest eigenvalue of A, (as-
sociated with the time coordinate) and of R, corre-
sponding to a horizon.

We now discuss briefly the various cases. For A&0, all
timelike geodesics cross both the future and past light
cones of solution space. The general stationary sym-
metric solution, which is [up to a transformation (11)]

Essentially the same solution was obtained independently in

Sec. II of Ref. [4], using a matrix approach parallel to that fol-

lowed here.

(dx +dy 2)

which covers half of de Sitter space [9].

(14)
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(1 = —A). The discussion depends on the sign of the
discriminant h=(a P) +41 P . Let us choose for the
generic solution the parametrization

(20)

ds =(21 p M—/2)dt +Jdtd8 (2—1 p+M/2)l d8

[41 2p 2 + (J2 M 2
1

2
) /4 ]

Idp
2

FIG. 2. A stationary rotationally symmetric solution for
A )0; S is the singularity, H the horizon (de Sitter equator).

We discuss for completeness the case A=O (Einstein
gravity), for which the solutions are given by (10) with
a =0, leading to

R =2a Pp+P (15)

In the generic case a PAO (Fig. 3), either the geodesic
intersects the future light cone for a past lightlike, an in-
stance being T+X= I, T—X=co —2ap, Y= —co,

which corresponds to the particlelike metric [10]

ds = ( dt cod 8 )—ar d—8 dr— (16)

or it intersects the past light cone for a future lightlike,
in which case [11,12]

ds =r (dt cod8} vd8 —dr— — (17)

(r G ]—ao, + ao [}. In the special case a P=O, the geo-
desic never intersects the light cone; the corresponding
family of regular solutions,

ds =r(dt cod8) 2c(d—t cod8—)d8 —dr—(18)

was first given in Ref. [11][the solutions of this family de-
pend on two parameters because in this case the transfor-
mation (lib) is equivalent to a combination of transfor-
mations (1 la)]. The even more special case a=O corre-
sponds not to a geodesic but to an arbitrary point, the as-
sociated metric being the Minkowski cylinder
ds =dt vd8 dr . — —

For A & 0, we obtain, from (10),

R = —41 p +2a Pp+P

where M and J are (proportional to) the mass and spin as-
sociated with the solution [3]. Then 6=M —J 1 . For
b, & 0 (J &M 1 ), the geodesics intersect twice the past
(for M & 0) or future (for M &0) light cone (Fig. 4). The
corresponding solutions (20) are, as discussed in Ref. [3],
black holes for M )0, or solutions with naked singulari-
ties for M &0 (except for anti —de Sitter space with
M = —1, J=0). For 5=0 (J =M 1 ), the geodesics are
tangent to the light cone. The corresponding solutions
(20) have an apparent singularity (p=0}at infinite proper
distance. In the "extreme black-hole" case M & 0 this ap-
parent singularity is actually a horizon which is crossed
by almost all the physical space geodesics [those of the
metric (20}],while for M &0 the circle p=O is at infinite
geodesic distance, so that in all cases the 6=0 solutions
are regular. The horizon size goes to zero in the limiting
case J=M1=0 (the "vacuum" solution of Ref. [3]},
which corresponds to a geodesic coming from the apex
X=0 (p =0) of the light cone. Finally, for
6 & 0 (J & M 1 ), the geodesics do not intersect the light
cone, so that the space-time metric is regular for all
values of pE R. The corresponding solutions are
I.orentzian wormholes, with two lines at spatial in6nity:
p~kao (a class of null geodesics, along which p is the
affine parameter, connect these two lines); it is also ap-
parent from (20) that light cones tilt over by m /2 when p
varies from + 00 to —00, with closed timelike curves for
p & —Ml /4 (the analogous closed timelike curves of the
black hole and extreme black-hole solutions are hidden
behind the inner horizon [3]).

The class of solutions (10} with ar =a~, ar = +21
cannot be obtained from (20) by a regular transformation
(11) (one which preserves the periodicity condition on
x =8). For PrAPz(g22%0), these solutions can be
parametrized by

ds'=sdt'+41 'pdtd8 bd8 [41 p
—+sb] —'dp (21)

with 5=—41 cb, and b )0 for 8 spacelike, so that we

9
r 9+

~ M 90

FIG. 3. Three stationary rotationally symmetric solutions for
A=O; g+ is solution (16) with singularity S+, g is solution
(17) with horizon H, M is the Minkowski cylinder.

FIG. 4. Three stationary rotationally symmetric solutions for
A(0; g+ has naked singularity S+, go (a "vacuum" solution)
has horizon Ho, while g has outer and inner horizons H and
H' . Extreme black-hole and wormhole solution are not shown.
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may have either e= —1 (b, &0), E=O (6=0), or
E=+1 (6(0). The properties of these three cases are
similar to those of the corresponding cases of the generic
solution (20). For instance, solution (21) with E=0, b & 0
previously reported in Ref. [13] is an extreme black hole.
The parametrization (21) does not cover the special case

gzz =0, for which the solution takes the form

ds =cdt +41 'pdtd8 [41—p ] 'dp (22)

with 6=0.
To conclude we discuss briefly the extension of our ap-

proach to the case where the gravitational field is coupled
to other fields. Consider, for instance, the coupling of a
massless scalar field y to cosmological gravity, described
by the action

I= — d x g R —xg"'y „y,+2A1
(23)

Upon assuming again the metric to be of form (1), (6),
and q =y(p), this action takes the form

I= x p
—

—,'mX +—,'R jp
—2mA ' 24

[with m —= (2tc) '], showing that the solutions to the cou-

pled field equations are geodesics of the four-dimensional
space of the metric:

dS =dT —dX —d Y —m 'R dy (25)

is the Minkowskian equivalent of the Euclidean problem
of a particle moving in a central R potential, and may
easily be solved completely by the same methods. The
physically more important but more intricate Einstein-
Maxwell cosmological problem is treated elsewhere [14].

I am grateful to A. Comtet for a discussion which
stimulated my interest in this subject.

(R —=X—:T X— Y—). As in the case of sourceless
cosmological gravity, the length of these geodesics is pro-
portional to the cosmological constant A:

2
—,'mX —

—,'R jv =2mA (26)

for g= l. Eliminating the cyclic variable gr in terms of its
constant conjugate momentum m, we see that the reduced
three-dimensional dynamical problem, derived from the
Lagrangian
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