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Scaling, asymptotic scaling, and Symanzik improvement: Deconflnement
temperature in SU(2) pure gauge theory
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We report on a high statistics simulation of SU(2) pure gauge field theory at finite temperature,
using the Symanzik action. We determine the critical coupling for the deconfinement phase transition
on lattices up to 8 x 24, using finite size scaling techniques. We find that the pattern of asymptotic
scaling violation is essentially the same as the one observed with conventional, not improved action.
On the other hand, the use of effective couplings defined in terms of plaquette expectation values
shows a precocious scaling, with respect to an analogous analysis of data obtained by the use of the
Wilson action, which we interpret as an efFect of improvement.

PACS number(s): 11.15.Ha, 12.38.Gc, 64.60.Fr

I. INTRODUCTION

In the last few years the increased computer power
available for lattice theorists has allowed a number of
studies on relatively large lattices and it has been possible
to test accurately scaling and asymptotic scaling.

We have in xnind in particular a series of works on
SU(2) lattice gauge theory at finite temperature ([1,2]
and references therein) which have been able to test for
asyxnptotic scaling on lattices up to N = 16, showing
still considerable scaling violations.

On the other hand, in the same simulations one ob-
serves a rather good scaling of ratios of dimensionful
quantities, thus supporting the idea that asyxnptotic scal-
ing is violated by universal terms, which cancel in the
ratio, and that soxne P function, other than the pertur-
bative one, exists.

Since the renormalization group, parametrized in
terms of the "bare" coupling on the lattice, shows large
deviations from the asymptotic behavior, we feel that it is
very ixnportant to test different renormalization schemes,
as stressed in a recent work by Lepage et aL [3]. For in-

stance, it has become more and more apparent that ef-
fective schemes on the one hand improve the asymptotic
scaling [4,5], and on the other hand reconcile the per-
turbative expansion of ultraviolet doxninated quantities
with the lattice numerical results [3].

In this context, we have decided to test the effect of the
use of a different lattice formulation, using an improved
Symanzik action in the simulation of four-dimensional
lattice gauge theory. We did not expect a dramatic im-
provement of asymptotic scaling, even if in a pioneering
work [6] some indications of such an improvement were
found, but we have considered that, by comparison with
similar works using Wilson action, something about the
origin of scaling violations could be understood.

The study of this particular model, SU(2) gauge the-

ory at finite temperature, is justified by its similarity with
/CD, as well as by its greater simplicity. Moreover, the
particular observable chosen, the temperature of decon-
fining phase transition, is well defined and can be exactly
determined by use of finite size scaling (FSS) techniques,
thus allowing us to pursue our main objective, the study
of scaling properties.

We can anticipate our results: the pattern of asymp-
totic scaling violation observed with the Symanzik action
is essentially the same as the one observed with the Wil-
son forxnulation; the only apparent effect is a precocious
transition from the strong to the weak coupling regime.
This result seems to indicate that a universal lattice P
function exists.

Analogously the effective coupling approach, formu-
lated in terms of plaquettes expectation values, works
well in improving the asyxnptotic scaling figure and gives
results consistent for the two lattice formulations.

In Sec. II we give a short review of the Symanzik ap-
proach to the lattice formulation of field theories and
we recall the physical characteristics of the model under
study.

In Sec. III, we review the FSS techniques used in this
work, in order to give a presentation as self-contained as
possible.

In Sec. IV we give details about our simulations.
In Sec. V we present the results of our measurements,

exploiting the FSS techniques to present various tests of
consistency of the results.

We discuss the results in Sec. VI, together with an
analysis of the different renorxnalization schemes.

Appendix A is devoted to technical details on the sub-
traction of biases and on error estixnation.

Analogously in Appendix B we discuss our implemen-
tation of the density of states method (DSM).

II. THE SYMANZIK IMPROVEMENT AND
SU(2) LATTICE GAUGE THEORY
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A. Generalities

The formulation of a field theory on a lattice is a nec-
essary step if we want to study it in a nonperturbative
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way with a computer simulation. The lattice can be seen
as an ultraviolet regulator as any other, introducing in a
natural way a short distance cutoK

We can extract from a computer simulation relations
between observables (for example, mass ratios) only for
this regularized theory, and obviously we cannot recover
completely the continuum limit, so our predictions will
be afFected by systematic errors (the so-called lattice ar-
tifacts).

The cutoK dependence of a theory can be reduced by a
clever choice of the regularization scheme: this is a well-
known technical point which was studied extensively by
Symanzik [7,8]. He realized that this fact can be used to
minimize the consequences of a nonzero lattice spacing a
(for an introductory discussion see the pedagogical work
of Parisi [9]).

The key observation is that a field theory can be tran-
scribed on a lattice with considerable arbitrariness: the
lattice action must only reduce to the continuum one as
a ~ 0. So we can redefine the action by adding an arbi-
trary combination of irrelevant operators, which vanish
in this limit, and this is equivalent to changing the reg-
ularization scheme. Symanzik has also shown (see for
instance [10]) that every lattice regulated theory is per-
turbatively equivalent to a local effective Lagrangian, in
a given renormalization scheme, of the type

+ 4 ) (4) ~(4) +

sional ratio of physical quantities while making a smaller
and smaller. For example using the action in Eq. (2) we
expect to find, for a mass ratio (( = correlation length),

(3)

A more refined test consists in verifying how well the
quantities M; we can measure on lattice obey the renor-
malization group equation, which is merely a statement
of cutofF independence of physical observables (scaling).
The lattice artifacts inodify this equation adding non-
universal (i.e. , M-dependent) scaling-violating terms, so
we have

(4)

Here P~ is a nonanalytic contribution that cannot be cal-
culated perturbatively (for instance, in the bidimensional
o model it can be evaluated in the large N limit, where

one finds P~ = O[ge ~]) and A~ = O[(a/()2 ln(a/()].
If we use the action (2) with p = 2, we expect first of all
A~ = O[(a/()41n(a/()], and then a reduced P~. In the
real case we can calculate the improved action at best to
the first perturbative order, and we expect contributions
O[g (a/$) 1n(a/()] to A~, which give a little contribu-
tion for an asymptotically free theory if we are sufBciently
near the continuum.

where 0;" are local operators of dimension d + n, if d
is the dimension of space. It follows that it is possible to
build a lattice action in such a way that the correspond-
ing efFective Lagrangian is

2p & (2p) (2p)~latt, impr = jef,impr = ~cont + + g Ci ~i + ' ' '
&

(2)

using an appropriate linear combination of the operators

0, " transcribed in an arbitrary way on the lattice.
The determination of the coeKcients for this combination
is a nontrivial task for an interacting theory: in princi-
ple it could be done with an high precision numerical
simulation.

We can also compute them perturbatively, if the bare
coupling constant is sufficiently small (i.e., near the con-
tinuum limit for an asymptotically free theory), using a
matching procedure between vertex functions [7], or in
the case of gauge theories (for instance) matching the
expectation value of gauge invariant quantities, such as
the Wilson loops [11]or the interquark potential [12]. An
exposition of the diff'erent improvement strategies can be
found in the work of Liischer et al. [13].

If this program works, we may hope to obtain more
accurate predictions for physical quantities with the not
extremely big lattices we can use with the current com-
puting resources. The more direct way to verify that
lattice artifacts are reduced is to measure an adimen-

B. Scaling vs asymptotic scaling

In the general case we know only the first few pertur-
bative terms of the function P(g), in particular the first
two (scheme-independent) terms. These are the relevant
terms in the continuum limit if asymptotic freedom holds,
while in an intermediate coupling range higher-order con-
tributions can be important. If an observable M follows
the renormalization group (RG) with the perturbative
approximation to p(g) we say we are in an asymptotic
scaling region: if this is not true, it does not imply that
the data cannot be trusted, but only that we had to use
a better approximation to the exact P function. We can
try to extract this "improved" P(g) from the simulation
itself and then verify the self-consistency of this proce-
dure. If we can find a function P,ir(g) so that the RG
evolution holds for diferent quantities we say we are in
the scaling regime.

It is important to note the following.
The Symanzik program can improve the scaling, but

not necessarily the asymptotic scaling: indeed, the on-
set of asymptotic scaling is expected in a region where
irrelevant operators give negligible contribution.

The scaling test is more conclusive than the stabiliza-
tion of mass ratios, as we can imagine that there are
some M-independent contributions to A~ which cancel
in Eq. (3).

As is well known, asymptotic scaling in the SU(2)
gauge theory with the Wilson action has not yet been
found (see for instance [1]). So we must extrapolate the
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P function in some physically sensible way in the inter-
mediate coupling region.

C. The model under study

The SU(2) gauge theory at finite temperature has been
discussed at length for instance in [14]:here we just recall
that the model shares with /CD the presence of a de-
confining phase transition, characterized by the breaking
of the center Z(2) symmetry [15] and by the appearance
of a nonzero expectation value for the thermal Wilson
loop or Polyakov tine P. It is by now well established
that the transition is of the second-order and all numer-

I

ical simulations give results in good agreement with the
early ansatz [16] that the model belongs to the same uni-
versality class as the three-dimensional (3D) Ising model.

In our simulations we have used a "tree improved" ac-
tion; i.e., we have only corrected in part lattice artifacts
in the classical theory.

This can be done by observing that the usual Wilson
action is equivalent to the effective Lagrangian

l:,s = F„—„F—„„+ aB—„F„„B„F&„+O(a ). (5)

We can compensate for the O(a2) term by adding a suit-
able irrelevant operator. A possible and widely used
choice is

. (2 1 i . /5 1
SI = ~W + Sirr = P) +ixl + P) . I Uixl +1x2 I

—P) . I
+1x1 +1x2

I ~(3 12 ) (3 12 ) ' (6)

where U„„ is the n x m plaquette.
This choice has already been experimented in other

works, both in the study of the finite temperature the-
ory [6] and of the quark-antiquark potential [17], using
the ichosaedral approximation to the SU(2) group. To
our knowledge the present work is the first where a four-
dimensional gauge theory is simulated with the Symanzik
action and the full group.

the pseudotransition:

g oc iti (7)

where t =
& is the reduced temperature (in units

C

of the infinite volume critical temperature). If the finite
volume "critical" temperature T, (L) is reached when the
correlation length is of the order of the physical size of
the system, it follows that the expected shift is

III. FINITE SIZE SCALING ANALYSIS
iT, (L) —T,

i
oc T,L (8)

The finite size scaling (FSS) technique is by now a
widely used tool in the investigation of pseudocritical
properties of statistical systems in finite volume. Its ap-
plication to the analysis of second-order phase transitions
permitted a detailed numerical test of theoretical predic-
tions on critical exponents. The effectiveness in the study
of SU(2) deconfining phase transition has been already
demonstrated in a number of papers, where use of the
Wilson action was made [1,2,18].

In this section we collect some formulas needed by
our investigation, in order to give a presentation as self-
contained as possible of our results. A more detailed gen-
eral introduction can be found for instance in [19],while
we refer to the original works [1,2] for the improvements
of the method which we have applied to our analysis.

Ni~~erical simulations of statistical systems are lim-
ited to finite volumes, characterized by some length scale
L. In the vicinity of an (infinite volume) phase transi-
tion the system exhibits a pseudocritical behavior, for
instance at a second-order phase transition the suscep-
tibility y shows a peak broadened by the Gnite volume,
while the correlation length $, defined in terms of appro-
priate pair correlation functions, reaches the dimensions
of the system. For our purposes, the shift in the critical
temperature is the most important effect, which can be
easily estimated if one assumes some universality class
for the model under consideration and that the correla-
tion length exhibits a power behavior in the vicinity of

or, in terms of the reduced temperature,

Or, = L Qp (Lt") . (1O)

If for large L this observable exhibits a critical behav-
ior, with exponent —p, the function Qo should behave
like some power of its arg»~ent, and the requirement of
cancellation of volnme dependence requires that u = p/v.
Hence it results the parametrization

Og = L ~"Qr, (Lt"),

or alternatively, and more commonly,

Og = I "Qg (tL' ") (12)

Note that in fitting measurements the critical temper-
ature is a very sensitive parameter; hence, the error in
its determination should be reduced as much as possible
if one is interested in determining universal parameters
with a good accuracy.

To extract infinite volume limits an "ansatz" is neces-
sary on the form of the observables.

The main idea is that near a second-order phase tran-
sition, as the correlation length ( approaches the size L of
the system, the observables 0 depend on these two scales
only through the ratio r = L/f apart from a vob~me-

dependent prefactor

Or, = L Qp(r)
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The important point is that renormalization group argu-
ments show that all the critical behavior can be derived
&om the singular part of the kee energy density, which
is then assumed to have the conventional form

(P~) =— e

h ~=o

1= y "'o (yy. 6'y"'),

(18)

f I —dQ (6 jl/ 6 6 l/w'I // 6 6II) where use has been made of the first hyperscaling relation

where gT, gg are connected to the reduced temperature
and the external magnetic field by linear relations, plus
corrections

g&
——ctt+ 0 (th, t )

g„ = c,t + O (tt, t ') .

The additional dependence on irrelevant scaling fields g, ,
with negative exponents y;, cannot be neglected in many
practical simulations, and determines corrections to the
scaling behavior. Note also that we name g the criti-
cal exponent of the "magnetization, " instead of the con-
ventional P, to avoid confusion with the coupling in the
lat ticized theory.

Let us come to our system and recall that we simulate
on a lattice of volume I, with I = N 0, , and temporal
extent Nt, determining a temperature T = 1/ (Nta).

The relation between the spacing a and the bare cou-

pling P =; is unknown, and one of the motivations of
go

our simulation is the study of the validity of the universal
two-loop asymptotic formula

p/v+ 2rj/v = d

implied by Eq. (18).2
A useful quantity in the determination of the critical

temperature is then the Binder cumulant g4, de6ned as
the fourth derivative of the free energy with respect to
"magnetic field, " normalized to the susceptibility:

g4 = (y (,N/N)) (2O)

(P')
g4 = —3

(P )
(21)

Its directly scaling form can be expressed as

In fact, its expression is a directly scaling function, where
explicit dependence on N is canceled by the use of the
hyperscaling relation: moreover, the multiplicative renor-
malization Z of the Polyakov loop cancels, and therefore
the expression for g4 can be safely given in terms of ex-
pectation values of moments of Polyakov loop:

~ pi/": r pi
q2c bp) 4c bp)

g4 (t; N;N ) = Qs(gt (t, N ) y /, giy"'), (22)

As first noted in [1], it is convenient to rewrite the free

energy density in terms of the dimensionless combination
LT, that is, of the ratio y = N /N .

f(t, h;N;N ),=y q/ (y~y", gyy ",6;y ') . (16)

where we have conserved the 6rst irrelevant scaling Geld.
The localization of the critical point is then possible by
6nding the intersections of g4 curves, as functions of the
temperature t, at various values of the spatial size X .

Taking into account the 6rst irrelevant Geld one ex-
pands the expression given in Eq. (22) in the vicinity of

De6ne P the spatial average of the Polyakov line,

L (x) = U (x, t),

P = N ") Tr [L (x)], (17)

and introduce a source h for this quantity in the partition
function, through the operator hZ (a, N ) N P, where
the renormalization factor Z cancels the divergent self-

energy contributions to the Polyakov loop.
Derivatives with respect to the source h allows us to

define the physical order parameter and the susceptibil-
ities

In fact, assuming that fiuctuations contribute to the sin-

gular part of the free energy density as the ratio of the unit

volume to the volume ((t)",

f (t) - ( (t)

which is incorporated in Eq. (16), if, for small values of z,

Qs(»o . .) - (*)"'

Now derivatives in Eq. (18) can be written as

(&) = —(&-/&-) +'"+"Qi(&6 (&-/&-) '"
)

X = (N-/N-) '"'"""Q. (g (&-/&-) '" ),
and so, combining the dependence of Qi 2 on gy (that is, the
same as Qf) with the requirement that in the infinite vol-

ume N ~ oo limit the critical behavior is specified by the
exponents g, p,

'In a finite volume system, as tunneling between inequivalent
"vacua" tends to restore the Z (2) symmetry, the experimen-
tal order parameter is defined as ~P~. Eq. (19) results.

P - lt I', x - lt
I

',
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the transition

1
g4 (t;N;N ) = g4, o+g4, ity" +g4,2y"' (23)

Hence the intersection of two g4 curves at values of the
spatial size N, N' corresponds to a shifted temperature

t= ' . ,: oci
g4 i y-„' (yI)

—„' (N~) bi~" —1
' (24)

where b = N'/N .
As yq & 0, this shift in the crossing goes to zero as N

grows, while also at fixed N as b grows the shift goes
down, governed by the exponent —1/v.

Actually, in the simulation of SU(N) gauge theories,
the connection between the bare coupling P and the lat-
tice spacing, which allows one to determine the tempera-
ture in units of the reference scale A, is known only in the
asymptotic regime go -+ 0. As noted in [1], this means
that expressing the reduced temperature t in terms of P
through an approximate formula such as

t (opc—p, , ) (26)

introduces an error 0 (P, ) in the determination of t.
This shift is of the order of 8%%uo in the relevant coupling
regime explored, but one should be aware that this esti-
mate would be a posteriori justified by the observation
of an asymptotic scaling behavior, which is absent.

In our search for the determination of the critical tem-
perature this shift is immaterial, as long as a relation of
the form

of the Symanzik action. In other words, in our code the
Boating point performance is slowed by the large number
of integer and addressing operations required to load the
elements of group in the register file: this means that
an analogous implementation for the SU(3) gauge group
should result in a better performance, as the ratio of
Boating point to integer operations would be increased
both in computation and in I/O A.detailed account of
the implementation will be given elsewhere.

In the update of lattices with N = 3, 4, . . . , 8 we have
used an overrelaxed heat bath update. An exact heat
bath algorithm has been implemented, in the modified
Kennedy-Pendleton form [22] which results in higher ac-
ceptance and is well suited to a parallel machine such as
APE; a number of complete overrelaxation sweeps rang-
ing from 10 to 16 has been used to decorrelate between
subsequent heat bath sweeps.

As the Symanzik action couples next-to-nearest-
neighbors sites, on a lattice 2 x N a self-coupling of
spatial links results, and therefore the action is quadratic
and prevents the use of an heat bath algorithin: hence
on these smaller lattices we have used a Metropolis algo-
rithm running on RISC workstations.

In Tables I—VI we present the simulation parameters,
together with the estimated autocorrelation time of the
Polyakov line. The density of states method has been
used to interpolate between simulated data points. See
Appendix B for a discussion of the meaning of the last
column, where the "reweighting range" used in the inter-
polation is listed.

We have also performed a series of runs on large sym-
metric lattices to measure the expectation values of pla-
quettes, U~xq, Uq„2, to be used in determining eH'ective

couplings "in the manner of Parisi. " We list in Table VII
the corresponding run parameters.

is valid.
Therefore Eq. (24) translates in the form V. RESULTS

where

P, (N, N') = P, (1 —cs), (27) A. Determination of critical point
by FSS techniques

1 —b~'

b~(v 1 N (28)
R~~n~ on lattices with N = 2, 3, . . . , 8 and up to N

24 have been devoted to explore the transition region and
measure accurately the Polyakov line.

and the constant c maintains a dependence on N and

p, which is irrelevant in the s -+ 0 extrapolation.
TABLE I. Run parameters.

IV. DETAILS OF THE SIMULATION

Most of the work has been done on the APE supercom-
puter [20]. The model operating at Pisa is the so-called
"tube" machine, a 128 processor parallel computer with
a peak performance of 6 GFlops.

All of the code has been written in the high-level lan-
guage [21] proper of this machine (APEsE), and the pro-
gram rnns at about 35%%uo of the peak speed: this result
is quite good if one takes into account the complications
both in addressing and in memory access due to the use

N N
4 2
4 2
4 2
4 2
8 2
8 2
8 2
8 2
12 2
12 2
12 2

1.340000
1.360000
1.380000
1.400000
1.340000
1.360000
1.380000
1.400000
1.360000
1.380000
1.400000

&meas
40960
40960
40960
16384
16384
38912
38912
38912
36864
45056
49152

32.8
51.3

105.7
79.4
55.0

154.4
314.9

1264.8
142.9
407.1

3349.7

Rew. range
1.28-1.40
1.30-1.42
1.32-1.44
1.34-1.46
1.31-1.37
1.33-1.39
1.35-1.41
1.37—1.43
1.34-1.37
1.36—1.39
1.39-1.41
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TABLE II. Run parameters.

N
6
6
6
6
6
6
6
6
10
10
10
10
10
10
10
10
14
14
14
14
14
14
14
14
18
18
18
18

N
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

1.5600
1.5700
1.5800
1.5900
1.6000
1.6100
1.6200
1.6300
1.5600
1.5700
1.5800
1.5900
1.6000
1.6100
1.6200
1.6300
1.5600
1.5700
1.5800
1.5900
1.6000
1.6100
1.6200
1.6300
1.5800
1.5900
1.6000
1.6100

Nmeas

32?68
32768
32768
32768
32768
32768
32768
32768
30720
30720
30720
30720
30720
30720
30720
30720
30336
65536
65536
65536
65536
30336
30336
30336
22464
22464
22464
22464

3.0
3.4
4.2
4.9
6.7
7.9

10.6
15.3
5.9
8.9

15.9
22.3
53.5

103.6
138.7
327.6

6.5
10.3
17.6
33.6
84.8

206.9
902.2

3.9
12.3
22.1
81.1

563.7

Rew. range
1.52—1.60
1.53—1.61
1.54-1.62
1.55—1.63
1.56—1.64
1.57—1.65
l.58-1.66
1.59—1.6?
1.54-1.58
1.55-1.59
1.56-1.60
1.57—1.61
1.58-1.62
1.59—1.63
1.60-1.64
1.61-1.65

1.551-1.569
1.560—1.578
1.572—1.590
1.579-1.599
1.590—1.612
1.602-1.621
1.612—1.629
1.620-1.639
1.572—1.587
1.584-1.597
1.592—1.606
1.602-1.617

Binder method

In Figs. 1—7 we show the plots of the Binder cumulant,
Eq. (21), for difFerent values of N and N .

TABLE IV. Run parameters.

N
8

8
8
8
8
8
8
8
12
12
12
12
12
12
12
12
16
16
16
16
20
2P

N
5
5

5

5

5

5

5
5
5

5
5
5
5
5
5

5

5

5
5

5

5

5
5

1.7500
1.7600
1.7650
1.7700
1.?750
1.7800
1.7850
1.7900
1 ~ 7950
1.7600
1.7650
1.7700
1.7750
1.7800
1.7850
1.7900
1.7950
1.7600
1.7650
1.7700
1.7750
1.7670
1.7690

Nmeas

16384
40960
40960
40960
40960
57344
40960
40960
40960
39936
39936
39936
39936
23552
23552
23552
23552
28672
28672
28672
28672
18432
18432

6.7
?.4
8.4
9.0

10.0
11.3
12.0
12.4
13.1
14.0
18.2
22.9
28.5
27.5
43.1
55.8
51.6
24.0
24.2
35.6
46.4
52.4
58.5

Rew. range
1.727-1.772
l.738—1.785
1.741—1.791
1.745—l.796
1.?50—1.801
1.755—1.806
1.759-1.811
1.762—1.815
1.770-1.822
1.746-1.774
1.751-1.7?7
1.756-1.783
1.761-1.789
1.766-1.792
1.7?1-1.798
1.776-1.804
1.780—1.8G8

1.751-1.767
1.756-1.774
1.761-1.779
1.768-1.784
1.?61-1.773
1.763-1.774

As the Binder cumulant is not a self-averaging quan-
tity, the resulting bias has been computed, and found to
be relevant for the larger lattices, where statistics is rela-
tively poor: details on the evaluation and subtraction of
the bias are reported in Appendix A.

The solid lines, as well as the dashed lines which are an
estimate of the error, are obtained with our implementa-
tion of the density of states method [23,24], described in

TABLE III. Run parameters.
TABLE V. Run parameters.

N
8
8
8
8
8
8
8
8
12
12
12
12
12
12
12
12
12
12
16
16
16
16
16

N
4

4
4

4
4
4

4
4
4
4
4
4
4
4
4
4
4
4
4

1.6500
1.6700
1.6900
1.6950
1.7G50
1.7100
1.7200
1 ~ 7300
1.6500
1.6700
1.6900
1.6950
1.7000
1.7050
1.7100
1.?200
1.7300
1.7400
1.6900
1.6950
1.7000
1.7050
1.7100

Nmeas

65536
65536
65536
131072
131072
196608
262144
131072
4096
4096
69632
131072
65536
131072
135168
131072
131072
131072
28672
57344
57344
40960
12288

7int

3.2
4.8
7.6
8.7

11.0
12.9
18.5
23.0
3.5
6.6

12.5
15.5
22.?
29.1
50.5
84.4

200.7
351.8
16.3
25.4
52.1
55.4
71.2

Rew. range
1.625—1.675
1.646-1.694
1.665-1.716
1.670-1.721
1.680—1.731
1.686-1.736
1.694-1.746
1.704-1.757
1.637-1.665
1.657—1.684
1.676—1.704
1.81—1.709

1.686—1.?14
1.691—1.?19
1.704—l.724
1.?14—1.734
1.717—1.744
1.726—1.755
1.681—1.699
1.686—1.704
1.691—1.707
1.696—1.714
l.701—1.719

N N
8 6
8 6
8 6
8 6
12 6
12 6
12 6
12 6
12 6
12 6
16 6
16 6
16 6
16 6
16 6
16 6
20 6
20 6
20 6
24 6
24 6
24 6

1.7750
1.8000
1.8250
1.8750
1.7750
1.8000
1.8125
1.8250
1.8375
1.8750
1.7750
1.8000
1.8125
1.8250
1.8375
1.8750
1.8200
1.8250
1.8300
1.8220
1.8250
1.8280

Nmeas

32768
32768
32768
32768
49152
49152
16384
49152
16384
49152
28672
286?2
16384
28672
16384
28672
16384
18920
16384
12288
27008
27008

7int

3.9
5.4
7.5

11.2
5.6

10.1
14.7
19.5
30.6
87.9
7.5

12.0
21.9
30.1
51.2

466.3
30.3
55.0
57.6
28.5
62.9
80.2

Rew. range
1.754-1.799

1.77?5—1.824
1.800-1.851
1.850-1.902
1.762—1.7875
l.787-1.812
1 ~ 799-1.826
1.811—1.837
1.824—1.850
1.861—1.889
l.767—1.783
1.792-1.809
1.805—1.820
1.817—1.832
1.829—1.846
1.886—1.884
1.814-1.825
1.819—1.831
l.825—1.836
1.818—1.826
1.821-1.829
1.823—1.832
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TABLE VI. Run parameters.

N
14
14
14
14
20
20
20
20
16
16
16
16
24
24
24
24
24
24

N~
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
8
8

1.8700
1.8750
1.8800
1.8850
1.8725
1.8750
1.8775
1.8800
1.9000
1.9150
1.9200
1.9250
1.9000
1.9150
1.9180
1.9200
1.9220
1.9250

Nmeaa

9216
11600
12288
9216
15904
17216
18400
14720
13312
11536
13312
16384
18432
29184
10144
20736
10144
6144

31.3
27.2
23.5
32.0
40.7
47.8
58.3
77.4
19.0
34.0
46.2
39.2
33.1
54.5
27.4
54.9
41.4
54.9

Rew. range
1.861-1.880
1.867—1.884
1.872—1.889
1.878-1.892
1.867-1.877
1.870—1.880
1.871-1.884
1.874-1.885
1.891-1.909
1.907-1.922
1.911-1.929
1.918-1.932
1.896-1.904
1.911-1.919
1.914-1.922
1.916-1.924
1.918-1.926
1.921-1.929

-0.7

-0.8

-1.0

g4 -12

-1.3

-1.5

-1.6

-1.7

-1.8

-1.9
1.575 1,580 1.585 1.590 1.595 1.600 1.605 1.610 1.615

FIG. 2. Binder cumulant: lattices with N = 3.

lattice, so we estimate a systematic error of order 10
giving

Appendix B.
The determination of the crossing points as well is

based on the DSM and we report in Table VIII the values
of intersections P, (N, N ) for the different lattices.

We make use of the extrapolation in Eq. (27) based on
the introduction of a single irrelevant field, with exponent

y = —1, to obtain for lattices 3 —6 the infinite volume
limit of the critical coupling:

N = 7, P, ,
= 1.8747 6 0.002 + 0.002,

N = 8, P, ,
= 1.920 6 0.004 + 0.003 . (30)

K g method

Using the two-loop asymptotic formula, Eq. (15), these
values are reexpressed in terms of the T, /Ai ratio in Ta-
ble IX .

N =3,
N =4,
N. =5,
N =6,

P, ,
= 1.596 24(13),

P, ,
= 1.699(1),

P, ,
= 1.76948(3),

P, ,
= 1.8287(11),

a = 0.23(5),
a = 0.20(6),
a = 0.85(10),
a = 3(1) .

(29)

A different way to determine the critical point has been
recently proposed by Engels et al. in [18]. The idea is
to exploit the specific form of the scaling law for the
susceptibility, which can be written as

For what concerns the lattice with N = 2, we have not
enough statistics to distinguish the different intersection
points. As this point is in the strong coupling region, a
high precision determination is not necessary.

For the N = 7, 8 lattices we have only a single cross-
ing, so we can estimate the critical coupling by assuming
some value for the a coefficient. By choosing a 3—5 for
the N = 7 lattice we obtain, having b = 20/14 = 1.43,
a value for s 4.2 x 10; hence, as' 1 —2 x 10
Analogously one obtains as 3 x 10 s for the N = 8

-0.50

taking into account that in finite volume the expectation
value of Polyakov loops is set to zero by spin flips between
degenerate vacua.

Expanding in the vicinity of the transition the expres-
sion in Eq. (18) one obtains

-0.95

-1.05

-0.75

-1.15

-1.25

g4
-1.35

g4 -1.25

-1.50

-1.45

-1.55

-1.65

-1.75 -1.75
1.680 1.685 1.690 1.695 1.700 1.705 1.710 1.715

-2.00
1.340 1.360

I

1.380
I

1.400

FIG. 1. Binder cumulant: lattices with N = 2. FIG. 3. Binder cumulant: lattices with N = 4.
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TABLE VII. Run parameters on symmetric lattices, and expectation values of plaquettes.

N
12
12
14
14
14
16
16
16
16
20
20
20
20
20
20
20
20
20

N
12
12
14
14
14
16
16
16
16
20
20
20
20
20
20
20
20
20

1.375000
1.385000
1.590000
1.595000
1.600000
1.690000
1.695000
1.700000
1.705000
1.769000
1.770000
1.827000
1.828500
1.830000
1.872500
1.877500
1.915000
1.925000

Nrneas

384
384
384
384
384
384
384
384
384

2304
2304
2048
3072
2048
1536
1536
1536
1536

1.0
1.0
1.0
1.0
1.0
1.0
1.1
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.2
1.0
1.0
1.0

UixI
0.51106(11)
0.51488(13)
0.596484(95)
0.598358(84)
0.600174(94)
0.631531(63)
0.633037(61)
0.634699(72)
0.636203(78)
0.654686(17)
0.654941(13)
0.66g217(16)
0.669557(10)
0.669923(13)
0.679420(18)
0.680491(14)
0.688180(16)
0.690137(15)

Uix2
0.25133(14)
0.25561(20)
0.35759(14)
0.36011(12)
0.36261(15)
0.40691(11)
0.409088(g5)
0.41150(12)
0.41371(10)
0.440752(27)
0.441124(22)
0.462206(26)
0.462711(17)
0.463250(22)
0.477325(29)
0.478897(24)
0.490325(27)
0.493229(24)

(N. &
"'

co + ci + c2

»(x-)le=o = »(co)+ —»
l

l+ —
l

fN. I c, FN. )"'
v gN) co ~N)

+c,
lqN )

(32)

Hence, assuming that the effect of the irrelevant is
small (yi —1), at the phase transition the true sus-

ceptibility g, plotted as a function of the spatial size on
a doubly logarithmic scale, should exhibit a linear behav-
ior.

Let us apply this method to the N = 3 lattice. We use
the density of states method to determine y„at various
values of P, and fit the data to a doubly logarithmic law.
The resulting value for the minimum of g2 is at P, =
1.5956(4) at 95% C.L., which is in good agreement with
the g4 determination. One obtains also the slope 7/v =
1.91(3), which exhibits a 3'%%uo difference from the known

value in the 3D Ising model 7/v = 1.965(11).
The same procedure has been applied to the other lat-

I

tices: we Gnd that, when applicable to our data, this
method gives essentially the same result as the method
of the Binder cumulant, so we have used it as a cross-
check of the validity of the analysis.

8. Unisex sal scaling behavior

We may test the universal scaling laws, expressed by
Eqs. (22) and (18), by plotting g4 (t, y) (y = N /N ),
as a function of the combination ty ~, and the analo-
gous expression for the Polyakov loop, N y"~" (lPl): we
choose v = 0.628, i1/v = 0.516, 7/v = 1.965 as given by
the 3D Ising model. In Fig. 8 one may see that the g4

-1.15

-1.20

-1.25

-1.30

-1.35

-1.40

-1.45

-1.50

-1.55
1.755 1.760 1.765 1.770 1.775 1.780

-1.00 ~—

- I. 10

-1.20

-1.30

-1.40

-1.50

-1.60
1.810 1.815 1.820 1.825 1.830

~ 6x8
~ 6x12
+ 6x16
& 6x20
& 6x24

1.835 1.840

FIG. 4. Binder cumulant: lattices with N = 5. FIG. 5. Binder cumulant: lattices with N = 6.
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-1.20

-1.30—

-1.35

g4 -1.40

-1.45

-1.50

-1.55

-1.60
1.870

I

1.875
I

1.880

FIG. 6. Binder cumulant: lattices with N = 7.

values cluster around a straight line, thus supporting the
theoretical conclusions. The agreement is not so good
for the Polyakov line, Fig. 9, which is sensitive to the
self-energy contribution.

B. Critical temperature in the bare scheme

Let us give in Fig. 10 a cumulative plot of the various
determinations of the critical temperature. The data on
the Wilson action are taken from [1] and normalized to
the point at N = 8 (instead of using, for instance, the
perturbative A ratio).

A few comments are in order, the weak coupling regime
appears to be reached earlier in the simulation with the
Symanzik action; in the weak coupling regime the pattern
of asymptotic scaling violation appears to be essentially
the same, by using Wilson and Symanzik actions.

This result is in clear disagreement with the earlier
work by Curci et al. [6], where asymptotic scaling was
found with the Symanzik action already at N = 5.
We have then analyzed our data with the same method,
based on a fit to the critical behavior of the Polyakov
line. For p ) p„ the form

(33)

is assumed, while for p ( p, the Polyakov line is set

-1.25

TABLE VIII. Crossings for g4 curves.

N
2
2
2
3

3
3
3
3
4
4
4
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
7
8

N
4
4
8
6
6
6
10
10
14
8
8
12
8
8
8
12
12
16
8
8
8
8
12
12
12
16
16
20
14
16

N i

8
12
12
10
14
18
14
18
18
12
16
16
12
16
20
16
20
20
12
16
20
24
16
20
24
20
24
24
20
24

C

1.380(4)
1.380(2)
1.380(4)
1.595(1)
1.5955(8)
1.5958(5)
1.5956(12)
1.5960(7)
1.5963(15)
1.6984(7)
1.6987(5)
1.699(1)
1.7669(12)
1.7678(8)
1.7682(7)
1.7684(15)
1.769(12)
1.769(3)
1.812(4)
1.817(2)
1.822(2)
1.824(1)
1.823(5)
1.828(2)
1.825(1)
1.830(4)
1.825(2)
1.824(3)
1.8747(20)
1.920(4)

-0.8

to zero: this introduces some arbitrariness in the fitting
procedure. In fact, using Eq. (33) to determine P, one
is forced to discard data points assumed to be on the
"left" of the transition. Moreover, on the "right" side of
the transition (smaller lattice spacing) there are stronger
renormalization eEects, and these introduce a systematic
which could be reduced by subtracting perturbative tails.

In Fig. 11 we show the data points, together with the
results of a three-parameter fit to the critical behavior:
the study is done for lattices 3 x 10,4 x 12, 5 x 16.

-1.30

-1.35

g4 -1.40

-1.45

-1.50

g4

-0,9

-1.0

-1.2

-1.4

-1.5

-1.6

-1.7

"' lL-

4 ilies '

o 3x[6, 10, 14, 18]
& 4x[8, 12, 16]
& 5 x [8, 12, 16, 20]
~ 6x [12, 16, 20, 24]
~ 7 x [14,20]
& 8 x [16,24]

3QAI f~
t m senal

' ~~rr
+ ~'NIL' [~r~

III gP

-1.55
1.9150

I

1.9175
I

1.9200
I

1.9225
I

1.9250

-1.8

-0.4 03 02 01 00 01
t (NJN, )

I

0.2
I

0.3 0.4

FIG. 7. Binder cumulant: lattices with N = 8. FIG. 8. Universal scaling behavior of Binder cumulant.
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2.0 0 40

1.5

t- 1.0

0.5

o 3 x [6, 10, 14, 18]
o 4 x [8, 12, 16]
h 5 x [8, 12, 16, 20]
~ 6 x [12, 16, 20, 24]
~ 7 x [14, 20]
4 8 x [16, 24]

1 J1%11Ij$J~]~ Ill 'Illus( ~-

+t+ W+

p+ ++
@++

0.30

A
0.20

V

~ 3x10
~ 4x12
+ 5x16

0.0
-1.0

I

-0.5
(Iiv)

t (N JN, )'
0.5 1.50

t

1,60
t

1.70 1.90

We can exploit the high precision data obtained with
the Wilson action by Fingberg et al. [1] to give in Ta-
ble XI the resulting determination of A ratios, by using
the asymptotic formula

(p &
"'"

(34)
Ar. &Pr. )

&pr, —pr&
exp

/( 4C bp )
These values are to be conh. onted with the perturba-

tive results from Weisz and Wohlert [25],

= 4.13089(1),
L

showing a discrepancy of the order of 10%%uo.

9,0

FIG. 9. Universal scaling behavior of Polyakov loop.

Results of the fit are shown in Table X, together with
the value of the best reduced y found. Errors are esti-
mated with the method of y equisurfaces.

The resulting critical temperatures are also reported
in Fig. 10. The high value of the reduced y, especially
on the 4 x 12 lattice, shows the bad quality of the fit,
but for our purposes it is important to point out that
the finite volume "critical" temperature determined by
this method shows no sign of asymptotic scaling. On
the contrary, it is present only a constant shift from the
infinite volume limit, and we conclude that the results of
[6] were hampered by a insufficient statistic.

Pertur'batiste A ratio

FIG. 11. Critical behavior of Polyakov line.

VI. DISCUSSION OF RESULTS

1 11C~ 1 34C

(4vr) 3 (4z )
(36)

The P function determines the dependence of lattice
spacing a on the g value:

We can resume the outcome of our simulations as
follows: Symanzik and Wilson actions give consistent
results in the so-called "bare" scheme; that is, the
renormalization group evolution driven by a scheme-
independent part of the perturbative p function does not
seem to show the scaling of the temperature. The pattern
of scaling violation is similar, at least for N ) 4.

On the other hand it is well known that adimensional
ratios of physical quantities show a good scaling in the
coupling range considered in this work, at least in the
case of Wilson action, where the ratio T,/or~2 has been
showed to scale over the entire P = 2.30 —2.74 range [1].

In our opinion these two facts, that is, the good scal-
ing and the similar pattern of asymptotic scaling viola-
tion in the two actions, are consistent: as anticipated, in
the scaling region the improvement has no effect on the
asymptotic scaling.

Let us first elaborate on the statement that the two
scaling figures are compatible with each other: to do this,
we set up a perturbative &amework and discuss the ef-

fect of the coupling redefinition implied by the use of the
Symanzik action.

We split P(g) in the universal P„= —bpg —big and
in the scheme-dependent (unknown) part P, g = O(g ),
where

+ ——~ Symanzik: FSS determination
/ ~ —& Wilson: FSS determination ( Fingberg et al. )

+- — —+ Symanzik: critical behavior determination
t

FIG. 10. Plot of the T,jA ratio by use of the "bare" scheme.

N
2
3

5
6
7
8

C

1.380(4)
1.59624(13)
1.699(1)
1.?6948(3)
1.8287(11)
1.8747(30)
1.920(5)

T /At
8.81(8)
9.889(3)
9.526(30)
9.0562(7)
8.73(3)
8.38(6)
8.2(1)

TABLE IX. Critical temperature by two loop asymptotic
scaling formula.
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,' +) c„g'"+' dg+C =—
b2g

a(a) = (bo~') *"exp
I
—,

i
1+a') d-g'"

AL, E 2bog')

b
~ 2m+2

2b, ~ -b"(")- 2.+2

(37)

The coefficients d„ in Eq. (37) are generated by P, s, they play the role of asymptotic scaling-violating terms. For
instance, in terms of the first subasymptotic term in P, s, the b2 coefficient, one easily finds

1 ~b2 t'bi't '~
0 =

2bo (bo (bo)

If we redefine the coupling constant

g —g(g) =g+~lg +o'2g +'''+o' g +''' (39)

we obtain

l t

a(g) = (bog ) "o exp
~

—
~

1+g ) d'„g"
AL, ( 2bog )

(40)

This is the evolution dictated by a new P function
&*(~)

fbi 3ui l
do = do —ai

~

—2+ I
+ —

~

L, bo2 2bo) bo
' (44)

P*(e) = P[g(g)] l l

= /3 (e) +/3:.s (g), (41).

and the nonuniversal terms are changed, for instance, one
has

b2 = b2 —2ayby —3aybo + 2bon2 (42)

On the other hand the asymptotic scaling-violating con-
tribution is changed,

The prefactor exp (ai/bo) redefines the scale parameter;
consequently,

(A*&
~i = —bo»

I

PAL )

and one may hope to reduce its effect by a clever (and
physically motivated) choice of g.

To study if the asymptotic scaling violation can be as-
cribed to the d2 terms, we have performed an exploration
of values of b2 for both actions: in Fig. 12 we show how
setting values of 62 for Wilson and Symanzik actions to
0.0018,0.0011, respectively, one is able to obtain a good
scaling: the N = 2 term has been dropped for clarity.

On the other hand, we are well aware of the arbitrari-
ness of the procedure, as we have checked that this fit
procedure is unstable if also the coefficient bs is intro-
duced. This is easily understood as values of b2 so large
are hard to justify on a perturbative ground: too see this
consider the running coupling equation in terms of the
characteristic /CD coupling, o.,/ (4z'),

3 &4m 3 &4z.
+ —' +(4~) b,

i

—'
& 4'

(45)

N
3
4
5

P-
1.588(2)
1.687(2)
1.759(3)

TABLE X. Results of the fit.

T/A A
9.70(5) 0.76(4)
9.25(3) 0.66(4)
8.82(5) 0.47(2)

0.35(2)
0.40(2)
0.38(2)

x'
5.4

15.3
4.0

for instance at P 1.9 one has o.,/(4z) 0.013, which
means that the last term in Eq. (45) is of the same order
of magnitude as the preceding one. So we can merely
regard this procedure as the definition of an effective b2,
much in the spirit of the efFective A used in [26].

A. Perturbative approach: a coupling

Let us consider more closely the poor convergence of
the speculative expansion given in Eq. (45): in the pre-
ceding subsection we looked for an appropriate b2 coef-
ficient without any physical motivation. On the other
hand, Lepage and Mackenzie [3] point out how a bad
choice of the expansion parameter may give rise to a
poorer convergence of the perturbation series, and they
suggest strategies to design improved couplings, defined
in terms of physical quantities.

This is much in the spirit of the old suggestions of
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4.25 (
n„(q ) =o. 1+n (47r)bpln

~
~

+K
4 q)

, (47)

where the constant K can be extracted by Kovacs'
work [27]: she reports

= Syrnanzik: b, = 0.0011
+ ——& Wilson: b, =0.0018 C.

V(q) oc —— bpln
~ ~

+ JL, . (48)
q~

~
(~~A&~) (4~)~

Numerically one finds

N,

—16.954 for N = 2,
—19.695 for N = 3 . (49)

FIG. 12. "Bare" scheme corrected with the 6rst subasymp-
totic coeKcient of the P function.

Parisi, to define an effective coupling by inverting the
perturbative expression for some ultraviolet-dominated
quantity, such as the single plaquette.

In [3] it is suggested to define an effective coupling n„
in terms of the quark-quark potential by the relation

To translate the result for the Symanzik action it is
sufficient to rescale A factors and impose equality in the
physical result. The defining relation is

C. ( 1 l C.
bpln~ ~ ~+ ~Jl, =bpln~ —

~ ~+ ~Jr. (50)gA') (4 )' qA,'y (4 )'

One obtains easily, for SU(2),

V q
Cy (4x) n„(q')

g2
(46)

(Al&'
3 (Al )

(51)

This coupling can be perturbatively related to o.o, the
bare lattice coupling, by the formula

It is then possible to use the result of Weisz and
Wohlert [25] on the A ratio:

and it follows that

1 ( 1= exp
~

C [0.04329017(l)] — [0.04141417(1)]
~(4rr) bp (

4.13089(1), for K = 2,
5.292 10(1), for N = 3,

I

and the two-loop scaling formula

—6.54859 for N = 2,
—7.47609 for N = 3 . (53) q 1 1

A„(87r) bp n„(q)
](

2bQ (47rb a„Q(q) )
Translating into the expression for E, one easily obtains (57)

2.69831 for N = 2,
4.7018 for N = 3,

1.04224 for N = 2,
1.78479 for N = 3 .

(54)

I et us report in Tables XII and XIII the results of the
analysis both for the Wilson and the Symanzik case.

It appears that the use of a perturbative expression for
the effective coupling o.„does not give a better asymp-
totic scaling. It should be stressed however that this was

merely an exercise, as the Lepage scheme is intended to
work in conjunction with a nonperturbative determina-

We can now use the value of o.o to set the value

a„(m/a): one has obviously

~„(~/a) = np (1+apItl, (r)) (55)

T 1

A vrN aA„
(56)

For a given value P = C /(27ra ) of the measured
critical coupling, the corresponding critical temperature
in the o; scheme may be obtained by using the relation

N
2

3
4
5
6
8

Pr
1.380(4)
1.59624(13)
1.699(1)
1.76948(3)
1.8287(ll)
1.920(5)

A.
1.8800(30)
2.1768(30)
2.2986(6)
2.3726(45)
2.4265(30)
2.5115(40)

Ar/Ar,
3.599(46)
4.470(35)
4.713(14)
4.766(56)
4.709(39)
4.644(77)

TABLE XI. A ratios from asymptotic formula.
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TABLE XII. Perturbative 0,„:Wilson case.

N
2
3
4
5
6
8
16

Ap

0.1693(3)
0.1462(2)
0.13848(4)
0.1342(2)
0.1312(2)
0.1267(2)
0.1162(4)

0.2466(6)
0.2039(3)
0.19022(7)
0.1828(3)
0.1776(3)
0.1700(3)
0.1526(6)

T/Al,
29.7(2)
41.4(3)
42.1(1)
40.6(5)
38.7(3)
36.0(4)
32.0(S)

T/A„
2.27(2)
2.89(2)
2.848(4)
2.69(2)
2.54(2)
2.32(2)
1.97(4)

tion of the coupling a, based on the measurement of the
heavy-quark potential.

10.0

E

8.5

7.5

7.0
3

- Symanzlk. bare scheme
~ ——~ Symanzik: eff. scheme {plaquette 1x1 )
+- —+ Symanzik: eff. scheme {plaquette lx2 )
a- - ~ Wilson: eff. scheme {plaquette 1x1 )

N,

B. Nonperturbative approach
FIG. 13. Comparison of "bare" and effective schemes.

The bare coupling itself has no meaning in itself, so
it must be eliminated in favor of some physical quantity,
connected to it. In the perturbative approach this is
a way to hide infinities and obtain a renormalized field

theory.
A simple way to implement this program on the lattice

is the elimination of the bare coupling in favor of some
UV dominated quantity, such as the expectation value

of plaquettes. To this end, let us recall the results of
the work of Weisz and Wohlert [25] on their perturba-
tive expansion: by defining, for simplicity in the adjoint
representation,

1 2n

(T U(L, T)) = —). ,
~. (L,T), (»)

m=1

measured. That is, knowing that

1 g
2

ln (Tr U(L, T)) = ——CyI (L, T)
2

and given P =, , we define
g

I(1 1(2))
1(2) — a f

U1 x 1(1x 2)

Numerically, for the SU(2) case, this corresponds to

0.549393 (0.993936)
1(2) =

U1 x 1(lx 2)

(61)

(62)

(63)

the first coefBcient is given by

1U1 (L,T) = CyI (L, T)

and the following values are given:

Wilson,
0.366 262 Symanzik,

0.862 251 Wilson,
0.662 624 Symanzik .

(6o)

CoeKcients for the Wilson case are known up to fourth
m4, while for Symanzik we shall limit ourselves to lowest
order.

This allows one to define two effective couplings in the
Symanzik case, depending on the two expectation values

By using the results of measurements on large symmet-
ric lattices we can obtain via interpolation the values of
plaquettes needed to compute the effective coupling: we
report the results in Table XIV.

We plot in Fig. 13 the comparison of the difFerent
schemes, together with the Wilson data, taken from [1],
in the efFective scheme deduced from the single pla-
quette. As usual we normalize to the last point: we drop
the point at N = 2 to show in a larger scale the other
points. It is worth noting that the two effective schemes
used for the Symanzik action agree with each other, they
both show a good scaling starting at N = 4, and the
same scheme used with Wilson action seems to show,
starting at N = 5 the same behavior.

We think that these results can be interpreted as a
confirmation of the value of effective schemes, and as an

TABLE XIII. Perturbative n: Symanzik case.

N~
2
3
4
5
6
7
8

CIp

0.2306(7)
0.19941(2)
0.1873(l)
0.179889(3)
0.1741(1)
0.1698(3)
0.1658(4)

0.286(1)
0.24085(3)
0.2239(l)
0.213616(4)
0.2057(1)
0.1998(4)
0.1944(5)

T/AI
8.81(8)
9.889(3)
9.526(30)
9.0562 (7)
S.73(3)
8.38(6)
8.2(l)

T/A
1.49(l)
1.627(6)
1.549(2)
1.461(1)
1.398(2)
1.34(1)
1.30(1)
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TABLE XIV. Data for the effective schemes.

1.380(4)
1.59624(13)
1.699(1)
1.76948(3)
1.8287(11)
1.8747(30)
1.920(5)

Pi
1.1280(35)
1.36942(16)
1.5026(13)
1.59156(3)
1.6628(13)
1.7163(34)
1.7674(56)

Ti/Ai
1.832(15)
2.15542(83)
2.2247(73)
2.2072(2)
2.1876(70)
2.136(18)
2.119(29)

P~
1.331(30)
1.55480(16)
1.6876(13)
1.77784(3)
1.850(1)
1.9041(34)
1.9557(56)

T2/Ag
2.953(21)
3.3651(13)
3.485 (12)
3.4781(3)
3.462 (11)
3.391(29)
3.371(47)

indication that Symanzik action gives an enlargement of
the scaling window.

context but with the Wilson action, and comparison of
the two analyses shows that Symanzik action apparently
gives a slightly precocious scaling.

In our study we are unable to directly test the scal-
ing, so it could be a desirable zero temperature study
of some other dimensionful quantity, like masses or the
string tension.

From a practical point of view, if we are willing to trust
the precocious onset of scaling in the effective scheme, we
can say that the gain in volume obtained by use of the
improved action compensates the increased complexity
in the update routine, thus slightly favoring the use of
this technique in simulations. This should be even more
true in the case of the SU(3) group.

VII. CONCLUSIONS

In this work we have performed a high statistics simula-
tion of the SU(2) pure gauge theory at finite temperature,
using the tree-improved Symanzik action and exploring
a range of lattices up to N = 8; we have determined,
with the help of finite size scaling methods, the criti-
cal couplings for the deconfinement transition, with the
purpose of studying the scaling properties of the critical
temperature and the effect of improvement.

We can resume as follows our findings.
Asymptotic scaling violations are present, and are of

the same size as in the case of Wilson action. The pattern
of violation is similar and can be interpreted as driven by
the same lattice P function, modulo scheme redefinitions.
This means either that lattice artifacts are small, or they
are the same for the two actions, in accordance with pre-
vious determinations of the scaling window.

The use of a nonperturbative coupling derived &om
the plaquette expectation value gives a better scaling fig-
ure: this effective coupling was already used in the same

I
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APPENDIX A: STATISTICAL EVALUATION OF
BINDER'S CUMULANT

In order to extract in a reliable way the quantities we
are interested in &om a set of N measures we have to
correct for the distortions induced by the finite sampling.
It is well-known that often the "naive" estimator for a
statistical quantity is not the best one. The much sixnpler
and well-known example is the estimator of variance 0.

for a set of N uncorrelated data x;. One may try

(1 ". ,l (1 ". l t1
Es(&') = E((~')) —E((*))'= —):*,' — —) ~; —).*,*) (N, - ') IN

(Al)

but, owing to the fact that E((x)) is a random variable with a finite variance the estimator s expectation value is

(A2)

E(o)= N/(N —1. ) Eg(o).(A3)

which gives the correct result (E(a )) = o 2.
Now we want to study Binder's cumulant g4 of a ran-

dom variable L, where the general cumulant g2„(in the
(L +i) = 0 case which is of interest to us) is defined as

which is "biased" by a finite sample efFect 0( i ). To
evaluate in the best way cr we must correct for this bias:
this can be done using a new redefined estimator

(L2n)

(L2)n '

(L'). (L')
(L2)2 (L2)2

(Ls) —15(L2)(L4) + 30(L2)s

(L2) 3

(A4)

(A5)

(A6)

The "natural" estimator for g4 over a set of N mea-
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surements is given by Buctuations g2 and g4 defined by

g4 —— —) L, i

—) L,
(N - ') i N - ') (A7)

»= —) L,'. —(L'),

but as we will see this is not a self-averaging quantity,
in the sense that (g4) g g4, and we have to redefine
it. To calculate the bias of g4 we introduce the O(~)~i@

) L4 (L4)

and we expand Eq. (A7) around q = 0, to obtain

(As)

g4 g2»g4 t'1 l
(L') (L') (L')' (L') (L')

Now to evaluate the corrections we take the expectation value, and we get

where

(.) = ~ 1+ „,(.)- 2
(L2)(L4)("'"4)+'~ m '

(A10)

and

C(L', L4, 6) + C(L', L', 6) —1

2C(L, L, b) —1
~

Y 6 (( ' —( ))( '+~ —( )))
(x; —(x))(Y, —(Y)))

N 1—
("")= —„((L')-(L')(L')) ): „8=0

(N —z

(.:)= —„((L')-(L')') ). N (A11)

(A12)

If N is much bigger than the correlation times of interest then C(X, Y, 6) 0 for 6 & 6, with E ( n, so we can write
approximately

(»g4) = —((L ) —(L )(L )) Ti&t(L L )+T&pi( L, L ) —1
1

(nl) = —((L') —(L')') [2~'- (L' L') —1j,

(A13)

(A14)

where we have defined the integrated autocorrelation time

~;„t,(X,Y) = ) C(X, Y; h).
b=o

In order to correct for the O(~) bias we note that in Eq. (A9) the terms linear in the Huctuations do not contribute
to the expectation value. So it is sufhcient to define an "improved" estimator y4 as

(A16)

To the order we are working we can substitute the quadratic Huctuations terms with the "naive" estimator for their
expectation value, and we obtain

* iv Ei i 1 —— ~ ' * —1 E [2r;~t(L, L ) —1]N (~~, Q, L,2L2

—1 ~ E [~;„(Li, L ) +~; t,(L, L ) —1]
L, I, ). (A17)
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To evaluate the variance of g4 we can write, using Eq. (A16),

* * (n') (n') (n n )
(g4) ((g4) ) g4 94 (Lz)2

+
(L4)z (Lz)(L4)

(A18)

We can estimate this quantity to the lowest order with

E ~'(g4) = —1 ~E 2~;ut(L, L ) —1

1 E 2~;„t(L,L ) —1

I ~ E r;„t(L ) L ) + r;„ (tL, L ) —1 (A19)

APPENDIX B:DENSITY' OF STATES METHOD

To extract the value of an observable 0 &om a Monte Carlo simulation we average over the sequence of values 0,
generated by the algorithm. This is nothing else than an approximation of the path integral formula

f DQO [@]exp ( PS [g]) — 1

f DQ exp (—Ps [@]) N
(B1)

Using the fact that we know the probability distribution for the fundamental fields we can extrapolate the observable's
value around the P value we have used in the simulation. To this effect we note that

f 'DQO [g] exp (
—EPS [@])exp (—Ps [Q]) (O exp (—APS)) (P)

fvy. ( ~ps-[y]). ( ps [y-]) (. (-~ps))(p)

(o)(~+ ~~) = ~ '-' '~"
P,. exp (—APS;)

(B2)

so it is suKcient to measure the action S, correlated
with each 0; value, and resum each measure according
to Eq. (B3). The "resummed" value will be reliable only
for small b,P,because we have a good statistical sampling
of action distribution only in a small range around the
mean value, so we must do a preliminary determination
of the allowed resummation range. During our simulation
we have used essentially the same method as Alves et al.
in [28]: we plot histograms of the energy distribution, we

set a minimum and maximum energy by imposing that
at least 2.5% of the energy distribution is present below

the minimum and above the maximum, and we translate
this energy range in a P range by finding the P shifts that

via resummation give the found energy limits.
If the resumming ranges of different simulations over-

lap we can "patch" the values coming from different ex-

trapolations to obtain a more accurate estimate.
The determination of an unbiased estimator for the

resummed Binder cumulant and its variance can be ob-
tained with the same method as in Appendix A. We only
note that there are some complications when we combine
together different extrapolations, because in this case to
cancel the bias we must use an improved estimator for the
variances, depending on many-point correlations which
can be estimated reliably only with very high statistics.
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