PHYSICAL REVIEW D

VOLUME 49, NUMBER 10

15 MAY 1994

Singularities formed by the focusing of cylindrical null fluids
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Motivated by the recent studies of the late stages of gravitational collapse, the collision and interac-
tion of cylindrically symmetric null fluids are studied. By investigating analytic models, we find that a
naked singularity can be developed. This singularity is different from the ones found previously in the
sense that it is solely formed by the mutual focus of the null fluids.

PACS number(s): 04.20.Dw, 04.30.Nk, 97.60.Sm

1. INTRODUCTION

One of the most thorny and important problems in
general relativity (GR) is gravitational collapse. It is well
known that GR admits solutions with singularities, and
that such singularities can be formed by the gravitational
collapse of matter satisfying nonsingular, physically
reasonable initial conditions. If clothed by event hor-
izons these singularities would not cause any problem [1].
However, if the other alternative exists, that is, if these
singularities are not clothed and instead are naked, it
would be a disaster, since this will mean that no predic-
tion can be made about the further evolution of a region
containing such a singularity and that new information
could emerge in a completely arbitrary way. To prevent
such events from happening, several conjectures have
been proposed [1-3]. So far, these conjectures can be
considered only as hypotheses; even more, they have not
yet been properly formulated.

To study the above issue in its most general terms is
extremely difficult; instead, the attention has been fo-
cused on finding counterexamples [4—7]. In this way, we
can hone the conditions to prevent the formation of
naked singularities. In the past, most of the studies were
restricted to spherical collapse [4]. Recently, the numeri-
cal stimulations of Shapiro and Teukolsky [6] and the an-
alytic investigations of Barrabes, Israel, and Letelier [7]
indicate that naked singularities may also arise in non-
spherical collapse. In particular, Shapiro and Teukolsky
found that a spheroid of collisionless gas always collapses
into a spindle singularity. If the spheroid is sufficiently
compact, the singularity is hidden inside a horizon. If
the spheroid is elongated enough, no apparent horizon is
developed, and most likely naked singularities are formed
at the sharp ends of the imploding spheroid. These re-
sults are consistent with the earlier conclusions of Thorne
[5], obtained by studying the collapse of a cylinder, which
can be considered as an infinite version of a finite
spheroid.
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In this paper, we shall study the collision and interac-
tion of two null fluids in the course of the gravitational
collapse. The motivation is twofold. First, let us consid-
er the collapse of a spheroid. According to the results
presented in Ref. [8], the spheroid will emit gravitational
radiation. This radiation then interacts with the space-
time curvature, and will be partially backscattered and
move inwards. Before the backscattered radiation is ab-
sorbed by the collapsing spheroid, it will collide and in-
teract with the outgoing radiation. Because of the non-
linearity of the Einstein field equations, such collisions
and interaction could play an important role in the gravi-
tational collapse. If the collision and interaction happen
when the radius of the curvature of the background is
large, the graviton geometric optics approximation
should be an accurate approximation, and the ingoing
and outgoing fluxes can be approximately considered as
null fluids [9,10]. Alternatively, we can consider the col-
lapsing spheroid as consisting of some kind of fluid. Dur-
ing its collapse, some of the fluid will be reflected by the
symmetry axis and move outwards. Therefore, in the
latter case, the space-time will be filled with both ingoing
and outgoing fluids. Since a realistic spheroid would tend
to fall at nearly the speed of light during the late stages of
the collapse, it is reasonable to consider the ingoing and
outgoing fluids as being null, too.

It is clear that the analytic study of this problem in the
space-time of spheroids is a very difficult task. In this pa-
per, instead, we shall borrow Thorne’s arguments [2,5],
and study it in a space-time with cylindrical symmetry.
This simplification will allow us to consider analytic mod-
els and to explore the global properties of the space-time,
including the formation of event horizons.

The rest of this paper is organized as follows. In Sec.
IT the space-time with cylindrical symmetry is briefly re-
viewed, while in Sec. III the gravitational collapse of a
single null fluid is studied. In particular, it is found that
the collapse always forms an intermediate singularity at
the axis, although it does not form a scalar one. Thus,
Morgan’s earlier conclusions [9] regarding to the singu-
larity behavior of null fluids need to be revised. In Sec.
IV we study some specific examples that represent the
collision and interaction of two null fluids on certain
space-time backgrounds. It is found that, due to the non-
linear interaction of the two null fluids, a space-time
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singularity can be formed in the interaction region. Sec-
tion V contains our concluding remarks.

II. THE SPACE-TIME WITH CYLINDRICAL SYMMETRY
AND THE NULL FLUID SOLUTIONS

To facilitate our discussions, in this section we shall re-
view some general properties of the space-time with cy-
lindrical symmetry, and the corresponding null fluid solu-
tions of the Einstein field equations. Cylindrical space-
times with two orthogonal Killing vectors are character-
ized by the metric [11]
ds*=e Udt?—dr?)—e "e%dz’+e " %d¢?} 2.1
where , A, and ® are functions of ¢ and r only. ¢ is the
timelike coordinate, r the spacelike radial coordinate, and
z and @ are the axial and azimuthal coordinates, respec-
tively, with —o<t, z<+ow, 0r<-+ow, and
0<¢p=2m.

Since we are concerned with null fluids, it is convenient
to work with a double null coordinate system (u,v),
which is defined as

_t—r

t+r
m=—, V=—= . 2.2
TR VT 2.2)
In terms of u and v, Eq. (2.1) takes the form

ds*=2e " %du dv—e t{e®dz’+e%dp?} ,

(2.3)

but 2, h, and ® are now functions of u and v through the
relations (2.2).

To study the null fluids, it is also convenient to intro-
duce the null vectors / u and n ut

— 0 —sl
I#—B# y n,=8,, (2.4)
where the coordinates are numbered as
{x*}={u,v,2,¢},0=0,1,2,3. From Eqgs. (2.3) and (2.4)
we find

(2.5)

where a semicolon denotes covariant differentiation,
while a comma denotes partial differentiation. Equation
(2.5) shows that each of the null vectors / » and n, defines
an affinely parametrized null geodesic congruence. Thus,
the quantity

Q=—1",=e%, (2.6)
represents the rate of contraction of the null geodesic
congruence defined by /,, and the quantity

Q,=—n*,=e"%, 2.7)
represents the rate of contraction of the null geodesics
defined by n ,.

K 0) 1 (0) g(0) .
Assuming that {Q™,h',®'%’} represents a solution of

the Einstein field equations

R —1g0RO=—T(), (2.8)
where R D) denotes the Ricci tensor built by the metric

g0, and T'2) the corresponding energy-stress tensor,

then [11]
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(Q,h,®}={Q+a(u)+b(v),h 7,0V}, (2.9)

represents a new solution of the Einstein field equations
with the energy-stress tensor given by

T =p,I*l,+p,ntn, +e? ToT 08 | (2.10)

where T'O* is given by Eq. (2.8); p; and p, are defined as

p1=a'(wh , , p,=b'w)h, , 2.11)

and a(u) and b (v) are functions of their indicated argu-
ments. A prime denotes ordinary differentiation. The
first term in the right-hand side of Eq. (2.10) represents a
null fluid moving along the null geodesics defined by /,,,
while the second represents a null fluid moving in the op-
posite direction, namely, along the null geodesics defined
byn,.

Although the quantities p; and p, have no definite
physical meaning, the combination of the two null fluids
indeed has [12]. As a matter of fact, the first two terms in
Eq. (2.10) can be cast into the form [12]

plyl, +pmyn,=p {Uva+x,,xv] , (2.12)
where
p 1/4 o 172
=02 (12 Ll
U,=e 4, [n‘ﬁ- o) l“},
p 1/4 o 172
—,—012 1 2
Xu=e - l,—|— n,t, (2.13)
# 4p, [“ P ”)
P=en(p1p2)1/2 ,
with
U U= —=xax*=1, U,x*=0. (2.14)

From Egs. (2.12)-(2.14) we can see that the sum of the
two null fluids behaves like an anisotropic fluid, the pres-
sure of which has only one component along the X, direc-
tion, and the amplitude of the pressure is equal to the en-
ergy density of the anisotropic fluid. Moreover, this fluid
satisfies all the (weak, dominant, and strong) energy con-
ditions [13].

It is interesting to note that the above physical inter-
pretation holds even for the case where p,, p, <0. The in-
teraction of two null fluids was recently considered by
Taub in the context of colliding plane waves [14].

III. THE GRAVITATIONAL COLLAPSE
OF A SINGLE NULL FLUID

To have a better understanding about the collision and
interaction of two null fluids, it is found useful first to
consider the gravitational collapse of a single null fluid.
This problem was first studied by Morgan [9]. By consid-
ering the continuity of the energy density of the null fluid
at the axis, it was found that no space-time singularities
were developed. However, recent studies of the interac-
tion of waves with cosmic strings [15] show that it might
not be the case. We can have that although the Kretsch-
mann scalar vanishes, the tidal forces felt by freely falling
test particles may become unbounded, which indicates
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that a nonscalar or intermediate singularity is formed
there [15,16).

Motivated by the above considerations and the obser-
vations that the quantities Q, and Q, defined by Egs. (2.6)
and (2.7) become unbounded at the axis » =0, we reexam-
ined the above problem, and found that Morgan’s earlier
conclusions [9] regarding singularity behavior need to be
revised. When a cylindrical null fluid collapses, an inter-
mediate singularity is always formed. To show this ex-
plicitly, let us consider the timelike geodesics in such a
space-time. The metric that represents the gravitational
collapse of a null fluid in an otherwise flat background
takes the form

ds*=2e " *“du dv—dz*—r¥d¢*, 3.1)
with the energy-stress tensor being given by
T, =—28), (32

T gy e

In the following we shall assume a'(u)<0. Then, the
timelike radial geodesics are given by

ii—a'(wu*=0, =0, (3.3)

where an overdot denotes the differentiation with respect
to the proper time 7. The first integration of Eq. (3.3)
yields
+alu)
a=e" Y 5=e", (3.4)
where a, and b, are integration constants. The condition
x#x'g,, =1 requires exp[a,+by]=1/2. Setting t#=x*,
we find that the unity vectors

ay+alu)

— bO
th=e ot +e %84,

M =e ok —eosk | (3.5)

form an orthogonal tetrad

t”}\( 0, )\'{Ja))\'(b)‘u,=—-8ab (a,b=1,2,3) > (3.6)

a)yz

and have the properties

Mayusrt "=t ,yt"=0 . (3.7)

v
The last equations show that the tetrad is parallel trans-
ported along the timelike geodesics defined by ¢*. There-
fore, they define a freely falling frame.

From Egs. (3.1) and (3.5) we find that in this frame
there is only one independent component of the Riemann
tensor:
2ay+2atw) a'(u)

Vor

Obviously, when it is approaching the hypersurface r =0,
this component becomes unbounded. On the other hand,
one can also show that in the present case all the physical
scalar-invariant quantities are finite. Therefore, we con-
clude that the collapse of a cylindrical null fluid always
forms an intermediate singularity. Note that in Ref. [15]
it was shown that an intermediate singularity was also

R, o5t A5t A =e

pvo

(3.8)

formed due to the interaction of a cosmic string with an
electromagnetic wave.

By the study of scalar-wave propagation, King [17]
suggested that these intermediate or nonscalar singulari-
ties might not be stable, and give origin to strong curva-
ture singularities. The solutions to be presented in the
next section can be considered as an example in favor to
King’s conjecture, since we shall show that the intermedi-
ate singularity appearing in the collapse of a single cylin-
drical null fluid is indeed turned into a scalar one due to
the mutual focus of the ingoing and outgoing null fluids.

IV. COLLIDING NULL FLUIDS

The collision of two spherical null fluids was recently
considered by Poisson and Israel [10]. They found that
such solutions can give rise of the phenomenon of mass
inflation. Following a similar line, in this section we con-
sider the collision of two cylindrical null fluids. Let us
consider a situation where a cylinder is collapsing. As-
sume that at a moment, say, t=t,, the cylinder emits
some particles with zero mass. These particles consist of
a null dust cloud moving outwards. Meanwhile, we also
assume that there is another null dust cloud which moves
inwards. The latter could be created by the backscatter-
ing of an outgoing null dust cloud that was emitted by
the collapsing cylinder at a moment t=t¢, (¢, <t,). Al-
ternatively, this situation can also be justified by consid-
ering a collapsing cylinder consisting of a null fluid, as
described in the Introduction. Before the two fluxes meet
each other, a region of the space-time remains unper-
turbed (cf. Fig. 1). At the moment t=t,>1t,, the two
null dust clouds collide on the surface r=r(, and after-
wards they will mix each other and behave as an aniso-
tropic fluid as described by Eqs. (2.12)-(2.14).

In the (u,v) plane, the above various regions are num-
bered as follows (cf. Fig. 2). Region IV (u <ug,v <v,):
This is the region where the two null dust clouds have
not met each other yet. So the space-time in this region
remains unperturbed. Region III (u <uy,v >v,): In this
region, the outgoing null dust cloud is propagating out-
wards along the null geodesics defined by n p With the hy-
persurface v =v, as its leading wave front. Region II
(u>ugy,v <vy): In this region, the ingoing cylindrical

I

FIG. 1. The space-time at a particular moment of time before
the two null fluids collide. The z coordinate is suppressed.
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FIG. 2. The space-time projected onto the (u,v) plane. The
line 1 "1™ represents the axis of symmetry r =0. Region IV is
the region in which the exploding and imploding null fluids
have not met each other yet. The space-time in this region
remains unperturbed. In region III (II) the exploding (implod-
ing) null fluid is incident. Region I is the region where the two
null fluids interact.

null dust cloud contracts, and its leading wavefront is the
hypersurface u =u,. Region I (u >ugy,v>v,): This is
the region where the two null dust clouds collide, in-
teract, and behave as an anisotropic fluid. The solution
in this region is uniquely determined once the solution in
regions II-IV is given. As a matter of fact, it exactly
forms the initial value problem with the initial data im-
posed on the two characteristic hypersurfaces
u=ug,v>vgand u >ugy,v=v,.

By using the results presented in Sec. II, in the follow-
ing we shall study two classes of analytic solutions: one
representing the collision and interaction of two null
fluids in a flat space-time background, in which the non-
linear interaction between the two null fluids is manifest-
ed, the other representing the collision and interaction in
a curved space-time background, in which the interaction
of the null fluids with the background is shown clearly.

The first class of solutions is given by Egs. (2.3) and
(2.9) with

h(O):_q)(O):_ln(r) , Q(O)zo ,
alu)=—[A(u)— A(ug)H(u —uy,) , 4.1)
b(v)=[B(v)—B(vy)H(v—uvy) ,

where H(x) denotes the Heaviside function, which is one
for x 20, and zero for x <0, and A(u) and B(v) are
smooth functions. The corresponding energy-stress ten-
sor is given by

_ 1
Tw=33,
4.2)

From the above equation we can see that, in region IV

{A"(WH(u—ug)l,l,+B'(v)H(—vyn,n,} .

where u <u, and v <v,, the energy-stress tensor vanishes
identically. As a matter of fact, one can show that the
space-time in this region is flat and free of any (conical,
intermediate, and scalar) singularities on the half infinite
line AI~ (where r=0) [cf. Fig. 2]. Therefore, the above
solutions represent the collision and interaction of two
null fluids in a flat background. In region III
(u <ugy,v >vyp), the first term in the right-hand side of Eq.
(4.3) vanishes. Then, the corresponding energy-stress
tensor represents a null fluid moving outwards along the
null geodesics defined by n,, from the axis »=0. In this
region we have [cf. Eq. (2.7)]

— b _1
o ¢V
Clearly, as r—»0", we have Q,— — ». Note that be-
cause of the presence of the outgoing null fluid at the
axis, as shown in the last section, the space-time now has
an intermediate singularity on the segment AB [cf. Fig.
2].

In region II (u >uy,v <vg), the last term of Eq. (4.3)
vanishes, and only the first term remains. So the corre-
sponding energy-stress tensor represents a null fluid mov-
ing inwards along the null geodesics defined by /,. The
rate of contraction of these null geodesics is given by

— al u)_l_

Q=e™t s 4.4)
Since in this region we always have rZ2r,
[=(ug—vy)/V'2>0], we can see that Q, is always finite,
which indicates that the space-time in this region is regu-
lar. By studying all the physical quantities, we find that
this is true.

In region I (u >uy,v >v,), the two terms in Eq. (4.3)
are different from zero, and become unbounded as
r—07". Therefore, a space-time singularity appears on
the half infinite line BI *. By studying the Kretschmann
scalar

4.3)

A'B’
2

ﬁzRaBySR apyd — _2e2(a+b)
r

H(u—uy)H(v—v,),

(4.5)

we find that this singularity is actually a strong one.
Since all the physical quantities, including the metric
coefficients, are finite except on BI *, one can see that this
singularity is naked. Therefore, it is concluded that the
solutions given by Egs. (4.1) and (4.2) represent the col-
lision and interaction of two null fluids in a flat back-
ground. Because of the mutual focus, the nonscalar
singularity appearing on the segment AB is turned into a
scalar one. This supports the conjecture given by King in
Ref. [17].

The other class of solutions can be obtained from
Senovilla’s solution [18]

Q9= —4In[cosh(at)]—2In[cosh(3ar)] ,

h'©= —In[cosh(at)]—In[sinh(3ar)]

+ —i—ln[cosh(3ar )]+1n(3a) 4.6)
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&' 9= —3In[cosh(at)]—In[sinh(3ar)]+In(3a) ,

where a is a positive constant. Corresponding to this
solution, the energy-stress tensor is given by

TO) =(u+plu,u,—pg , 4.7)

where

= {2cosh*at )cosh?(3ar)} ~1/2{1,1,0,0} ,
(4.8)
u=3p=15a*{cosh(at)cosh(3ar)} ~*

As shown in Ref. [18], this solution is geodesically com-
plete, singularity-free, and satisfies all the energy condi-
tions.

Using the above solution as the seed, according to Eq.

(2.19) we can construct the solutions
Q=0%94a(u)+b),
4.9)
h =h(0) , q>=¢(0) ,

where a(u) and b(v) are given by Eq. (4.1). Then, one
can show that the corresponding energy-stress tensor
takes the form of Eq. (2.10) with

pr=—A(wh ,H(u—ug)

= \/L_Z {3coth(3ar)—2tanh(3ar)+tanh(at )}
X A'(u)H(u _uo) )

p2=B'(v)h ,H(v—uv,)

(4.10)

-_a — -
—‘/i{3coth(3ar) 2tanh(3ar) .tanh(at)}

XB'(v)H(v—v,) ,

and T\ being given by Egs. (4.7) and (4.8). With the
same arguments as those for the solutions of Eqgs. (4.1)
and (4.2), one can show that this class of solutions
represents the collision and interaction of two null fluids
on the background described by Eq. (4.6). The Kretsch-
mann scalar now is given by

R=R ,5,sRP"®

=2t IR+4e2(DQ)p, + DY, } +2¢2%p, ,

(4.11)

where p, , are given by Eq. (4.10), /; is the Kretschmann
scalar corresponding to the background, and ®{ and
<I>‘°’ are the Ricci ““scale-invariant” scalars defined in Ref.
[19], and in the present case they are

5a?

(D(O)_q)(())__ .
cosh(3ar)

(4.12)

The expression of the Kretschmann scalar in Eq. (4.11)
contains three terms, each of them has the following
physical interpretation: The last term represents the in-
teraction between the two null fluids. This term is singu-
lar as r —07, as one can see from Eq. (4.10), and behaves
like » ~2. Thus, because of the mutual focus of the two
null fluids, a naked singularity is again formed on the half
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infinite line BI". The second term represents the in-
teraction between the null fluids and the perfect fluid of
the background. Because of this interaction, we can see
that a scalar singularity appears on the segment AB in
Fig. 2. This is different from the case described by Egs.
(4.1) and (4.2) where such interaction does not exist and
on the segment AB there is only an intermediate singu-
larity. The singularity behavior on this segment now is
like r ~!, which is weaker than the one on BI * formed by
the mutual focus of the two null fluids. The first term
represents the contribution of the background, which is
finite in all the space. It should be noted that in this case
the half infinite line AT~ in Fig. 2 is still free of all kinds
of singularities.

V. CONCLUSIONS AND REMARKS

In the late stages of collapse of an object, such as a
spheroid or a star, it is expected that the object will lose
most of its mass through gravitational radiation before it
settles down to its final form (a black hole or a naked
singularity). Because of the backscattering of the space-
time curvature, it is also expected that ingoing radiation
exists. In this paper, we studied the collision and interac-
tion of two cylindrical null fluids at the attempt of model-
ing the above mentioned process. It was found that, be-
cause of their nonlinear interaction, a naked singularity
was finally developed. The formation of this naked singu-
larity is different from the ones found in Refs. [4-7] in
the sense that it is due to the mutual focus of the two null
fluids. As long as the amplitude [characterized by the
functions 4'(u) and B'(v)] of the null fluids is different
from zero (no matter how weak it is), the naked singulari-
ty is inevitably developed. This remarkable feature is not
only shared by the solution considered in Sec. IV. In
fact, for any given solution {Q?,®? 1®} of the Ein-
stein field equations (2.8), which is free of any kind of
singularities at the axis r =0, then the solutions

Q=09—[ A(u)— A(uy)1H(u—u,)
+[B(v)—B(vy)|H(v—uv,) ,

(5.1
h=h(0) , (I)=(I)(°) ,

represent the collision and interaction of two null fluids
on the space-time background {Q‘O’,d>(°),h(°)}, with the
energy-stress tensor given by Egs. (2.10) and (2.11) and
the Kretschmann scalar given by

ﬁ =Raﬁ’}’5R aByd
=e2ITIR +4e M D)p, +DY)p,} +2epp, ,  (5.2)

where p, , are defined by Eq. (2.11), R is the Kretsch-
mann scalar corresponding to the background, and &
and @) are

oP=1 (243

n _h58)2+2hfg)ﬂfg)_(bfg)2] ’
(2h .

(5.3)
oP=1 —h'92+20 909 - 092}
The regular condition at the axis for the background
solution requires h‘©' behaves like —In(r) as r—07.

Then, from Eq. (2.11) we find that



5110

A'(u)

L= H(u—u,),

(5.4)

p2_>£r‘L)H<u—v0) .

Combining Egs. (5.2) and (5.4) we find that, because of the
mutual focus of the two null fluids, a space-time singulari-
ty is always developed on the half infinite line BI* in Fig.
2.

Although in our studies Thorne’s approximation was
adapted, i.e., taking the spheroid as a finite version of an
infinitely long cylinder, we believe that our main results
are equally well applicable to the collapse of a more real-
istic spheroid, since if the spheroid is long enough (which
is essentially the condition for a spheroid to form a naked
singularity [6]), the gravitational field at the ends of the
spheroid will not influence very much on the one in the
middle of it. Therefore, the gravitational field in the mid-
dle of the spheroid can be considered approximately as
produced by a long cylinder.

An alternative to the above studies is to consider the
collision and interaction of two null fluids in the space-
time with spherical symmetry. The case that the interac-
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tion happens inside an event horizon was studied recently
by Poisson and Israel [10] in the effort of understanding
the mass inflation phenomenon. Clearly, the interaction
happening outside the horizon is also important, since it
might turn out that, due to the nonlinear interaction of
the fluids, a naked singularity is developed outside of the
collapsing star, similar to what happened in the case of a
collapsing spheroid [6].

Finally we would like to mention that the theorem
given by Egs. (2.8)-(2.11) is not restricted to the metric
(2.1). It also holds for the metrics which describe cylin-
drical gravitational waves with two degrees of freedom
[11], and one or several perfect fluids with a p=p equa-
tion of state [20], or alternatively a multiplet of nonin-
teracting scalar fields [20]. So, the method presented in
Sec. IV is also valid for these cases.
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