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Failure of standard conservation laws at a classical change of signature
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The divergence theorem as usually stated cannot be applied across a change of signature unless
it is reexpressed to allow for a finite source term on the signature change surface. Consequently all
conservation laws must also be "modified, " and therefore insistence on conservation of matter across
such a surface cannot be physically justified. The Darmois junction conditions normally ensure
conservation of matter via Israel s identities for the jump in the energy-momentum density, but not
when the signature changes. Modified identities are derived for this jump when a signature change
occurs, and the resulting surface efI'ects in the conservation laws are calculated. In general, physical
vector fields experience a jump in at least one component, and a source term may therefore appear
in the corresponding conservation law. Thus current is also not conserved. These surface efI'ects

are a consequence of the change in the character of physical law. The only way to recover standard
conservation laws is to impose restrictions that no realistic cosmological model can satisfy.

PACS number{s): 04.20.Cv, 11.30.—j

INTRODUCTION

Interest in the possibility of a change of the signature
of spacetime has been revived recently by Hawking's [1]
"no boundary condition" proposal and by subsequent
considerations of quantum cosmology (e.g. , [2—6]), and
there have been several papers discussing the junction of
Lorentzian (L) to Euclidean (E) regions in classical rel-

ativity [7—13]. However, none of these has examined the
divergence theorem, upon which all conservation equa-
tions are based. (Stokes' theorem is discussed in this
context in [14] using differential forms, but conservation
is not explicitly discussed. )

To a large extent, the laws of physics in a space of E
(Euclidean) signature and at a change of signature are
a matter of personal choice—our intuition, which after
all is exclusively based on experience of I (Lorentzian)
spacetime, cannot be a reliable guide. This paper follows
a strictly classical approach, which is not entirely equiv-
alent to the quantum cosmology approach, in which the
Euclidean regions are "classically forbidden. "

We here argue that the Darmois (D) junction condi-
tions, which ensure that the geometries on either side of
a boundary surface do in fact fit together, are the ab-
solute minimum gravitational requirements for passing
through a signature change. While one may wish to irn-

pose stronger conditions for reasons of preference, or to
achieve some particular physical result, such extra condi-
tions are less fundamental, and may eliminate legitimate
and interesting types of transition.
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In any case, the primary results obtained here hold for
all known junction conditions, and are independent of the
choice of coordinates near the signature change. In other
words we permit, but do not assume, a lapse function
that goes to zero on the signature change surface.

We begin by reviewing the relationship between the
Darmois-Israel junction conditions [15,16] and the diver-

gence theorem, for the case when no signature change
occurs. We proceed by considering how the theorem and
the Israel identities should be adjusted for the case when
a change of signature does occur inside the volume of inte-
gration. Similar considerations are applied to an electro-
magnetic field; and fina11y the significance of the results
ls discussed.

THE DARMOIS-ISRAEI CONDITIONS

We wish to join two manifolds M+ and M of I
(Lorentzian) signature (—+ ++) with non-null bound-

ary surfaces E+, by identifying Z+ with Z . Manifolds
M+ have coordinate systems x+ and metrics g+&, while

Z+ have coordinates (+, which are also identified. Latin
indices range 1 to 3, and Greek indices range 0 to 3. The
Darmois (D) [15] junction conditions state that the first
and second fundamental forms of the surfaces, the in-

trinsic metric g,-~ and the extrinsic curvature K,~, must
be continuous across the identified boundary E. These
conditions have been shown to be the "most convenient
and reliable, " whereas those of O' Brien and Synge [17]
are too restrictive in general [18].

Using the notation

jz] = z+, —z-,
for the jump in some quantity Z across K, where Z
are the limiting values of Z as E is approached from either
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ssde

(2)

for the basis vectors of the surface, and

n n =t =+1 (3)

for the unit normal to Z, which may be timelike (i.e. ,
n spacelike, e = +1) or spacelike (e = —1), then the
intrinsic metric and extrinsic curvature are

cx P+yj ——g pe; e. ,

Kij = Vpn~ e~ ecr P

f 8 z Bz Bz )
aeae+ -pa(' ae

(4)

[K;,] =0,
and it is important to note that (1) requires the normals
on both sides to point from M to M+ for proper eval-
uation. The great advantage of the D conditions is that
these expressions are completely invariant to the coordi-
nates used in M+ and M . They may be implemented
without ever finding a common coordinate system on
M+ U M, though one must obviously find a common
coordinate system on Z+ = Z . Thus they provide an
unambiguous algorithm for joining spacetimes. In the
above we have assumed an isometry between the points
on the surfaces Z+ and Z induced in M+ and M . In
simple cases this may merely be an identification of in-
duced surface coordinates, (+ ——(', but in general one
might have to solve the three-dimensional metric equiv-
alence problem before stating whether or not (6) may be
satisfied. Any isometry for which (6) and (7) are satisfied
results in a valid matching.

It is often convenient to use geodesic normal coordi-
nates (Gaussian coordinates), defined near Z to consist
of the proper time/distance coordinate ( = w along
geodesics normal to the surface, increasing &om M
through Z into M+, and the surface coordinates f' which
are held constant along each geodesic. Then

ds = ed~ + $,~d(*d(~ = g„„d("d(" ~vl~ = &v

a . . r . . r .&&ij — & o,ij —~j,oi —2gij, o K;~]g = K;~,

(8)

(9)

where we use a tilde to indicate four-dimensional quanti-
ties expressed in this Gaussian coordinate system. Nev-
ertheless, all of the following may be done without intro-
ducing these coordinates.

Israel [16) has shown that these junction conditions
lead to the following identities for the Einstein tensor
G p..

[Gpp] = [G p n nP] = 0,

The D junction conditions are the minimum require-
ments for joining M+ and M smoothly:

(6)

MATTER CONSERVATION AT A BOUNDARY

Given a volume W enclosed by a surface S with normal
m, and de6ning a three-form p to have components

Papp —gappb@ —~&g &appb @ (»)
where g p~g is the permutation tensor and e p~g the
permutation symbol, then Stokes' theorem (e.g. , [21]) in
terms of difFerential forms

(13)

applies over any region W bounded by S within which

p is C, and, given a metric, it leads to the divergence
theorem (e.g. , [21]) in terms of tensor components

@~mp d S = V'p4~ d W,
S W

(14)

where d W is the metric volume element on W, d S is the
induced metric volume element on S, and m, the unit
vector normal to S, has contravariant components that
point outward where it (m ) is spacelike, and inward
where it is timelike —i.e., m is always outward. (The
character of this normal will be clarified later. ) In gen-
eralboth 4 and g p must be t to make p C . In order
to give Stokes' theorem physical meaning, p must be re-
lated to measurable quantities, which requires a metric.
Hence (14) is the physical version of (13) for a three-form.
Choosing

e being some smooth field (e.g. , an element of an or-
thonormal basis), this becomes

[G ] = [G p n eP] = 0.

This means, for a timelike surface, that the flux of energy-
momentum through Z, as measured by an observer mov-
ing with the surface, is continuous across Z. For a space-
like surface, an observer moving orthogonally to it sees
no jump in the density of energy-momentum across Z.
However, if only the 6rst fundamental forxn is continu-
ous, and there is a jump in the second form, then Israel
showed that E contains a finite amount of matter and a
"surface layer" occurs.

The D conditions are more or less equivalent to mak-
ing the appropriate components of the gravitational field
and its first derivatives continuous across Z, naturally
expressed in geometric fashion. Although there are 12
conditions on the 50 independent components of g p and
g p ~, there do exist coordinates in which the 40 met-
ric and its first derivatives are continuous (e.g. , [19]),
but these are not always trivial to 6nd, the most reliable
choice being normal coordinates. (This is the approach
of Lichnerowicz [20], which is equivalent to the D con-
ditions [18], but the fact that the Lichnerowicz junction
conditions are not invariant makes them less reliable. )
Nevertheless, even in normal coordinates, the continuity
of all components of the matter tensor T ~ does not fol-
low from the D conditions. Despite this, conservation of
matter right through the boundary is guaranteed.
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G Pv mp d S= V'p(G Pv ) d W
S w

G P(V'pv ) d W. (16)

G Pv+m+ d'S++ n p G+Pv+(+np+) d S

a Pv.-mp d'S+ G v (—np)dS

Over small enough volumes this, together with the Ein-
stein equations, gives the local conservation of matter.
It should be noted that n is the normal to the junction
surface E, and m is the normal to S, the closed bound-
ary of W; the two are quite diH'erent in general and, even
if the two surfaces coincide partially, they may still diBer
in sign there.

Consider now a spacelike boundary surface Z, where
no signature change occurs, that divides W and S into
two parts W+ and W, S+ and S, So ——Z tl W being
the enclosed region of Z, as in Fig. l. In general this

p [given by (12) and (15)] is not even C through E.
However the divergence theorem holds within each part,
so adding them gives

V'p+(O, P~+) d4W+
W+

V'p(G v )d W,

Gpv mpdS+ Gpv np dS
S S

V'pGPv d W, (18)

where d S and d W can be made smooth well-de6ned
volume elements, by a suitable choice of coordinates
spanning E, provided only (6) is satisfied.

%e now choose v~ to be each of the basis vectors of nor-
mal coordinates n~ and e,. in turn, and insert the Israel
identities (10) and (11) in (18) to obtain the appearance
of the divergence theorem for G ~v (16) as if no discon-
tinuity were present. (Note that the volume integrands
can be evaluated to

V'p(GPe, ) = GP (V'pe, ) = O'„I',", ,

V'p(GPn ) = GP(V'pn ) =O'„K,",
(»)
(20)

(b)

and since G,~
= G p e, eP contains 8 K,z

——zg, ~ [see

Eq. (32)] they are not continuous across Z, and 4~ is
not Ci.) Thus the D conditions provide the necessary
link that ensures conservation of matter across boundary
surfaces.

For the case when Z is a surface layer, only the erst
fundamental form is continuous, so we must impose con-
servation in some other way, as was done in [22]. (See
also [23].) We might then rewrite (18) to include the
surface layer in the volume integrals, using a Dirac delta,

FIG. l. (a) The volume W with boundary S, which inter-
sects a spacelike surface of discontinuity Z, where the mani-
foldisonly 0 . Sinceamanifoldmustbe 0 (i.e., g p must be
C ) to satisfy the conservation equations V„G""= 0, we wish
to determine whether they hold across E. (b) The boundary
Z divides W and S into TV+, TV, S+, and S, and the en-
closed region of Z, So, completes the boundaries. Application
of the divergence theorem in each part, supplemented by the
Darmois-Israel junction conditions, showers that matter is con-
served if the signature stays Lorentzian, even though not all
components of G" are continuous. Similar results hold for
the electromagnetic and other fields. We +&rite m for the
normal to the volume boundary used in the divergence theo-
rem, and n for the normal to the surface of discontinuity Z
used in the junction conditions. The two normals to S are
shown on both sides of Z. Unlabeled vectors are m on S+
and S

G Pv mp d S = ( V'p(G Pv )
S w

b(7.), G pv nP]—) d W

(21)

or more generally we write

C gamp d'S+
S

t@pnp) O'S = VpC~ d4R'

(22)

CPmp d'S =
S

(~peP —~(~) IepnP] ) d4W

(23)

We can think of this double application of (14) in a dis-
continuous setting as constituting a "patchwork diver-
gence theorem. "



49 FAILURE OF STANDARD CONSERVATION LAWS AT A. . . 5099

MODIFY ING ISRAEL'S IDENTITIES

We now turn to the case of a boundary where a change
of signature occurs. We continue to use the D conditions
for matching the gravitational field across a signature
change, since they ensure the geometries of the two man-
ifolds can fit together at Z, and it turns out they require
no modification despite any metric discontinuity in goo.
The first condition ensures the induced metric on Z is
the same &om either side, and allows the two truncated
manifolds to fit over the whole surface. The second en-
sures continuity of afline structure, as indicated by (9).
The metric is clearly less continuous than in the I to
I case, and the Lichnerowicz conditions are no longer
equivalent, since one can no longer find admissible coor-
dinates in which the full four-metric is continuous and
nondegenerate through Z.

We now follow Israel's procedure very closely. He de-
fines the normal to Z by

n n =a=+1 (24)

such that e = +1 (or —1) for a spacelike (or timelike)
normal (timelike or spacelike Z), respectively. Of course,
e does not change across Z in his case, as there is no
change of signature. For our purposes, we know Z must
be spacelike for a signature change, so instead we set
e = +1 on the E side M+, and e = —1 on the I side
M

At this point the existence of two different normal vec-
tors becomes apparent. Recall that r = (0 is the proper
time/distance coordinate of geodesic normal coordinates,
as defined earlier. The gradient of the function w = r(2:~)
ls

8(0
lp —— ——ep,Ox~

(25)

8*~
n~ = =e~.

8gP
0' (26)

The former gives the sense in which 7 increases and the
latter points in the positive 7. direction; i.e., they both
"point;" into M+, the E region. Thus we have

l l =e=n n l.n- =1, (27)

so that l„=b„and n" = bo are continuous through Z,
but

where e is one of the dual basis vectors of geodesic nor-
mal coordinates, and the tangent vector to the v coordi-
nate lines is

o = [Kv] = [2'
= [z((e~8~g p)e; e + g p(8 e, )e~

+& pe, (8 e, ))]
= [2e; e (e g~p, ~ + gp~8~e + g~~8pe )]

=( e-; e~[ 2—e~l' p+8 (gp e~)

+8@(& e )])
= [2e; e e(28. e& —2e I'~&)].

= [e, e~(V' np)]. (29)
At a surface of signature change, then, the extrinsic cur-
vature that must be matched across Z is defined relative
to Z's tangent normal —a unit normal vector whose con-
travariant components point &om M to M+ on both
sides.

Apart from some sign mistakes, not all corrected in
the errata (see reference), Israel's working up to his
Eqs. (12)—(15) carries over without change. Using K =
K = $™Ki, we have

G., n n~ = -', (K' K,,K'~-—.5), (3o)

G p n e~ = %~K~ —'9;K,
and the remaining components are

(31)

G p e; e = G,i —e $,i, ( 8 K" + KK".

——,'b,"(28 K+ K
+Ki K' )), (32)

where sG;i, sR, and s V'; are the three-dimensional intrin-
sic Einstein tensor, Ricci scalar, and covariant derivative
of Z. (See also [24] but note that their definition of K;~
is the negative of our Eq. (5).) The D conditions keep
everything on the right-hand side (RHS) of (30) and (31)
unchanged except for e. Thus the modified Israel identi-
ties are

[G p n ni'] = [Gop] = —sR, (33)

[G p n e~] = [G;]=0. (34)

Since the operation of raising and lowering indices is not
smooth through Z, this implies

[G ]=[G ~l lp]= —R, (35)

[G ] = [Gpt n~] = K —K;,K*~, (36)

[G'] = [G~ n ep] = 0, (37)

[G ] = [G ~l ep] = 2(W -K" —$*'W,K), (38)

[G, ] = [Ggl e; ] = 2( V~K,. —W;K). (39)

n =~l and l =en (28)

so I" = eh~ and n„= eb„are not. We will call l the
"gradient normal, " and n the "tangent normal. " Note
that l = l d is a one-form, and n = n 8 is a vector.
To establish which of these is the appropriate one to use
in the Darmois-Israel matching we specify that we want
the three-metric g;z of Eq. (8) to be a Ci function of the
normal coordinate w, which leads to

GENERALIZING THE PATCHWORK
DIVERGENCE THEOREM

A change of signature, being a metric phenomenon,
should affect the divergence theorem (14), but not Stokes'
theorem (13). In other words, if p satisfies Stokes' the-
orem on a particular manifold when the signature does
not change, then the same p must still satisfy it on the
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same manifold when the signature does change. Since
this reasoning is not valid for 4, we must adapt the
patchwork approach to the case of signature change at
E. Consequently we assume that there exists an orien-
tation {asmooth nonzero form) right through K, so that
Stokes' theorem holds for a sufficiently smooth p. How-
ever we will not actually need to assume that p is t

Although gpp = 6 is discontinuous, being double valued
on the identi6ed boundary Z+ = Z, the volume element
in normal coordinates d4W' = ~eg s p~g d( d(~d(~df~
is actually smooth through Z. This does not make (14)
valid even if 4'~ is smooth through a signature change,
since the conversion of Stokes theorem to the divergence
theorem involves the metric itself.

In order to preserve some kind of "divergence theorem"
in this case, we once again use the usual divergence the-
orem on either side of Z and join them by means of junc-
tion conditions on 4' appropriate for signature change,
such as the modi6ed Israel Identities, which now give a
nonzero surface contribution to the volume integral. In
other words, we expect a result of the form (22) or (23):

4~m& d'S — E d'S= V'&4~ d'W, (40
S S W

C~mz d'S = V'&4~+ b(~)E d'W,
S

(41)

where w = 0 on Z, which we now derive, obtaining E
for this case. We point out that the normal vector m

o ~~ 0"
r

FIG. 2. In the case when the signature changes from

(—+++) in W to (++++) in W+, m+ changes direction.

is really a gradient normal, that "points" out of R'. In
other words, if we set up geodesic normal coordinates
based on S, with proper time/distance coordinate (4 = 0
on S and increasing outward, and (, b = 1, 2, 3 surface
coordinates, then m = 8 (4. However it is customary
to de6ne the direction of m via the pointing behavior of
its metric dual m, given after Eq. (14). For an arbitrary
volume TV bounded by S and spanning E, we again split
TV as in Fig. 2.

The usual divergence theorem applies to the volume
integrals over TV+ and W, hence, noting that the gradi-
ent normals m+, on S+ and S convert into the gradient
normals —l+ and +l on Z+ and E, respectively, and
being careful not to change index positions, we 6nd

f 4+m+ d'S+ 4+(—t+) d'S+ e m d'S+
S+ S S

4+m+ d'S+ 4 m d'S—
S+ S

V+4+ d4W+ V 4 d4W
W+ W

[0 l ]d'S

(42)

which holds for arbitrary R' and Sp, so we conclude that

E = (4+l+ —4 l ) = [0 1 ].

We can represent this in the following two-forms, which allow easier comparison with (14) and (22), and (23):

(43)

m dsS — [4 l ] dsS= V 4 d4W,
S S w

m, O'S= (V 0 + b(7-)[4 l ]) d'W.
S w

(44)

(45)

These forms may be justified on the grounds that d W
and d S are smooth through Z, and no further manip-
ulation with a discontinuous g„„ is required. [However
they are not well de6ned if the coordinates near Z are
defined to be such that goo ~ 0 on Z. Equation (42) is
always well defined. ] ln contrast to the case of no signa-
ture change, where the substitution [4' l ] = —[4 n ]
does not affect the validity of Eqs. (22) and {23), it is

important to use only the gradient normal here. If we
know how 4' matches across Z we can use this to deter-
mine the surface "singularity" on E associated with 4'

due to the signature change. The surface term only disap-
pears for smooth contravariant 4~ in normal coordinates.
(Recall that the Euclidean region is "+," the Lorentzian
region is "—," and l+ "point" into the Euclidean region. )
Results (42)—(45) are of course valid whether or not the
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signature changes, and for timelike or spacelike E, in all
viable combinations, whereas (22) and (23) are only valid
for constant Lorentzian signature at a spacelike Z.

NONCONSERVATION OF MATTER?

For v = l and e we find, respectively,

E(t ) = [G ] = R, —

E(e ) = [G '] = 2( V~K*~ —$'~ V~K).

(47)

(48)

If instead of (15) we choose O'P = GPv with smooth
contravariant v, then E depends on v and we arrive at

E(n ) = [Gp] = K —K,,K",

E(e, ) = [G, ) = 2(V~K,'. —V;K).

(49)

GPP and O'P are the energy density and the three en-

ergy fiuxes and/or momentum densities on the L side,
as measured by an observer moving orthogonally to the
transition surface. The meanings of the Euclidean quan-
tities G+ and G+ are open for discussion. .

Returning to the construction of Fig. 2 with 4~
G Pv, it is clear that there must be a source term E(v~)
on Z in the volume integral over Vp(G Pv ), which de-
pends on the choice of a covariant v~. This choice of 4~
in (43) gives

E(v~) = G+Pv+lp —G Pv tp
——[G Pv Ip] (4. 6)

E(v~) = (—G~Pv+lp+ + G Pv lp). (55)

Changing this sign factor swaps the RH sides of
Eqs. (33)/(35), (34), and (37) with (36), (39), and (38),
respectively, and changes all their signs. There are
no combinations of choices which will make the surface
terms E(l ) or E(n ) disappear, because Eq. (30) is sec-
ond order in the K;~ and some but not all of its terms
contain E.

ELECTROMAGNETIC FIELDS AND SOURCES

We here take the electromagnetic field as an example
of a vector field, and we assume either vacuum or no
change in dielectric properties at the transition surface.
According to [25] the junction conditions for a macro-
scopic electromagnetic (EM) field at a dielectric bound-
ary, which for his purposes is actually timelike (i.e. , no
signature change, L L), are-

[D L] =0, [E((] = 0, [Bi]= 0, [H()] = 0,

(56)
which means that for the microscopic quantities, vectors
E and B are C . We now try to find juction condi-
tions for the EM potential which are analogous to the D
conditions for the gravitational potentials. Working tem-
porarily in normal coordinates at a timelike or spacelike
boundary, and assuming that the D conditions are satis-
fied, this can be ensured by (i) choosing a "normal gauge"
(the equivalent of normal coordinates),

OTHER MATCHING OPTIONS
a,'=o (57)

K,' =(Vpl )e, eP,

then we find

(51)

The results presented above are based on those junc-
tion conditions that we regard as the most reasonable.
For the sake of completeness we mention two important
steps at which a different choice of sign has a large effect
on the results.

The first one is in the definition of the extrinsic curva-
ture. If instead of (5) we choose

on the boundary, which ensures B;Ap, BzB;Ap are all zero,
(ii) then requiring

[A;] =0 and [BpA, ] = 0 (58)

everywhere on the surface, which of course means
[B;BpA~], [B,A~], and [Bi,B;A~] are also zero These co. m-
pare nicely with the D conditions in normal coordinates:
[g;z] = 0 = [Bpg;z] In non-no. rmal coordinates, the gauge
and junction conditions are

A n =0, [A e;]=0, and [n B (ApeP)]=0

[K,', ] = 0 w K+ = —K,,
and the modified Israel identities become

[G p n nP] = [Gpp] = —R,

[G pn eP] = [Gp, ] = 2(V'K+ —V;K+),

(52)

(53)

(54)

and if [K;~] = 0 these can be written as

A n = 0 , [A e; ] = 0,

and [e, n V Ap] = 0. (6o)

so, giving the K;~ their values in M, the RH sides of
Eqs. (34) and (39) are swapped and the RH sides of
Eqs. (37) and (38) are swapped if this sign is changed.
This does mean that E(e ) = 0, but E(l ) and E(n )
are unchanged. Also [K,'.] = 0 implies g+

p
———g,.

The second sign choice relates the orientations of the
manifolds I and I+. If we do not assume that the
combined manifold is oriented, then there are two possi-
ble relative orientations; one gives Eq. (46) and the other
leads to

In terms of F„„we get

[F„]= O, [F;,] = O, [V„F„]= O, [V,F;,] = O,

(61)

and, for a timelike boundary, Jackson's conditions are
recovered. Because these quantities are coordinate in-
variant and projected onto the boundary surface, they
are unaffected by a change in signature. However, non-
dummy indices may not be raised and lowered &eely, and
of course (59) and (60) are not gauge invariant.
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Now the current density

4vrJp ——V F p ——V 0 Ap —V' OpA

and the stress-energy tensor

4vrT p
——F"Fp„—4g pF" F„

(62)

(63)

4+Too

4vrTp,

4+T,q.

2FpkFotg —4&F FI &,

Fpk Fil g

e(Fo'Fo, —,g,,FpaF—oig )
-I l

+(F'aF, ig"' —,'g, ,F~iF—g"g'").

(67)

(68)

(69)

With the foregoing EM junction conditions and the stan-
dard D conditions we find

have normal gauge, normal coordinate components

4vr J~ = g' V', (0 A~ —0~A ) + eV'p(0oA~ —B~Ap) (64)

F, + e(BpFo, + KFp, —2K, Fp ), (65)

4&Jo = g' V''(V Ao —V'oA ) = + F o (66)

(where the terms containing e in Jp cancel owing to the
antisymmetry of F p) and

%=B',
2(W, K,'. —W;K) = 4(B x E),,

K —K;~K'~ = 2E,

(78)

(79)

(80)

which restrict both the extrinsic curvature of Z and the
EM field configuration.

We managed to sidestep the question of whether to
rnatch A+ or Ap by choosing Ao~ ——0, but it definitely

seems more natural to match OpA; ~+ and hence Fp+, than.
8 A; ~~ and Fg*.

ity of all components of the EM stress tensor in all index
positions, the entire EM field must be zero at a signa-
ture change, regardless of sign choices in the matching
conditions. In fact, zero field is required just to make
Tpp and To continuous, so, although we could recover
conservation of four-current by matching F+ instead of

F„, there is no way to recover full EM energy conser-
vation without restricting the field configuration at the
transition surface. For an electrovac model, the Einstein
equations plus (47)—(50) and (74)—(77) lead to

4~[J,] = 4~[J.e;]
Oo Fo. —6 t9o Fp.

+(e+ —e )(KFp, —2K, Fp ),

4~[J,] =4~[J.n ] = 0,

47r[J'] =47r[J I ] = (e+ —e )W F p

(70)

(7I)
(72)

47r[Tpp] = 4vr[T"]

4(F+'F~'i + F"-'F~i) = —2B'-

47r[T; ] = 47rg, [T~]-
= g"'(F~+„F+~ + F~~F,, ) = 2(B x E), , (75)

(76)

47rg, [T'] = 47r[To;] = 0, (77)

we see that the EM energy density T cannot be contin-
uous, unless the magnetic field E;~ is zero. This is also
true for Tpp, whereas Tp can only be continuous if the
electric field Fp; is zero, and the continuity of T; and T '
requires a zero Poynting vector. If one requires continu-

(cf. [26]). Across a L Lboundary-, e+ = e, the en-
tire stress energy tensor is continuous, while [J t ] = 0
links the divergence theorems on either side of E and en-
sures conservation of four-current. However, a jump in
the value of the current parallel to the surface is quite
acceptable.

Returning to Eq. (43), for the surface term E in the
case of a signature change, we find that

E=[J t ]=[J]=W (F+ +F )=2V E, (73)

where J is the charge density and F is the electric
field, both as measured by an orthogonally moving ob-
server on the I side. Furthermore, from

JUNCTION CONDITIONS AND
CONSERVATION LAWS

In this paper we have considered the eKect of signature
change on conservation laws in classical general relativ-
ity. Although we have advocated the use of Darmois
junction conditions, we emphasize that the results (42)—
(45), (46), (59), (64)—(66) hold for any set of junction
conditions that impose at least (6) and any set of coordi-
nates near Z for which the limiting values 4'~lp

& may be
calculated, so the surface efFects for any other choice may
be calculated this way. Nevertheless, we are not aware
of any junction conditions for signature change that are
less restrictive than the D conditions.

At a change of the signature of spacetime the Darmois
conditions no longer ensure standard matter conserva-
tion, as they do through a constant signature boundary,
and only if Eqs. (47)—(50) are zero can we have matter
conservation in the usual sense, but this means the tran-
sition occurs on a surface with zero extrinsic curvature
that has R = 0 —a highly restrictive condition, elim-

inating all realistic cosmological models. [Although the
k = 0 Friedmann-Lemaitre-Robertson-Walker (FLRW)
model survives, its perturbed cousin does not. ]

Significantly, the condition that the extrinsic curvature
be zero at the signature change surface, K, = 0, which
is required in the quantum cosmology approach, does not
entirely remove the need to modify the matter conserva-
tion law, since only three of (47)—(50) become zero. If
however, one is satisfied with only Gp v and not Gp v

being conserved, then K; = 0 will sufIice.
Since the operation of raising or lowering indices intro-

duces minus signs on one side of a signature change and
not on the other, it is clear that a nonempty model can-
not have all of G p continuous across a signature change
as well as all of G P. If G . is continuous, then G ' has a
jump; if Gpp is continuous then G has a jump, and vice
versa. The same applies to any nonzero tensor —if g p,
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I p~, B p~g, E p, etc. , are continuous, then g ~, I'&,
R t ~~, I' ~, etc. , are not. Thus we cannot expect both
V' G t and V'

G& to be free of surface efFects.
The jump in the value of the energy density relative

to the surface, given by Eq. (33), cannot be viewed as
a surface layer of matter on Z in the usual sense, as Is-
rael's definition for the surface stress tensor is still zero
here. Rather it is an efFect due to the change in physi-
cal law from Lorentzian to Euclidean forms. Momentum
changes &om mass times velocity into the "momentum"
conjugate to the "time" coordinate, which is now a spa-
tial direction, and energy converts to a quantity having
the dimensions of "momentum. "

For the other matching options too, the situation is
not much difFerent. Matching g;z to its negative across
the signature change does remove two out of four surface
effects. But if orientation is not preserved through the
signature change, the conservation of matter may become
separate &om the continuity of the projected Einstein
tensor, with conservation breaking down even if all 10
components of G" are continuous through Z.

For any vector field on spacetime, the generalized
patchwork divergence theorem, (44) or (45), and the re-
sulting expression for E, Eq. (43), combined with the ap-
propriate matching conditions, then show that the field
may also have a surface efFect due to the signature change
and the modification of its physics. Specifically, the
matching conditions for the EM field (60) lead to a sur-
face effect in the associated current density (73) which is
zero only if J = J n = 0. This implies the current is
conserved only if the net charge density (in geodesic nor-
mal coords) is zero everywhere on the signature change
surface, the most likely example being that of a source-
&ee field. (It is utterly improbable that a system of
charges and currents should have zero charge density ev-
erywhere on a spacelike slice of the Universe. ) However,
the EM energy density is not continuous. This may not
be a problem if there are other fields or matter compo-
nents that can exchange energy and momentum with the
EM field, so as to satisfy the overall "modified conserva-
tion law. " But, for an electrovac solution, (78)-(80) place
very strong restrictions on the allowed gravitational and
EM fields, which eliminate any radiation at the transi-
tion. If there is a nonzero charge density of electrons, say,
then the surface effect calculated from the EM junction
conditions must be consistent with the results from the
Dirac equation, with suitable junction conditions. This
would be an interesting avenue of investigation.

When considering matter tensors consisting of several
components and/or fields, the above results indicate that

we may specify continuity of momentum density (paral-
lel to Z) separately for each component, but we should
expect the individual energy densities to jump.

Faced with the inapplicability of the standard diver-
gence theorem across a signature change, our intuition
that matter must always be conserved in the usual way
no longer seems physically justi6ed. In fact, when con-
sidering the physics of signature changes, all intuition
should be very carefully cross-checked. If we wish to im.-
pose extra restrictions in order to describe a particular
physical effect or situation, we should review the physi-
cal justification in the light of the change in the relevant
physical laws.

At a I to I boundary, the D conditions are sufficient
to ensure the minimum necessary continuity and the con-
servation of all fundamental yruvitational quantities, and
any further restrictions then specialize to particular sce-
narios, and eliminate other possibilities. We have pre-
sented a I to E boundary in the same light. The D
conditions impose the same number of conditions, and
still ensure minimal continuity and modified conservation
laws, so further restrictions need only be imposed in order
to describe specific physical efFects which require them.
For example, [9] and [10] proposed criteria for when the
signature should change, but these are not speci6cally
required by the Darmois junction conditions. Their con-
dition amounted to requiring continuity of the equation
of state (continuous Friedmann equation) across E. One
might regard this as the equivalent for a Quid of junction
conditions for a field. Such extra conditions may often
be reasonable and necessary.

On the other hand, a recent investigation [27,28] re-
lated to Smolin's [29] idea that Universes evolve in Dar-
winian fashion, required the Darmois approach. This en-
abled collapse to a black hole to pass through a double
signature change, emerging into a new Universe. Inter-
esting results are not possible if K;~ = 0.

In the absence of convincing physical arguments or ex-
perimental evidence, as mentioned at the beginning, the
"correct" way to efFect a change of signature remains
a matter of conjecture. The relationship between the
present results and other approaches found in the litera-
ture will be discussed elsewhere.
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