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A cosmological constant limits the size of black holes
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In a space-time with cosmological constant A) 0 and matter satisfying the dominant energy condi-

tion, the area of a black or white hole cannot exceed 4m/A. This applies to event horizons where

defined, i.e., in an asymptotically de Sitter space-time, and to outer trapping horizons (cf. apparent hor-

izons) in any space-time. The bound is attained if and only if the horizon is identical to that of the de-

generate "Schwarzschild —de Sitter" solution. This yields a topological restriction on the event horizon,
namely that components whose total area exceeds 4~/A cannot merge. We discuss the conjectured iso-

perimetric inequality and implications for the cosmic censorship conjecture.

PACS number(s): 04.20.Jb, 04.70.Bw, 97.60.Lf, 98.80.Hw

I. INTRODUCTION

Recent studies of black holes in space-times with posi-
tive cosmological constant A have revealed some surpris-
ing differences compared with black holes in the zero A
case. Kastor and Traschen have found a family of solu-
tions to the Einstein-Maxwell equations which describe
an arbitrary number of charged black holes in an other-
wise closed cosmos [1]. For the zero A case, these solu-
tions reduce to the static Majumdar-Papapetrou solu-
tions, but for positive A, the black holes collide and
coalesce for a certain range of parameters, providing the
first exact solutions describing coalescing black holes. In
a previous study of uncharged multi-black-hole initial
data, another remarkable result was discovered, and pro-
posed as a general feature: Black holes whose total mass
is larger than a certain critical value do not coalesce, i.e.,
no new apparent horizon forms [2]. Also, the area of the
apparent horizon that forms in the subcritical case has an

upper bound, approached as the critical case is ap-
proached. This led to the conjecture that A yields an

upper bound on the area of a black hole, with the bound
12m. /A being established for maximal slices [3]. A simi-
lar study has since been made of the Kastor-Traschen
solutions, with the same conclusions: There is a critical
mass beyond which the black holes do not coalesce, and
when they do coalesce, there is an upper bound on the
area of the new apparent horizon [4]. In this article, we
show that there is a sharp bound 4'/A on the area of a
black or white hole.

We emphasize that by "black or white hole" we mean
any region of trapped surfaces that has a boundary of the
outer type, according to the classification in [5]. The
boundary, referred to as the trapping horizon [5], replaces
the foliation-dependent and less general concept of ap-
parent horizon [6], and henceforth we will consistently
speak of trapping horizons rather than apparent hor-
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izons. It transpires that the area bound also applies to
event horizons, but the event horizon, like the apparent
horizon, is defined only in asymptotically fiat space-times,
or for positive A, in asymptotically de Sitter space-times
[3],a rather special case.

As a preliminary, we examine exact solutions and other
examples in Sec. II. The area bound is established for
outer trapping horizons in Sec. III, and for event hor-
izons in Sec. IV. In the Conclusion, we discuss the con-
jectured isoperimetric inequality and implications for the
cosmic censorship conjecture.

II. EXAMPLES

Carter [7] showed that the "Kerr-Newman" black-hole
solutions could be generalized to include a cosmological
constant A. In particular, there is the analogue of the
Reissner-Nordstrom solution, parametrized by mass M,
charge Q, and A, with line element

ds = FdT +F—'dR +R dS

F(R)= — +1—-'AR'
R

where dS refers to the unit two-sphere. The global
structure of these solutions is described for the Q =0 case
in [8] and [2], and in general in [9]. For a certain range of
(M, Q, A) and choice of topology, the solutions describe a
charged black hole of the Wheeler wormhole type, exist-
ing in an asymptotically de Sitter cosmos. The trapping
horizons are given by the zeros of F(R), and have area
4~R . Consider two special cases, as follows.

(i) The "Schwarzschild-de Sitter" case, Q=0. Fixing
A, the trapping horizons occur at M =

—,'R —
—,'AR, as de-

picted in Fig. 1(a). For M (&I/9A there are two hor-
izons, namely a black-hole horizon and a cosmological
horizon, which coincide in the degenerate M=&1/9A
case. Note that the area of the black-hole horizon does
not exceed 4~/A, and attains 4m/A in the degenerate
case.

(ii) ~Q~ =M. The trapping horizons occur at
M =R +&A/3R, as depicted in Fig. 1(b). For
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FIG. 1. Location of the trapping horizons for the Carter
(M, Q, A) solutions, for (a) Q =0 and (b) ~Q~ =M. The branches
of the curves correspond to the cosmological horizon C and the
outer black-hole horizon (or event horizon) 0, meeting at the
degenerate horizon D, and in the case of (b), the inner black-
hole horizon (or Cauchy horizon) I.

M (&3/16A there are three horizons, namely inner and
outer black-hole horizons and a cosmological horizon,
with the last two coinciding in the degenerate
M =&3/16A case. The area of the outer black-hole hor-
izon does not exceed 3m/A, attained in the degenerate
case. Note that adding charge has reduced the maximal
area.

Checking the full range of (M, Q, A) confirms that the
area of the outer black-hole horizon does not exceed
4m/A for any of these solutions. That the same bound
should apply to any black hole is suggested on thermo-
dynamic grounds. The entropy of a black hole is essen-
tially its area, and one would expect entropy to be max-
imized in the most symmetric configuration, namely the
stationary, spherically symmetric Schwarzschild-de Sit-
ter solution. A similar argument motivates the conjec-
tured isoperimetric inequality in asymptotically Hat
space-times [10,11].

Another test of the area bound is provided by multi-
black-hole solutions where the black holes collide and
coalesce. We use "coalescence" to mean the appearance
of a new region of trapped surfaces outside the original
trapping horizons of the incoming black holes. Thus a
double trapping horizon forms, with inner and outer hor-
izons both enclosing the original trapping horizons, as
depicted in Fig. 60 of [6]. If such a coalescence occurs,
one may ask whether the new outer trapping horizon
satisfies the area bound. There are two known examples
for A) 0.

(iii) The initial data for the vacuum Einstein equations
found by Nakao et al. [2], which develop into a multi-
black-hole cosmos. For the case of two equal masses, it
was found that there is a critical total mass &1/9A such

that coalescence occurs in the subcritical but not super-
critical case. In Fig. 13 of [2], it can be seen that the area
of the new horizon is bounded above by a value which ap-
pears to be 4m /A. So the collision seems to miraculously
preserve the area bound.

(iv) The Kastor-Traschen multi-black-hole solutions,
which are exact Einstein-Maxwell solutions describing
charged ~Q~=M black holes [1]. Again, for the case of
two equal masses, it has been found that there is a critical
total mass, approximately &3/16A, such that coales-
cence occurs in the subcritical but not supercritical case
[4]. For these solutions, the area of the new trapping
horizon is bounded above by 3m/A. As for the single-
mass case (ii), the lower maximum may be attributed to
the charge on the holes.

This is a very curious phenomenon. It seems that na-
ture is conspiring to prevent the formation of too large a
black hole. Attempting to create a large black hole by
colliding smaller ones either produces a black hole satis-
fying the bound or does not work at all —the black holes
refuse to coalesce.

III. TRAPPING HORIZONS

~=f p. (2)

The evolution vectors u+=8/Bg+ are assumed future-
pointing, and are related to the null normals by
u + —r+ =e N+, where the shift two-vectors

—f
r+ =h h ( u + ). Denoting the Lie derivatives along
u+ —r+ by L+, the expansions 0+, shears sr+, inaffinities
v+, and anholonomicity (or twist) co are defined by

8~ =
—,
'h' X~h,d, (3a)

tr,*s =hghbX~h, d
——', h,sh' X~h,d,

v~=X~f,
co, =—,'e Ih, b [N+,N ]

(3b)

(3c)

(3d)

We adopt a recent approach to trapping horizons, re-
placing apparent horizons, which has elucidated some of
their fundamental properties [5]. One of the main out-
comes of this analysis is that it is crucial to distinguish
between inner and outer trapping horizons, since they
have quite different properties —for instance, outer trap-
ping horizons are generically spatial while inner trapping
horizons are generally Lorentzian. We shall see that
another such difference is the area bound, which applies
to outer but not inner trapping horizons.

We recall the basic definitions and notation of [5].
Consider a double-null foliation, i.e., two foliations of
null three-surfaces labelled by coordinates g+ and g, in-
tersecting in a foliation of spatial two-surfaces S. Intro-
duce the normal one-forms n+= —dg+ and the dual
vectors N+ =g '(n+ ), where g is the space-time metric.
Then g(N~, N~)=0 since the three-surfaces of constant

are null. Introduce the normalization
e~= g(N+, N )

—and the induced two-metric
h =g+2e /n+ n . The area form, Ricci scalar, and
covariant derivative of it are denoted by p, A, and 2), re-
spectively. The area of a compact two-surface is
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2+8++V+8++ —8++ cr —bo'+ — 877/+ (4a)

8++8+8 +e ( —,'% —r, r' —X),r') =8m.p+e A,

(4b)

Defining P+ =T(u+ r—+,u+ —r+) and p= T(u+—r+, u —r ) in terms of the material energy tensor T,
the relevant components of the Einstein equation are the
focusing and cross fo-cusing equations, which are, respec-
tively,

—4a'+( —,'% —r.r' —2l, ~')~s=8~e/pls+A .

Since ~ & 0, the dominant energy condition implies
0&A& ,'A~s——2), r'~s. Now f spS, r'=0 by the Gauss
theorem, and f sly & 4rrg by the Cohn-Vossen inequali-

ty, where g is the Euler-Poincare characteristic of S, with
g=2 for a sphere, y=1 for a plane, and g~0 for any
other orientable two-manifold. Integrating the inequality
over S,

where it is convenient to introduce r=co ,'2lf.——The

dominant energy condition implies

0,
p~0.

(5a)

(5b)

Note that all the results of [5] also apply to the case
A & 0, since the A term in the Einstein equation, regarded
as a material source, satisfies the dominant energy condi-
tion.

A marginal surface is a spatial two-surface S on which
one null expansion vanishes, fixed henceforth as 0+ s =0.
A trapping horizon is the closure T of a three-surface T
foliated by marginal surfaces on which 8 ~r%0 and

8+ ~ z %0, where the double-null foliation is adapted to
the marginal surfaces. The trapping horizon and margin-
al surfaces are said to be outer if 2 8+~r &0, inner if

8
~+r0&, futureif 8 ~& &0, and past if 8 ~r &0. For

a future outer horizon, the idea is that the outgoing light
rays are diverging just outside the horizon, and converg-
ing just inside, and that the ingoing light rays are con-
verging. The trapping gravity v of an outer trapping hor-
izon is defined by

4a'= —e/X 8+ r .

An example is provided by the Carter black-hole cosmos
of Sec. II, for which the event horizon is an outer trap-
ping horizon, with the Cauchy horizon and cosmological
horizon being inner trapping horizons. In general, the
outer trapping horizon may be taken as the definition of
the outer boundary of a black or white hole. Note that
one cannot use the event horizon as a general definition
of the boundary of a black hole, since it is defined only if
conformal infinity exists, i.e., in asymptotically Bat or de
Sitter space-times.

Marginal surfaces which lie in trapping horizons must
be orientable, due to the differing signs of 8+ ~s and 8
In the context of gravitationai collapse, one normally ex-
pects the marginal surfaces to be compact. The noncom-
pact case can also be treated, provided certain asymptotic
conditions are satisfied, namely integrability of %, Xl,r,
and Qr, r' over the surface. Such a marginal surface is
said to be well adjusted.

Theorem 1. In a space-time with cosmological con-
stant A) 0 and matter satisfying the dominant energy
condition, a well-adjusted, future or past, outer marginal
surface has finite area A bounded above by A (4~/A.

Proof On an outer ma.rginal surface S, the cross-
focusing Eq. (4b) gives

so that the area A is finite, whence S is compact. Since
g) O, S has spherical topology. Also A A (4~.

In particular, this means that black and white holes lie
within the Hubble radius &3/A, which corresponds to
an area 12'/A Actu. ally, there is a more precise result
in terms of the irreducible energy m, angular energy a,
material energy q, and root-mean-square trapping gravity
k, defined by

16m.m = A, (9a)

77 = P 7
S

Sm.q =A pe~p,
S

(9b)

(9c)

Ak 2 pK2 (9d)
S

Theorem 2. In a space-time with cosmological con-
stant A)0 and matter satisfying the dominant energy
condition, the irreducible energy m, angular energy a,
material energy q, and rms trapping gravity k of a well-

adjusted, future or past, outer marginal surface satisfy

AA a q 22=1— — —16m k
4m m

(10)

2 —16m k2 2

m m

a

using the Cohn-Vossen inequality again. Now A A=4m
requires y&2, so that S has spherical topology again,
y=2. Also a, q, and k must vanish. Hence r~s, p~s and
a.

~ s also vanish, which in turn means that %
~ s =2A, so

Proof. Integrate the cross-focusing Eq. (4b) using the
Gauss-Bonnet theorem for S with spherical topology,

f sp% —81T

The formula shows explicitly how the area of a black
hole is reduced by angular momentum, matter, and trap-
ping gravity. If any one of these quantities is nonzero,
there is a lower effective bound on the area.

So far, we have restricted the marginal surfaces to be
nondegenerate, ~ & 0, in which case the bound is not at-
tained. This may be relaxed to ~ ~0. The additional
cases, namely where ~ vanishes somewhere, are referred
to as degenerate marginal surfaces.

Theorem 3. In a space-time with cosmological con-
stant A&0 and matter satisfying the dominant energy
condition, a weil-adjusted, degenerate outer trapping hor-
izon has area 4m/A if and only if it is identical to that of
the degenerate Schwarzschild —de Sitter solution.

Proof On a well-ad. justed, degenerate outer marginal
surface S, the cross-focusing (4b) equation integrates to



49 A COSMOLOGICAL CONSTANT LIMITS THE SIZE OF BLACK HOLES 5083

IV. EVENT HORIZONS

The classical work on black holes is mainly concerned
with the idealization of asymptotic flatness [6]. For
A & 0, there is a similar class of asymptotically de Sitter
space-times. Conformal infinity p —is spatial rather than
null, but many aspects of the space-times can be treated
by methods which are well known in the asymptotically
flat case. In particular, one may define the event horizon
as the boundary of the causal past of ~+. Since the area
of the event horizon is nondecreasing [3], and the event
horizon is expected to approach the trapping horizon(s)
asymptotically, it seems that the area bound should also
apply to the event horizon. A preliminary step is to es-
tablish that connected sections of the event horizon ap-
proach outer marginal surfaces as ~+ is approached.

Lemma. Consider the event horizon H of a strongly
future asymptotically predictable, asymptotically flat or
asymptotically de Sitter space-time. Foliate H by spatial
two-surfaces, with future-pointing null normals u+ —r+,
with u+ r+ tangent —to the event horizon, and g an
affine parameter along u+ —r+. Then

lim 8+(H) =0,
g~ oo

(12a)

that S is metrically spherical. A trapping horizon T foli-
ated by such constant-area spheres must be null, by the
area theorem for trapping horizons [5]. Constant area
also implies that the internal expansion 8+~r vanishes,
and the focusing Eq. (4a) shows that o + ~ r and P+ ~

z. also
vanish. This has now exhausted the free data on a null
three-surface [12], and the data is identical to that of the
horizon of the degenerate Schwarzschild —de Sitter solu-
tion, i.e., T can be embedded in this solution. Note that a
uniqueness result for the whole space-time would require
additional initial data to be specified off the horizon.

Finally, we note that it is crucial for Theorems 1—3
that the trapping horizon or marginal surface be outer
rather than inner. For inner marginal surfaces, the
trapping-gravity term in the cross-focusing equation has
the opposite sign, and if large enough can swamp the an-
gular and material terms to yield marginal surfaces of
any topology and arbitrarily large area. As an example,
the cosmological horizon of the Schwarzschild —de Sitter
solution has area between 4n /A and 12m/A. It has been
conjectured that in an asymptotically de Sitter space-
tirne, the cosmological horizon, defined as the boundary
of the past domain of dependence of g+, should have
area less than or equal to 12m /A, the de Sitter value [13].
Although this conjecture is still open, it does not general-
ize to inner trapping horizons in arbitrary space-times,
since an inner marginal surface can have arbitrarily large
area. As an example, the innermost horizon of the
Schwarzschild —de Sitter solution has arbitrarily large
area in the case where there are naked singularities in-
stead of black holes.

Proof. First recall that 8+(H) ~ 0 [3,6]. The
focusing equation (4a) yields the inequality
8+ &[1/8o+(g —go)/2] ', from which it follows that
lime „8+(H)=0. Consider a connected component S of
HA~~+, and a neighboring foliation of ~~+ containing
another two-surface S'C~+. Propagating u+ —r+ from
S to S', construct the null three-surface H' through S' in
the u+ —r+ direction, in some neighborhood U of ~+.
Suppose there is a p EH' A U such that 8+(p) & 0. Then
there is a neighborhood V of p in H'AU such that
8+( V) &0, and a compact set CCS"A V, where S" is a
spatial two-surface of the foliation. This leads to a con-
tradiction, since it is impossible that CCint[J (g)], by
the same argument as in the proof of the area theorem for
event horizons [3,6]. Thus 8+(H' ll U) ~ 0, and so
lim& „X 8+(H) & 0.

Theorem 4. In a strongly future asymptotically predic-
able, asymptotically de Sitter space-time with matter
satisfying the dominant energy condition, the area A of a
connected section of the event horizon is bounded above
by A &4m. /A, with equality if and only if the event hor-
izon is identical to that of the degenerate
Schwarzschild —de Sitter solution.

Proof. Integrating the cross-focusing equation (4b)
over connected sections S& of the event horizon and tak-
ing the limit, it follows from (12) and the Cohn-Vossen
inequality that

lim A&A& lim 2m'&g'~ oo g'~ oo
(13)

whence lim A& is finite, and so lim& „S& is compact.
g~ oo

Since the area of the event horizon is nondecreasing [3],
A&&lirn& „A&, it follows that lirn& „A&&0, and so
lim& „y&&0. Since the event horizon is orientable,
lirn& „y&=2. In particular,

A(& lim A]&4m/A .
g~ oo

(14)

Attaining the bound on the whole event horizon H re-
quires constant area, so 8+(H)=0. This means that the
event horizon is also a trapping horizon, and Theorem 3
then shows that the bound is attained if and only if H is
identical to the horizon of the degenerate
Schwarzschild —de Sitter solution.

Corollary. Asymptotically, the event horizon consists
of sections of spherical topology.

Note that the bound applies to each connected section
of the event horizon. The total area of all the connected
sections at a given time may exceed the bound. In such a
case, there is a topological restriction on the development
of the event horizon, namely, that contemporaneous sec-
tions whose total area exceeds 4~/A cannot subsequently
combine into a single connected section. In other words,
such black holes cannot merge in this sense. This is ex-
actly what is observed in the examples of Kastor and
Traschen [1,4] and Nakao et al. [2].

lim X 8+(H}&0
g~ oo

(12b)
V. CONCLUSION AND DISCUSSION

assuming the weak energy condition or null convergence
condition [6].

In asymptotically flat space-times, it is well known that
the event horizon cannot divide and has nondecreasing
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3 ~ 16mM() (15)

which is conjectured to relate the Arnowitt-Deser-Misner
(ADM) mass M&, and the area A of the outermost trap-
ping horizon (or apparent horizon) T of an asymptotical-
ly flat space-time, assuming matter satisfying the dom-
inant energy condition [10,11]. Equality is conjectured to
be attained only for the Schwarzschild solution. The con-
jecture may be strengthened to the following chain of ine-
qualities:

lim A + lim 16aM 16aM
T—+I —+l

lim 16aM + 16aM o
.~+ -0

(16)

area [6]. This is also true in an asymptotically de Sitter
space-time [3], but we have shown that there are addi-
tional restrictions: The area of each connected section of
the event horizon cannot exceed 4 sr/A, and so discon-
nected components cannot merge if their total area
exceeds this value.

This has an interesting consequence for the cosmic cen-
sorship conjecture. Consider initial data representing
two or more black holes, defined in the sense of outer
trapping horizons, such that the total area exceeds 4m /A.
Suppose further that these black holes subsequently col-
lide. Since the resulting space-time cannot contain an
event horizon, one might conjecture that the outcome of
such a collision would be a naked singularity [14]. This
would be a blatant violation of the cosmic censorship
conjecture in either weak [15] or strong [16] form. What
actually happens for the examples of Kastor and
Traschen and Nakao et al. is rather remarkable [2,4]. In
the so-called subcritical case, the black holes coalesce,
producing a new asymptotically stable trapping horizon
whose area can be arbitrarily close to the bound. If the
black holes collided to form an asymptotically stable ob-
ject in the supercritical case as well, that object would
have to be a naked singularity, assuming some sort of
"no-hair" theorem to the effect that a stable solution
must be one of the Carter solutions. Instead, it turns out
that the black holes refuse to collide in the supercritical
case, and simply keep their distance. Physically, one
could ascribe this phenomenon to the repulsive effect of
the cosmological constant. This lends considerable moral
support to the cosmic censorship conjecture in the fol-
lowing sense: The delicate balance between gravitational
attraction and cosmic repulsion tips exactly when the
black holes can no longer coalesce, and a collision would
be in danger of producing a naked singularity.

The inequality A ~ 4m/A bears . a striking resemblance
to the Penrose-Gibbons isoperimetric inequality

where M denotes the Bondi-Sachs mass. The first in-
equality follows from the area theorem for trapping hor-
izons [5], and the third and fourth from the Bondi-Sachs
mass-loss result. The two missing links are plausible,
since M and Mo are both limits of the same quasilocal en-

ergy E [17], and 16mE/. A ~1 as T~i+. If this chain
of inequalities is correct, and there exists an asymptoti-
cally flat initial data set on which A ) 16~Mo, this would
also be a blatant violation of the cosmic censorship con-
jecture. Again, one may try to construct such a coun-
terexample by trying to create a large black hole from the
collisions of smaller ones. In numerical examples, the
isoperimetric inequality is preserved, providing further
moral support for the cosmic censorship conjecture [11].

Although formulated for the A=O case, the isoper-
rimetric inequality is analogous to the area bound in that
it gives a limit on the size of black holes, regarding the
ADM mass as fixed. It also gives a necessary condition
for a surface to be marginal. This raises the question of
whether a necessary and sufficient condition for the ex-
istence of a trapped surface can be given in terms of ini-
tial data. For a light-cone, this is indeed possible [18].
For a spatial three-surface, there is no such genera1 re-
sult, nor even a precise conjecture. At the heuristic level,
there is the hoop conjecture [19]. The light-cone result is
independent of A, but it is not clear how A should affect
the hoop conjecture.

Both asymptotically flat and asymptotically de Sitter
space-times are rather special, and since the event hor-
izon is defined only in such cases, the general study of
black holes must instead be concerned with the trapping
horizon. The fundamental properties of trapping hor-
izons have only recently been established [5]. In particu-
lar, the area of a future outer trapping horizon is nonde-
creasing and, as we have shown, cannot exceed 4tt/A
Given that a black-hole collision involves the formation
of a new outer trapping horizon, one would also like to
know if the area of the new horizon is necessarily greater
than the sum of the areas of the original horizons. If this
is true, this yields tests of the cosmic censorship conjec-
ture which can be formulated in arbitrary space-times.
Research in this direction is in progress.

ACKNOWLEDGMENTS

T.S. and K.N. would like to thank H. Sato, K. Maeda,
H. Kodama, and M. Sasaki for their helpful discussion
and criticism. S.A.H. thanks the Southampton relativity
group for hospitality.

[1]D. Kastor and J.Traschen, Phys. Rev. D 47, 5370 (1993).
[2] K. Nakao, K. Yamamoto, and K. Maeda, Phys. Rev. D

47, 3203 (1993).
[3]T. Shiromizu, K. Nakao, H. Kodama, and K. Maeda,

Phys. Rev. D 47, R3099 (1993).
[4] T. Shiromizu, K. Nakao, and S. A. Hayward (unpub-

lished).

[5] S. A. Hayward, Phys. Rev. D (to be published).

[6] S. W. Hawking and G. F. R. Ellis, The Large Scale Struc-
ture of Space Time (Cam-bridge University Press, Cam-

bridge, England, 1973).
[7] B. Carter, in Black Holes, edited by C. DeWitt and B. S.

DeWitt (Gordon and Breach, New York, 1973).
[8] G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2738



49 A COSMOLOGICAL CONSTANT LIMITS THE SIZE OF BLACK HOLES 5085

(1977).
[9] D. R. Brill and S. A. Hayward, Class. Quantum Grav. 11,

359 (1994).
[10]R. Penrose, Ann. N.Y. Acad. Sci. 224, 125 (1973).
[11]G. W. Gibbons, in Global Riemannian Geometry, edited

by T. J. Willmore and N. J. Hitchin (Ellis Horwood, New
Jersey, 1984)~

[12]S. A. Hayward, Class. Quantum Grav. 10, 779 (1993).
[13]W. Boucher, G. W. Gibbons, and G. T. Horowitz, Phys.

Rev. D 30, 2447 (1984).

[14]D. R. Brill, G. T. Horowitz, D. Kastor, and J. Traschen,
Phys. Rev. D 49, 840 (1994).

[15]R. Penrose, Riv. Nuovo Cimento 1, 252 (1969).
[16]R. Penrose, in General Reiativity: an Einstein Centenary

Survey, edited by S. W. Hawking and W. Israel (Cam-

bridge University Press, Cambridge, England, 1979).
[17]S. A. Hayward, Phys. Rev. D 49, 831 (1994).
[18]S. A. Hayward, Class. Quantum Grav. 9, L115 (1992).
[19]K. S. Thorne, in Magic Without Magic, edited by J.

Klauder (Freeman, San Francisco, 1972).


