
PHYSICAL REVIEW D VOLUME 49, NUMBER 1 1 JANUARY 1994

Analytic calculation of the vacuum wave function for (2+ 1)-dimensional SU(2) lattice gauge theory
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The long wavelength vacuum wave function of (2+1)-dimensional SU(2) lattice gauge theory is calcu-
lated by the method of truncated eigenvalue equation. Third order results are consistent with Monte
Carlo measurement and display a good scaling behavior extending to the deep weak coupling region.
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I. INTRODUCTION

Non-Abelian gauge theory possesses a nontrivial vacu-
um state which leads to confinement. There have been
many discussions on the properties of the vacuum state.
Confinement properties had been attributed to condensa-
tion of monopoles and instantons in the gauge field [1].
In order to study the low energy physics of hadrons, one
needs more detailed information on the structure of the
vacuum wave function. Lattice gauge theory (LGT) pro-
vides a framework for studying nonperturbative aspects
of non-Abelian gauge fields. The vacuum state of non-
Abelian gauge theory has been studied in the continuum
and on the lattice.

It is generally accepted that the vacuum state of a
gauge field is highly disordered for physical scales larger
than the confinement scale [1,2]. Accordingly, the long
wavelength behavior of the vacuum state can be approxi-
mately represented by the wave function [2,3]

4( A) = exp ls fd—x tr(F J )

On the lattice, the corresponding vacuum wave function
is approximately represented by [3]

%(U)= exp petr(U +Ut)
P

(1.2)

+o(U)= exp p fd x —trF(x) p2f d x Tr[D—;F(x)]

+higher order terms (1.3)

The vacuum wave function in LGT was also studied by
Monte Carlo simulations [4] using slow varying gauge
field configurations. The result is consistent with (1.2),
with p satisfying respectively the scaling behaviors in 3
and 4 dimensions.

Recently, Arisue [5] gave a more detailed Monte Carlo
measurement of the vacuum wave function for SU(2)
gauge theory in 3 dimensions. In the continuum limit,
his result is

where F =F,z, and

go = (0.91+0.02) /e

@2=—(0.19+0.05) /e

(1.4a)

(1.4b)

e is the invariant charge which is related to the dimen-
sionless coupling constant g by g =e a.

It is interesting to study the vacuum wave function by
analytic methods. It was noted in Ref. [6] that the in-
dependent plaquette vacuum state (1.2) is the exact vacu-
um state of a modified lattice Hamiltonian. Later investi-
gations [7] showed that the modified Hamiltonian diff'ers
from the Kogut-Susskind (KS) Harniltonian by a relevant
operator whose continuum limit is proportional to

fd x Tr(D;F)

Hence it is reasonable that the vacuum wave function of
the KS Hamiltonian has the form (1.3) with coefficients
po and p2 to be determined.

Variational methods are usually used in analytical cal-
culations of mass spectrum in LGT [8]. An approximate
vacuum state was obtained by minimizing the expectation
value (H)o of the lattice Hamiltonian in a variational
vacuum state. Integrations over all gauge field
configurations must be performed in evaluating (H)o
and other matrix elements. Short wavelength
configurations [A, =O(a)] dominate the gauge field in-
tegrations in the continuum limit. Unless we have a so-
phisticated vacuum wave function that takes due account
of the short wavelength configurations, it is improbable
to obtain a good long wavelength vacuum wave function
with the correct scaling in the weak coupling region by
simple variational methods.

The vacuum state of LGT can also be studied by
directly solving the eigenvalue problem in the Hamiltoni-
an formulation. Approximation schemes, including
strong coupling expansion and truncated eigenvalue
equations, were described in Ref. [3]. As far as we know,
solutions with correct scaling behavior have not been ob-
tained by this method. Recently, Llewellyn Smith and
Watson [9] proposed the shifted coupled cluster method
to solve the eigenvalue equation. It seems to work well
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for the vacuum energy. However, results for the mass
gap are far from scaling in the weak coupling region. In
this paper, we present a different approximation scheme
to the eigenvalue problem. A long wavelength vacuum
state consistent with (1.3) with satisfactory scaling
behavior extending to the deep weak coupling region is
obtained in a third order calculation.

In Sec. II we present the formulation and approxima-
tion scheme. In Sec. III we calculate the vacuum wave
function up to third order graphs. Section IV is devoted
to conclusions and discussions.

Defining the order of a graph as the number of plaquettes
involved (overlapping plaquettes are also counted), we ex-
pand R in order of graphs:

R=R +R + (2.4)

Rt =co Q,

In SU(2) theory we have trU =trUt; all loops with cross-
ing can be transformed into loops without crossing. The
complete set of graphs in lower orders are

II. FORMULATION AND METHOD
OF APPROXIMATION

R2=C) I I+c, Q +c, QQ,

For simplicity, we study the (2+1)-dimensional SU(2)
LOT in the Hamiltonian formulation. The Kogut-
Susskind Hamiltonian is

R,=b,

pb, Q

+b I I+b I I+b Qi I

+b~Q'+b7 Q Q+b8 QQQ
2a=g yE~-

2a 4 gtrU&
p

(2.1)

+b9 QQ', (2.5)

We write the vacuum wave function in the exponential
form

where

) eR(U)~0) (2.2)
TrU TrU] U2 U3 U4

where R(U) contains closed loops and the state ~0) is
defined as

E;10&=0.

The eigenvalue equation for H is

g ([EP, I EP,R]]+[Ef,R][EP,R) )
I

4 g Tr(U&)= Eo . (2.3)
2a

p

In general

[EP, [EP,R„]]ER„+lower order terms,

[E&',R„][E&',R„)ER„+„+lower order terms .
(2.6)

We now derive a general formula for
[E&,Tr Ur ][E&,Tr Ur. ] in the long wavelength limit,
where I and I" are two rectangular loops with sides
N ] N2 and N &,N z, respectively. Consider a definite link
l. For SU(2) we have

[E&',TrUr][E&', TrUr ]=[E&',2Tr(Ur+ Ur ))[Et ~ —,
'—Tr(Ur'+ Ur')1

Tr[A'(Ur —Utr )]Tr[A'(Ur —Ur )] . (2.7)

To lowest order, we have

Ur —Ur =——2iea N F, (2.8)

tion. Let R contain up to Mth order graphs:

R =R&+R2+ ' ' ' +RM (2.10)

where N =N, N2 is the number of plaquettes in I .
For a link l in the two-direction, the right-hand side

(RHS) of (2.7) is

e2a4

4
N N'N~N~(N, D,F')(N', D, F') .

Adding the contribution from links in direction 1, we
finally obtain

n+n'+M
[E;,R„][E;,R„,] .

Our truncated eigenvalue equation is

The term [E&, [E&,R]] contains no new graphs, but the
term [E&,R ][E&,R ] creates new graphs. Hence we must
truncate the latter term. The simplest way is just
preserving the terms

g [Ef,trU~][EP, trU~]= ,'e a N N2'g Tr(—D;—F)

(2.9)

g [EP, [EP,R]]+
I I, n+n'~M

[Ei',R„][Ei',R„.]

4
trU =const . (2.11)

We now give a recipe for truncating the eigenvalue equa-
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This equation differs from the truncated eigenvalue equa-
tion in Ref. [3] in the treatment of the new graphs form
[Et,R][Et,R].

For example, in [Et,R, ][Et,R 2 ], there is a term

Hence

I =2 2—e a TrF + ,'T—r(D;F ) (3.5)

[E, , Pl[K; I I] =-2

+-Pl
2

I+I I

I+—
2 (2.12)

The long wavelength vacuum wave function is

y(U')=~exp — Jd~x TrF~ — J d x Tr(D;F)
e e

(3.6)

All graphs are in R3 with the exception of the last graph,
which is in R, . Greensite [3] argued that if we truncate
the equation at second order then the term —3 is
preserved while all others are discarded. However, by
(2.9), all terms in (2.12) combine to give the continuum
limit

2e a —Tr(D;F)

where

pp=[ ,'c, +-2(c, +c,+c,)]g',

C)
p2 —— g = —0. 1823 .

4

(3.7a)

(3.7b)

If we preserve the term —3' and discard all other terms,
then the long wavelength limit will be seriously altered.
Hence it is more consistent to discard all terms in (2.12)
for calculations up to second order. To third order, all
terms in (2.12) are included.

III. SECOND ORDER
AND THIRD ORDER CALCULATIONS

The curves for po and p2 are plotted in Fig. 1. While po
blows up at weak coupling, pz has the correct scaling
with its value close to that given in Ref. [5]. However,
the excellent agreement of (3.7b) with (1.4b) is somewhat
illusive, because at this order p2 happens to contain only
the term with correct scaling.

We now turn to third order calculation. The truncated
eigenvalue equation is

Calculations of the truncated eigenvalue equation
(2.11) are straightforward. At second order, the equation X [[El «I Et «R 1+R2+R3]]+IEt «R ] ][Et«R t ]
1S 1

[Et', [Et', R )+R2]]+[Et',R t ][Et',R ) ]

TrU =const . (3.1)
4

4 P

Substituting R, and R3 from (2.5), we obtain

+2[Et',R, ][E Rt, ]]— ~
0=const . (3.8)

4

Substituting (2.5) in (3.8), we obtain

(3co- —) p+(—c, -c, -2co) I

4 9
4 I+ (8c2+ co2) pt

4
f3cp —

&
3b~ - -4bp- Sb9- 6cpct - 16co(c2+ c3)] P

+ (—c3+ cp2) p p = const .13

(3.2)

Equating the coemcients of each graph to zero, the result
1S

9+ (—C) - C3 - 2co ) I

2

+ (6b, - b3- 4cpc, )

I + (Sc2+ cp'J p + (—c3+ co') p p
2

+(6b2-b4 -coct) I

(3.3)

where P=4/g . This is just the strong coupling expan-
sion given in Ref. [3].

The long wavelength limit of a graph can be obtained
by direct evaluation of the graph to lowest order in a or
by using (2.9). For example,

+ (Sb3- 2b7+ 2cpc, - 4cpc3) I I

+ (Sb, - 2b, + e,c, - 2c,c,) PI I

+ (9b, - 2b9+ 3cpc, - Scpc2- 2cpc3) + (15b6+ 4cpc2) p3

[K;.P][K;,Pl = - 4 - 2 I I+ O'+ OP
+( o v+ o 3) pp+(lobs+cpc3) ppp

= - —e a T~(D~P)

Q3-=DU=—[Tr(l ,'esca F )] =4—2—e a TrF—
(3.4)

+ (12bp+ 5cpc3+ 4coc2}p p = const .

From the algebraic equations for c; and b, , we obtain



510 SHUO-HONG GUO, QI-ZHOU CHEN, AND LEI LI

p~= —
[ —,'c, +b, + ', b—,+ —,'(b, +b~+b, )]g' . (3.11b)

1.4

'.2

I

'
.2 '

. 3 C.4 0.5 Q. S "., ".8 C.9 1 1.1 1.2 1.3 1.4 1.5 1.6

Results for pp and p2 in second and third order approxi-
mations are plotted in Fig. 1. Nonperturbative correc-
tions to the strong coupling expansion appear at third or-
der. We observed that the third order result for pp is
greatly improved in the weak coupling region
(P=4.0—8.0) with a value close to the Monte Carlo (MC)
result (1.4a). The third order result for p2 is also in
reasonable agreement with (1.4b). Higher order approxi-
mations are needed to obtain better scaling behavior for
P2 ~

IV. CONCLUSION AND DISCUSSIONS

Cl 39C07 C2 8CO~ C3 ———Co 7

6 —121 C3 "="'c3 "=——"c
2 1560 P' b3 390 P

"=——"'c "=—'cb4 —
78pCO, b5 4gg 0& ~6 3p 0

67 Cpy 68 —Cp& 69 CQ

(3.10)

Evaluating the long wavelength limit of all graphs up to
third order, we obtain

IMO= t —,'co+2(c, +c2+c3)+ ', (b, +—b2)

FIG. 1. pp and —
p2 versus 1/g . Dashed line: second order

result. Solid line: third order result.

The result of third order calculations of the vacuum
wave function is very encouraging. It is seen that pp has
a nearly constant value extending to the deep weak cou-
pling region. The results of this paper support the sug-
gestion that, for long wavelength configurations, the vac-
uum state of non-Abelian gauge theory can be e6'ectively
represented by a few low order graphs in the exponential.
This form of vacuum wave function is also supported by
calculations of the low energy spectrum [8]. Further
works will include (1) extensions to fourth order and
higher order calculations, (2) extensions to (3+ 1)-
dimensional LGT and other gauge groups, (3) extensions
to calculations of excited states and LGT with fermions.
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