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Nonlinear axion dynamics and the formation of cosmological pseudosolitons
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The (3+1)-dimensional evolution of an inhomogeneous axion field configuration around the QCD
epoch is studied numerically, including important nonlinear effects due to the attractive self-interaction.
It is found that axion perturbations on scales corresponding to causally disconnected regions at T-1
GeV can lead to very dense pseudosoliton configurations we call axitons. These configurations evolve to
axion miniclusters with a present density p, ~10 gcm '. This is high enough for the collisional
2a —+2a process to lead to Bose-Einstein relaxation in the gravitationally bound clumps of axions, form-

ing Bose stars.

PACS number(s): 98.80.Cq, 05.30.Jp, 14.80.Mz, 98.70.—f

I. INTRODUCTION

The invisible axion is one of the best motivated candi-
dates for cosmic dark matter. The axion is the pseudo
Nambu-Goldstone boson resulting from the spontaneous
breaking of a U(1) global symmetry known as the Peccei-
Quinn (PQ} symmetry. The PQ symmetry is introduced
to explain the apparent smallness of strong CP violation
in QCD [1]. Although there are other possible solutions
to the strong CP problem [2], and the origin of the axion
in the breaking of a global symmetry has been criticized
[3], the axion remains the best known cure for the disease
of strong-CP violation.

There are stringent astrophysical [4,5] and cosmologi-
cal [6] constraints on the properties of the axion. In par-
ticular, the combination of cosmological and astrophysi-
cal considerations restrict the axion decay constant f,
and the axion mass m, to be in the narrow windows 10'
GeV -f, (10' GeV, and 10 eV (m, (10 eV [7].
The contribution to the mean density of the Universe
from axions with mass in this window is guaranteed to be
cosmologically significant. Thus, if axions exist, they will

be dynamically important in the present evolution of the
Universe.

In addition to the usual role in the evolution of primor-
dial density fluctuations and the formation of large-scale
structure common to all cold dark matter candidates, ax-
ions have unique features as dark matter. The energy
density in axions corresponds to coherent scalar field os-
cillations, driven by a displacement of the initial value of
the field (the "misalignment" angle) away from the even-
tual minimum of the temperature-dependent potential.
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During the QCD epoch fluctuations in the misalignment
angle on scales comparable to the Hubble radius at that
time [8] are transformed into large amplitude density
fluctuations, which later lead to tiny gravitationally
bound "miniclusters" [9]. It was found that the density
in miniclusters exceeds by ten orders of magnitude the lo-
cal dark matter density in the solar neighborhood [9].
This might have a number of astrophysical consequences,
as well as implications for laboratory axion searches [10].

In previous studies of the evolution of the axion field
around the QCD epoch, the effect of spatial gradients of
the axion field were either neglected, or were included in

a limit where the nonlinear potential was approximated
by a linear harmonic potential. Both approximations are
adequate for temperatures well below the QCD scale
where the coherent axion oscillations can be treated as
pressureless, cold dust. However, in a previous paper
[11] we found that just at the crucial time when the in-

verse mass of the axion is approximately the size of the
Hubble radius and fluctuations of misalignment angle are
still of order ~, both the nonlinear interaction and the

gradient terms are important, and a full field-theoretical
calculation is needed. Here we present the results of a
three-dimensional numerical study of the evolution of the
inhomogeneous axion field around the QCD epoch. We
find that the resulting axion clumps are much denser than
previously thought, even reaching the critical conditions
for Bose star formation [12].

In Sec. II we review the basic scenario for the evolu-
tion of the axion field around the QCD epoch. In Sec.
III, after deriving the equations of motions in a suitable
form, we present the results of (3+ 1)-dimensional numer-

ical calculations of an initial white-noise axion distribu-
tion. We find that the nonlinear potential leads to the
formation of dense, roughly spherical, solitonlike axion
configurations we call axitons. We then follow the subse-

quent evolution of these spherically symmetric
configurations in a (1+1)-dimensional calculation. Sec-
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II. COSMOLOGICAL EVOLUTION
OF THE AXION FIELD

The axion story begins with PQ symmetry breaking.
This symmetry breaking occurs when a complex scalar
field P with nonzero PQ charge develops a vacuum expec-
tation value. This PQ symmetry breaking can be
modeled by considering a potential of the standard form
V(P)=l(~P~ —f, /2) . The axion is the resulting
Nambu-Goldstone degree of freedom from spontaneous
breaking of the global symmetry. After PQ symmetry
breaking at T-f„butbefore QCD effects are important,
the axion is massless. However since the PQ symmetry is
anomalous, it is broken explicitly by QCD instanton
effects, leading to a mass for the axion. In general the in-
stanton effects respect a residual Z& symmetry, and the
axion develops a potential due to instanton effects of the
form V(a)=m, (f, /N) [1 cos(Na—If, )]. The axion
field is often represented in terms of an angular variable
8—=¹If„andif 8 is taken as the dynamical variable, its
potential for X =1 is

V(8)=m, ( T)f, (1—cos8)

:—A, (T)(1—cos8) . (2.1)

Because QCD instantons are large, with a size set by

AQcD their effects are strongly suppressed at high tem-
peratures. So for T))AQCD, the axions are effectively
massless. For T))AQcD, the temperature dependence of
the axion mass scales as [13,8]

tion IV is devoted to the consideration of an initial axion
field that results in a network of topological defects. We
discuss how the usual picture of axion strings slicing up
axion domain walls is modified by the inclusion of the
nonlinearities of the true axion potential. We find that
rather than the simple picture of axion strings destroying
walls by punching holes in them, unstable pseudobreather
solitons are formed which decay to axitons. In the final

section we discuss some possible physical consequences of
very dense axion clumps.

logical density of axions [9]. At the temperature of equal
matter and radiation energy density, T, =5.50, h eV

[15],nonlinear fluctuations will separate out as miniclus-
ters with p, =10 ' gcm [9]. The minicluster mass
will be of the order of the axion mass within the Hubble
radius at temperature T&, M, —10 Mo. The radius of
the cluster is R,—10' cm, and the gravitational bind-

ing energy will result in an escape velocity of
v, /c —10 . Note that the mean phase-space density of
axions in such a gravitational well is enormous:
n-p, m, v, -10 f,2, where f,2=f,—/10' GeV.

We will show below that due to nonlinear effects, a
substantial number of regions at AQcD) T)T,q can have
an axion density orders of magnitude larger than 2p, .
These form because the nonlinear effects in the axion po-
tential lead to the formation of pseudosoliton objects we
call axitons.

The axitons are not true solitons because the field
coherently oscillates inside the axiton. The oscillations of
the field lead to a redshift of the energy density of the
field in an expanding universe. Quantitatively, axitons
resemble breathers of the (1+1)-dimensional sine-Gordon
model.

Eventually the energy density of the axiton is redshift-
ed to sufficiently small values of the axion field so that
nonlinearities can be neglected, and the axiton
configuration is frozen in the cosmological expansion as
is any linear fluctuation. However the energy contrast
relative to the homogeneous background will be large.

Once an axiton forms, its energy density scales as T
for T) T,q, so we can write p,„;„„=3(1+4)T,qs /4,
where 4 depends upon the initial conditions of the axion
field, i.e., the misalignment angle and its gradients at T, .
Here, s is the entropy density, and 4=0 corresponds to
the mean axion density. The energy density excess inside
a given fluctuation is equal to the radiation energy densi-
ty at T 4Teq At that time the self-gravity of the fluc-
tuation comes to dominate, and if 4 & 1 it separates out
from the cosmological expansion, collapses, and forms a
minicluster with a density'

m, (T)=m, (T, )(T/T, ) ", n =7.4+0.2 . (2.2) p, =1404 (1 +4)P, (T, )

=3 X 10 ' 4 ( 1+4 )(Q, h ) g cm (2.3)

When the field 8(x) is created during the Peccei-Quinn
symmetry-breaking phase transition at T-f„it should
be uncorrelated on scales larger than the Hubble radius
at that time [14]. As the temperature decreases and the
Hubble radius grows [in a radiation-dominated universe
the Hubble radius grows as RH(T):I '(T) ~ T ],—the
field becomes smooth on scales up to the Hubble radius.
This continues until T= T, —1 GeV when the axion mass
"switches on," i.e., when m, (T, )=3H(T, ), and the ax-
ion mass begins to become important in the equations of
motion. Coherent axion oscillations then transform fluc-
tuations in the initial amplitude of the axion field into
fluctuations in the axion density.

Since the initial amplitude of the coherent axion oscil-
lations on the scale of the Hubble radius is uncorrelated,
one expects that typical positive density fluctuations on
this scale will satisfy p, =2p„where p, is mean cosmo-

Even a relatively small increase in 4 is important because
the final density depends upon 4 .

Ours is not the first proposal that nonlinear effects can
lead to large values of 4. One m.echanism whereby non-
linear effects can lead to amplification of the axion densi-
ty was recognized in Ref. [8]. In that analysis it was pro-
posed that some correlation regions can have values of 4
larger than one because the closer the initial value of 0 is
to the top of the axion potential, the later axion oseilla-
tions commence. However, this efFect alone is not very
significant. If the closeness of the initial angle to the top
of the potential is parametrized by g=(n8; )Ivr, then. —

The factor of 140 results from a detailed calculation.
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for g in the range 0. 1 S g ~ 10,we can fit the numerical
results of the Ref. [g] by the formula 4—1

=1.5(8, /vr) ( This regime was studied also in Ref.
[16] analytically. We see that 4 is significantly larger
than 1 only for initial values very finely tuned to the top
of the potential [11]. Moreover, the axion field is not ex-
actly coherent on scales of the Hubble radius, and even
small fluctuations will spoil this simple picture.

Our scenario for the generation of axion miniclusters
mainly depends upon the interplay of the nonlinear
effects in the potential and gradients in the axion field.
The interplay of these two effects will lead to the forma-
tion of axiton configurations in the axion field. At tem-
peratures T && Ti, the potential is negligible in the equa-
tions of motion compared to the gradient terms which
force the field to be homogeneous on scales less than the
Hubble radius. At T && AQCD gradients can be neglected
and one can treat the evolution of Auctuations as that of a
pressureless gas. Clearly, around the QCD epoch when
the potential just starts to become important in the equa-
tions of motion the gradient terms are still important,
and since the initial amplitude can be close to ~, the non-
linear nature of the potential is also important. In order
to find the energy density profile at freeze-out one has to
trace the nonlinear inhomogeneous field evolution
through the epoch T T].

III. INHOMOGENEOUS AXION FIELD EVOLUTION

A. Equations of motion

We start with deriving the equations of motion for the
axion field in a form suitable for numerical calculations.
In an expanding, spatially Aat universe with scale factor
R (t), the equation of motion for the axion field takes the
familiar form

8+ 3—8— b 8+m, (t)sin8=0,
R '(r)

(3.1)

where an overdot denotes a time derivative and 5 is the
Laplacian with respect to comoving coordinates x.

Rather than cosmological time, it is convenient to
work with a conformal-time coordinate. In a radiation-
dominated universe the conformal time is proportional to
the scale factor R. Using R as the independent variable,
the equation of motion is

d'0 P gO+— — . b, 8+ . , m, (R)sin8=0 .
dR2 R ~R R2 Rz(&) R'

(3.2}

where a prime denotes d/dr). We use Eq. (2.2) to find
that in conformal time the mass evolves as m, (R )

=m, (R
&

)rl". We can use the remaining freedom in the
choice of R

&
to simplify the equation of motion by mak-

ing the choice m, (R, )=H (R, ), i.e., i)=1 corresponds
to the epoch when the inverse of the axion mass is equal
to the Hubble radius. The equation of motion then takes
the form

glr+ g~ gg+ n+2S g O
fl

(3.4)

where 6 is now the Laplacian with respect to comoving
coordinates, x =H(R, )R,x. In other words, x =1 corre-
sponds to the Hubble radius at the epoch when the Hub-
ble radius is the inverse of the axion mass.

The equation of motion can be written as a wave equa-
tion by the introduction of the field its = i)8:

b, g+—rl" sin(P/r)) =0 . (3.5)

The equation of motion is finally in a form convenient for
the study of the evolution of the axion field during the
epoch when the mass switches on. In Table I we give the
scaling with g of several important physical length and
mass scales. We next turn to the specification of the ini-
tial conditions.

B. Initial conditions

X sin(p„z+y„,„), (3.6}

At il (( I the potential term in Eq. (3.5) can be neglect-
ed, and the solution of the wave equation can be ex-
pressed simply as a sum of Fourier harmonics. As usual,
there will be two sums over frequency cu: one sum pro-
portional to sin(curl) and one sum proportional to
cos(cur)). In the decomposition of the 8 field, terms such
as A(co)sin(coi))/(corI) and B(co)cos(curl)/(coil) will ap-
pear. Assuming a finite amplitude for fluctuations of 0
(of order of several m.) on scales larger than the Hubble
radius at the epoch of the Peccei-Quinn phase transition,
we see that the coefficients B(co) must be proportional to
A&cD/f„while the coefficients A(co) are of order unity.
In other words the terms proportional to cos(coi)) corre-
spond to decaying modes on scales larger than the Hub-
ble radius and can be neglected. Finally, assuming that
on large scales the distribution for |9 is white noise, we
obtain

sin(coi) )8= Am. g sin(p, x+&p„,l, )sin(p, y+yi;, I,. )
Q7'g

gll + gl
rl

(3.3}

Using the Friedmann equation, along with the depen-
dence of the expansion rate upon R in a radiation-
dominated universe, we can express R in terms of the
Hubble radius at some arbitrary epoch (denoted by sub-
script 1): R =H R =H (R i )R

&
/R . Now defining

conformal time g as q =—R /R, , the equation of motion is

l
b 8+ m, (R)sin8=0,

H (R, )R, H (R, )

Time
Temperature
Scale factor
Axion mass
Hubble radius

t(g) =t(g=1)q'
T(q) = T(q = 1)g
R(g)=R(q= 1)g
m, (q)=m, (q= 1)q"/~ n =7.4+0.Z

R„(r])—:a '(g) =R„(r]——1)g'

TABLE I. The scaling of physical quantities with conformal
time g. To find the scaling in coordinate distance, a length must
be divided by g, and a mass multiplied by g.
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where y's are random phases and co =p; +p. +pk. On
scales larger than the Hubble radius the field distribution
is frozen, while modes smaller than the Hubble radius are
redshifted away.

We numerically evolved this distribution starting from
initial time g=0.4 in a box of size L =4 with periodic
boundary conditions. There were 100 grid points in the
box. Each of the momenta in the field decomposition
took six discrete values, p„=2nn/L, with n =1, . . . , 6.
So, in total there were 3X6 random phases, each with
values in the interval 0 & y (2m. .

The final parameter to be chosen is the magnitude of
A. Recall that for %=1, the axion potential is periodic
with period 2m. We will consider two possibilities: A =1
and A =2. For the case A =1 it is unlikely that domain
walls will form in a box of the size we study. However
for A =2 (the more physical choice) domain walls are
produced at about 1 per horizon. We will present some
results where A =2, but for the most part we will consid-
er in detail calculations with the A =1 initial condition,
since we are interested in the structure of density
enhancements that are not associated with axion domain
walls. So unless otherwise specified, our results will be
for A =1.

The initial conditions are illustrated in Fig. 1 by a
two-dimensional slice through the three-dimensional box.
The height above the plane is proportional to the axion
energy density. Since at this epoch the axions are relativ-
istic, it is convenient to scale their energy density by g .
The energy density shown in Fig. 1 is scaled by

q /P, (ri=3) where P, (ri) represents mean axion energy
density at a given g. Note that the Hubble radius at this
epoch (ri =0.4) is 0.4 in the units of the figure, and the in-

verse of the axion mass is 75 units.

30

FIG. 1. A two-dimensionsional slice through the three-
dimensional initial conditions for the axion field evolution. The
time is g=0.4. In the units shown in the figure the Hubble ra-
dius at this time is 0.4 units and the inverse of the axion mass is
75 units. The height of the figure corresponds to the energy
density in the axion field: p, (g) Xq Ip, (g=3).

C. Results of numerical calculations

l. (3+I } d-imensional evolution

We first present the results of numerical calculations
with A = 1, where density peaks arising from collapsing
domain walls are filtered out so as to isolate the effects
due to axitons. In order to present the results of the cal-
culations we will take a two-dimensional slice through
the three-dimensional box, and plot the energy density as
the height above the plane. We have analyzed the time
evolution of the energy density in several different slices.
All of the slices generally look alike. The most important
(and generic) feature is the development of large-
amplitude peaks. As the system evolves in time, the
peaks in the energy density, the axitons, increase in mag-
nitude and become more compact. We present the re-
sults in the z=const plane, which intersects the point
with the maximum energy density at the end of the calcu-
lation. We emphasize that all slices through the box are
quantitatively similar. We normalize the energy density
by comparing it to the energy density of a homogeneous
axion field, p, (il}, with initial amplitude equal to the rms
value of the misalignment angle, 8, ,=n /&3

In order to isolate the effect of the nonlinearities in the
axion potential we also evolve the same initial conditions
with a harmonic axion potential, V(8)=m (T)f 8 /2,
and compare the evolution of the harmonic potential
model to the axion model.

The distribution of the axion energy density in the
reference plane (which is the same as in Fig. 1) at time
corresponding to g=2 is shown in Fig. 2(a) for the har-
monic potential, and in Fig. 2(b) for the axion potential.
The maximum energy density peak that picks the refer-
ence plane is clearly seen in Fig. 2(b) its top portion is
chopped off to fit overall the scale of the figure.

The distribution of the axion energy density in the
reference plane at time corresponding to g =3 is shown in
Fig. 3(a) for the harmonic potential, and in Fig. 3(b) for
the axion potential. Again, the tops of the four peaks in
Fig. 3(b) are chopped off; their height are in excess of 100.
Of course the peaks are only evident for the axion poten-
tial model.

Comparing Fig. 3(b) to Fig. 2(b) we see that for the ax-
ion potential most of the high magnitude peaks grow con-
siderably in height and became thinner, while most of the
low amplitude peaks remain almost unchanged; i.e., they
are in the linear regime and consequently are frozen by
the cosmological expansion. There are some peaks (some
even relatively high at 7}=2}which decreased in ampli-
tude. Those peaks represent the tales of the density
clumps which reach their maximum at some other value
of z. All high density peaks contract in the coordinate
volume, those which decreased in height simply moved
out of our reference plane. High density peaks do not de-
velop in the evolution of the harmonic potential, and the
evolution proceeds as was assumed in the linear analysis
[8,9].

There is insufficient resolution on this grid to proceed
further in time with the axion potential, but the harmonic
potential can be evolved further. In Fig. 4 we present the
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result of the distribution of the axion energy density in
the reference plane at time corresponding to q =4 for the
harmonic potential to demonstrate that as expected the
evolution of the field in the linear regime is frozen by
g=3. Note that the typical magnitude of the peaks is
about 2 for the harmonic potential.

There is a simple, heuristic explanation for the fact
that nonlinear e6'ects lead to the formation of high densi-

ty peaks. The average pressure over a period of homo-
geneous axion oscillations in the axion potential is nega-
tive, and is equal to (P) = —A, (T)8O/64, where Ho is

the amplitude of the oscillations [17] (this formula is val-

id for Oo &&m; as Oo~m, the field spends more and more
time near the top of the potential, and (P )~—2A, ). In
other words, the axion self-interaction is attractive. The
larger the amplitude of oscillations inside the fluctuation,
the more negative the pressure inside, and consequently,
fluctuations with excess axions will contract in the
comoving volume. In addition, matter with a smaller
pressure su@'ers less redshift in cosmological expansion.

Before continuing our exploration of the evolution of
the peaks by means of a one-dimensional calculation, we
present some results of calculations with 3 =2, where
domain walls are much more likely to form than the
above calculation with A =1. The best way to illustrate
the presence of domain walls is by a contour graph,
where the shading represents the amplitude of the axion
energy density. We show a graph of the energy density
distributions for the axion potential at time g=2 with
A =2 in Fig. 5(a) and compare it to a similar contour

20
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FIG. 2. A two-dimensional slice through the three-
dimensional box at time corresponding to g= 2 for the harmon-
ic potential (top) and the axion potential (lower). The Hubble
radius at this time is 2 units and the inverse of the axion mass is
0.038 units. The height of the figure corresponds to the energy
density in the axion field normalized to the height for homo-
geneous field evolution: p, ( r] =2 ) /p, ( g =2).

20f course the average pressure is dominated by relativistic

species at this time. It is the pressure contributed by the axions

that is negative.

1
2

3

FIG. 3. A two-dimensional slice through the three-
dimensional box at time corresponding to g =3 for the harmon-
ic potential (top) and the axion potential (lower). The Hubble
radius at this time is 3 units and the inverse of the axion mass is
0.005 units. The height of the figure corresponds to the energy
density in the axion field normalized to the height for homo-
geneous field evolution: p, (q =3) /p, (q =3).
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20

field decomposition, Eq. (3.6), substitute the values of the
coordinates of the given spatial point, and multiply each
time harmonic by sin(cur ) lnrr. So the dashed line in Fig.
6 also represents the time dependence for a massless field
at the reference point of the (3+1)-dimensional calcula-
tion and also at the center of a (1+1)-dimensional spheri-
cally symmetric configuration. [Away from the reference
point even the massless field will evolve differently in the
(1+1)-dimensional calculation and the (3+1)-
dimensional calculation. ] We can use the resulting

3

4

FIG. 4. A two-dimensional slice through the three-
dimensional box at time corresponding to g=4 for the harmon-
ic potential. The Hubble radius at this time is 4 units and the
inverse of the axion mass is 0.0015 units. The height of the
figure corresponds to the energy density in the axion field nor-
malized to the height for homogeneous field evolution:

p, (g =4)/p, (g =4).

graph for A =1 at r)=3 in Fig. 5(b). In Fig. 5(a) two
shells of collapsing domain walls are clearly visible in the
lower left-hand corner and in the upper right-hand
corner. Such configurations do not appear in Fig. 5(b).
The density peaks in Fig. 3(b), the axitons, are not related
to axion domain walls.

In order to learn the fate of the high density peaks, we
have chosen one of them in Fig. 3 and generated the cor-
responding spherically symmetric initial conditions at
g=0.4 and evolved it in time. We now describe the re-
sult of this calculation.

0—

4 I

s s I ~ I ~ ~ j ~ I

3 4

2. (I+1) dimensional -errolution

The axiton we choose to examine is the one near the
center of the grid of Fig. 3, with grid coordinates
I2.24, 1.92I (the grid coordinate of the plane of Fig. 3 in
the z direction is 1.76, also near the center of the three-
dimensional box, and the axiton we chose is almost at its
maximum in this plane, having ao absolute maximum at
z = 1.80).

The dependence of the axion field upon time at the
reference point at the center of this peak in our (3+1)-
dimensional numerical calculation is shown in Fig. 6 by
the solid curve. We can compare this evolution to the
evolution of a massless axion field with the same initial
conditions since we are able to calculate its evolution
analytically from the massless wave equation with initial
conditions given by Eq. (3.6). The evolution of a massless
field at the reference point is shown in the Fig. 6 by the
dashed line.

It is then straightforward to construct a spherically
symmetric solution to the massless counterpart of Eq.
(3.5) which has exactly the same time dependence as Fig.
6 in the center of the configuration. We start with the

0—
0 1 2 3

~ I

FIG. 5. A two-dimensional slice through the three-
dimensional box. White regions correspond to high density.
The upper figure is for A =2 at time corresponding to g=2 and
the lower figure is for 3 = I at q=3 [i.e., the same as in Fig.
3(b)].
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FIG. 8. The time dependence of 0 in the center of an axiton
in the (1+1j-dimensional calculation. The axiton was generated

by the choice A =0.77.

FIG. 10. The radial profile of the axiton of Fig. 9 at three in-

stants during one period of oscillation around time q=5. 6 indi-

cated by the arrow in Fig. 9.

ion emission by looking at the radial profile of an axiton.
In Fig. 10 we show the profile of the axiton of Fig. 9 at
three instants in time during one oscillation period. The
emission of relativistic axions is seen in the outgoing
waves of Fig. 10. The emission of relativistic axions
reduces the energy of the central configuration below
some critical value, at which point a pseudosoliton, an
axiton, is produced.

The final energy density profile of this configuration for
the case 3 =0.77 is shown in Fig. 11. At time r1=9 (dot-
ted line), outgoing secondary waves are still seen in the
tail of the configuration. By time g=11 there is no evi-
dence of outgoing radiation. The amplitude of the energy
density at r =0 is 23.5, at g=9, and 12.9 at g= 11 (the
energy density in this graph is not normalized to the
homogeneous background). It is clear that the energy
density in the center scales as il [e.g.,
23.5/12.9=(11/9) ], confirming that the linear regime
has been reached, the fluctuation is frozen, and the num-

ber of axions per comoving volume is conserved. The en-

ergy density of a homogeneous background at g = 10 with

g, =3.5 and initial amplitude equal to the rms value of 0
is 0.85 in the units of the figure. Thus, the fluctuation of
Fig. 11 has an energy density contrast of 20.

The radial coordinate r is the spherical analo t
t the values of q in Fig. 11 the axion mass has saturated

to m, =3.5 g=100g. Therefore in the units of Fig. 11,
the Compton wavelength of the axion is 0.01' ', and the
axiton is obviously much larger than m, ' —it is indeed a
breatherlike configuration.

The axiton is a quasistable (on time scale m, ') solution
of the field equations in an expanding Universe. Since
there are no absolutely stable spherically symmetric
breatherlike solitons in flat space, in Minkowski space-
time an axiton configuration will gradually decay anyway
without the emission of axions present in the violent os-
cillations seen in Figs. 7 and 8. In an expanding Universe
t e situation is different. Once the axiton enters the
inear regime density contrast becomes frozen by the

cosmological expansion, and behaves as a clump of
coherent field oscillations (or ultracold axions).

Not all fluctuations that pass through the nonlinear re-
gime contract in physical space. For example, a sample
sp erical fluctuation for A =0.70 does not collapse. The
corresponding energy density profiles of this fluctuation
at two moments of time are presented in Fig. 12 by the
dashed lines. This should be compared to the solid lines,
which are the energy density profiles for a fluctuation

s s ~ ~ s ~ ~ ~
I

~~ ' s ~ ~ ~ s ~ s ~ ~ ~ I ~ ~ ~ ~
I 25

0

20—

15—

10

q=10

—3—
5.25 5.5 575 5 6 6.25 00 0.1 0.2 0.3

FIG. 9. An ex lop ded view of the large amplitude oscillations
in the center of the axiton of Fig. 8. The region pictured here is
indicated by the arrows in Fig. 8.

FIG. 11. Energy density profiles of the axiton in the spheri-
cally symmetric calculation with A =0.77 at three instants of
time.
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100 =-

10=

T, -5.50,h eV is the temperature of equal radiation
and axion energy density. In the case of a collapsing non-
linear fluctuation, the final field configuration is the out-
put of nonlinear dynamics. Let OL be the amplitude of
field oscillations in the axiton at the time when it enters
the linear regime at TL =T, /tIL. Then the correspond-
ing energy density in the fluctuation will be at this time
about A", 611. The ratio of the axiton energy density to
the homogeneous background axion energy density will
be

0.01 0.1 1+4 A~ BL rlL lT
q
T (3.8)

FIG. 12. Energy density profiles of three axitons in the spher-
ically symmetric calculation. The axitons were generated by the
choices 3 =0.70, A =0.73, and 2 =0.77. At r ~ 0. 1 the curves
separate into two pairs and a single configuration. The upper
pair are the profiles at g=3.4, the next pair are the profiles at
g= 6.3, and the final dotted line is at q= 11.

with 3 =0.73 which does undergo collapse. We see that
the slope of the energy density in the nonlinear tail tends
to a power law p ~ r prior to the collapse. This leads
to an increase in field amplitude in the center, while, due
to the overall expansion of the Universe, the amplitude
decreases. For A =0.73, the first process wins for some
period of time, see Fig. 7, while for A =0.7 the general
expansion dominates, and the amplitude of the oscilla-
tions decreases monotonically. However, the decrease in
amplitude is much slower than it would be with the har-
monic potential, and the final energy density contrast
with g, =3.5 and A =0.7 is 45.

For comparison we also present in Fig. 12 the energy
density profile of the fluctuation with A =0.77 at g=11.
Remarkably, it has the same power-law slope, p ~ r
despite the fact that this profile represents a fluctuation
that has undergone "violent oscillations" accompanied by
axion emission (see Figs. 8, 10, and 11).

Since the axion interaction is attractive, one can expect
that bound states of axions can form. One example of
such a bound state is the wel1-known "breather" solution
in the (I+1)-dimensional sine-Gordon model. In 3+1
dimensions this solution possesses planar symmetry and
turns out to be unstable with respect to fragmentation
(we discuss this further in the next section). If a spheri-
cally symmetric counterpart of the "breather" would ex-
ist in Minkowski space-time, it would behave in an ex-
panding Universe just as the fluctuation shown in Fig. 11.
Thus the axiton is related to a spherically symmetric
breather.

Suppose we can extrapolate these results to the range
of realistic axion models, i.e., to larger values of q, corre-
sponding to smaller values of f, . Then we must consider
the possibility of producing enormous density contrasts.
Indeed, both the increase in axion mass and the expan-
sion of the Universe adiabatically decreases the amplitude
of axion oscillations in the linear regime (or in the homo-
geneous state), so that at T~ AQco the corresponding
background energy density is about p, = T, T, where

Using the results from Figs. 7 and 8 (BL -0.1 and

riL &6), we obtain 1+4=10 prior to gravitational
decoupling of the fluctuations from the cosmological ex-
pansion.

Although this possibility is exciting, a word of caution
is necessary. Nonlinear dynamics is rather unpredictable,
and one cannot exclude the possibihty that at g, )6 all

collapsing nonlinear fluctuations somehow dissipate,
leaving very small OL . Note also that nonspherical
configurations can evolve quite differently than the spher-
ical configurations.

The range of initial conditions which will lead to
monotonic behavior of the amplitude in the nonspherica1
case is expected to be wider. Our point of view is that
spectrum of energy density contrasts can span the entire
range from order 1 up to of order 10 or even larger.
However, at this time we have nothing to say in regard to
the number density of peaks as a function of its ampli-
tude [18].

So far we have neglected the presence of other non-
linear structures which can be formed by the axion field
during the QCD epoch, namely, axion domain walls and
walls bounded by strings. We now turn to the question of
their fate and their contribution to the dark matter distri-
bution.

IV. AXION BREATHERS

In general, there are four sources of cosmic axions.
The first source is thermal axions [19]. The second
source, related to the initia1 misalignment of the axion
degree of freedom from its true minimum, was discussed
in the previous sections. We will refer to this source of
axion energy density as the misalignment energy density.
The third source is the decay of cosmic axion strings
[20,21]. In Ref. [20] it was found that the energy density
resu1ting from this process is 2 orders of magnitude
larger than the misalignment energy density, while in the
estimate of Ref. [21], the energy density from the decay
of cosmic strings is comparable to the misalignment ener-

gy density. At T- T, the decay of strings will also pro-
duce an inhomogeneous axion field. While we cannot de-

In any case, gL will be larger than g„the value of q where
the axion mass saturates to its zero-temperature value [see Eq.
(3.7)], and qz & 6 seems a very conservative estimate.
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8„(t, z ) =4arctan sin(t /r)
u cosh(z/L )

(4.1)

where r ='t/1+ v /v and I.:—'t/1+ v . One can interpret

5The viewpoint of Ref. [3] suggests that N & 1 might be viable
also since vacua might have different energies.

scribe the initial configuration emerging from string de-

cay by the distribution of Eq. (3.6), we expect that the at-
tractive nonlinear self-interaction will also play a role
here, and the evolution will proceed along the lines de-
scribed in Sec. III and will result in high density peaks.
The fourth potential source of axions is related to the col-
lisions and subsequent disappearance of axion domain
walls. In this section we discuss this last process.

In most cases a network of vacuum domain walls is a
cosmological disaster, since they soon come to dominate
the energy density of the Universe [22]. Fortunately, in
the N=1 axion model domain walls are effectively unsta-
ble and this problem is avoided. The process by which
the domain walls disappear is through collisions of the
string network with the walls. The usual assumption is
that when a string loop (with a wall on the inside) hits a
large wall the two pieces of wall annihilate and a vacuum
hole is produced in the large wall. Since the surface ener-

gy of the hole is smaller than the surface energy of the
wall, the vacuum hole expands and devours the wall. For
an infinite domain wall there will be roughly one hole in
the wall per Hubble radius, so in a couple of Hubble
times the holes quickly overlap and the wall disappears.
Domain walls of finite size (size smaller than the Hubble
radius} form closed surfaces and shrink by themselves.
An oversimplified point of view would be that all of the
energy released in the disappearance of the domain walls
is transferred to relativistic axions, which subsequently
redshift away and would become an insignificant source
of axion energy density. However, since the curvature
and the width of the walls is of the order of the Hubble
distance, one would presumably expect resulting axions
to be only marginally relativistic upon unnihilation. The
resulting axion density is estimated in Ref. [23].

Furthermore we shall argue here that the hole in a
domain wall formed by a string-loop intersection is not
vacuum, but rather consists of a bound state of two
pieces of domain wall (which in the simplified scenario
annihilated each other) corresponding to a generalization
of the "breather" solution of the (1+1}-dimensional
sine-Gordon model [24]. That is, the vacuum wall net-
work is transformed into a breather wall network. The
breather wall effectively evolves as a dust wall rather than
a domain wall, so it represents cold dark matter.

We consider here the axion field in Minkowski space-
time with planar symmetry as a function of two coordi-
nates, time xo and one spatial direction, x&. It is con-
venient to introduce the dimensionless variables t:—xom,
and z—=x, m, . The relevant breather solution to the
equation of motion 8—8"+sin8=0 (overdot denotes
d/dt and prime denotes d /dz) has the form [24]

this solution as a bound state of two static domain walls
(or kinks), 8„;„„=+4arctan[exp(z)].The free parameter
v of the breather is related to the binding energy. Larger
u corresponds to larger binding energy of the kinks. In
terms of the spatial energy density distribution, the
breather looks like a domain wall with an effective width
I., but unlike the usual static domain wall, the field
coherently oscillates with period ~ in the breather. When
v~0 the period tends to infinity, and when v~~ the
field oscillates with a frequency equal to the axion mass.
The width of the breather scales in the opposite way with
v: as v ~0 the width is m, ', and the midth grows pro-
portional to v at large u.

When considering mall-like structures, it is convenient
to introduce a surface stress-energy tensor of the wall,
S"„—=I" T"„dz Whi. le all the components of TI„'in the
breather solution oscillate with time, the surface energy
density is constant:

Su =16f,m, /'t/1+ v (4.2)

and S"„is a diagonal tensor. The spatial components of
S„areoscillating functions. However, when considering
the macroscopic properties of a wall, the relevant quanti-
ties are averages over an oscillation period. Upon averag-
ing over an oscillation period (S,') =0, as it must be for a
wall of any nature [25]. For the time-averaged surface
tension we find

(S')=Sf,m, 2(+1+v —v) — 5'

(4.3)

As u ~0, the stress-energy tensor tends to the vacuum
stress tensor, with SO=S, where So is twice the energy
density of a single kink. However, at large v, we have
Su=16A", /m, u and S=SA, /m, u . With increasing u,

this tends to the stress-energy tensor of a dust shell. So in
the expansion of the Universe the surface density of the
breather wall has to decrease and v has to grow. Using
Eqs. (4.2) and (4.3) we obtain, as a solution to the planar
wall equations of motion [25],

32f, m, R
So(R)= R'+1 (4.4)

where we assumed constant m, and have normalized the
scale factor in such a way that R =1 at the moment when
u=0. Note that the number of axions per unit area is
conserved at large R. Despite the fact that the breather
is a bound state, its surface energy density decreases in
expansion, exactly as the energy density of the solution
presented in Fig. 11.

We can visualize the formation of the breather network
in the following scenario. When domain walls form atT- T„every string loop develops a wall inside (an "an-
tiloop*' develops a wall outside). When a string hits a
large segment of wall, the intersection region will not be
empty, but will be a bound state of two domain walls. In
the idealized approximation of planar symmetry, the
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FIG. 13. The fragmentation of the breather.

bound state will correspond to the breather solution of
Eq. (4.1). However, since the perfectly planar situation is
unrealistic, the question arises whether breather walls are
stable.

To answer this question we numerically integrated the
axion equations of motion in Minkowsi space-time with
initial conditions corresponding to a perturbed breather
wall. We evolved an axisymmetric configuration
8=B(t,z, r), which initially corresponded to the breather
field distribution of Eq. (4.1) with u =u(r). The value of
u, and the corresponding pressure, was larger in the
center [note that Eq. (4.3) corresponds to a system with
negative pressure]. In a sense, this configuration corre-
sponds to a bubble of new phase of lower energy density,
and it is expected to expand. The question is whether the
field inside the "bubble" will tend to a breather solution
with a new constant value of v as the boundary of the
bubble propagates outward. We have found that this
does not occur: the breather wall is unstable Howeve. r,
the energy density in the breather does not dissipate, but
the breather fragments into clumps very similar to those
discussed in Sec. III C. This result is not unexpected in
view of the attractive nature of the axion self-interaction.
The energy density profile in the ~ direction is presented
in Fig. 13 at several moments of time.

Our conclusion in this section is that the decay of the
axion domain wall network can provide yet another
channel for axiton production in the axion distribution.

vR m k p u (5.1)

The shallower the gravitational well for a given density of
axions, the larger the mean phase space density, and con-

sequently the smaller the relaxation time due to the u,,

dependence in Eq. (5.1). Note also the dependence of the
inverse relaxation time upon the square of the particle
density.

The relaxation time (5.1) is smaller then the present age
of the Universe if the energy density in the minicluster
satisfies

The probability of a direct encounter with a miniclus-
ter is small. Let us assume that all of the axions end up
in miniclusters of mass 10 ado, density 10 '

g cm
and radius 4X10' cm. Using a local halo mass density
of 5X10 gcm would give a minicluster number
density of 7000000 pc . With a typical velocity of 250
kms ' the encounter rate would be 1 per 25 million

years. Although the signal in an axion detector from a
close encounter with a minicluster would be enormous, it
might be a long wait. So the interesting question arises,
could there by any other astrophysical consequences of
very dense axion clumps' Below we shall discuss the pos-
sibility of "Bose star" formation in axion miniclusters.

The physical radius of an axiton at Teq is larger by

many orders of magnitude than the de Broglie wave-

length of an axion in the corresponding gravitational
well. Consequently, the gravitational collapse of the ax-
ion clump and subsequent virialization can be described
in the usual terms of cold dark matter particles. In a few

crossing times some equilibrium distribution (presumably
close to an isothermal distribution) of axions in phase
space will be established. It is remarkable that in spite of
the apparent smallness of axion quartic self-couplings,

l&, l
=(f /f, ) —10 ' f,z, the subsequent relaxation in

an axion minicluster due to 2a~2a scattering can be
significant as a consequence of the huge mean phase-
space density of axions [12]. In the case of Bose-Einstein
statistics the inverse relaxation time is (1+n) times the
classical expression, or rR nu, o-p, /m„where o is the

corresponding cross section. For particles bound in a
gravitational well, it is convenient to rewrite this expres-
sion in the form [12]

V. DISCUSSION pro & 10'u
8+f„, (5.2)

In principle, all axion miniclusters could be relevant to
laboratory axion search experiments, since even for 4 as
small as 1, the density is 10' times larger than the local
galactic halo density [see Eq. (2.3)]. Moreover, as we
have noted already, the energy density in an axiton after
it separates out from the general expansion will be 4
times larger than the energy density at T, . For example,
a rather moderate density contrast of N =30 at
AQCD )T & Teq will correspond to roughly an additional
factor of 10 in the energy density of the axiton at
T ((T

We can define the boundary of future miniclusters as a
surface where the density of the axiton becomes equal to
its mean value. It turns out that, in our calculation, 80%
of all axions belong to miniclusters at 7I =3. See Fig. 3(b).

where p, o—=p/(10 eV) and u s = u, /10 . If this
occurs, then an even denser core in the center of the ax-
ion cloud should start to form. An analogous process is
the so-called gravithermal instability caused by gravita-
tional scattering. This was studied in detail for star clus-
ters, where the "particles" obey classical Maxwell-
Boltzmann statistics. Axions will obey Bose-Einstein
statistics, with equilibrium phase-space density

n(p) =n„„d+[ e~ —1] ', containing a sum of two con-
tributions, a Bose condensate and a thermal distribution.
The maximum energy density that noncondensed axions
can saturate is p,h„-m, u, , which corresponds to4 3

n,h„—1. Consequently, given the initial condition n» 1,
one expects that eventually the number of particles in the
condensate will be comparable to the total number of
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particles in the region if relaxation is efficient. Under the
influence of self-gravity, a Bose star [17,26,27] then forms
[12]. One can consider a Bose star as coherent axion field

in a gravitational well, generally with nonzero angular
momentum [17].

Comparing Eqs. (2.3) and (5.2), we conclude that the
relaxation time is smaller than the present age of the
Universe and conditions for Bose star formation can be
reached in miniclusters with a density contrast 4 ~ 30 at
the QCD epoch.

Under appropriate conditions stimulated decays of ax-
ions to two photons in a dense axion Bose star are possi-
ble [17,28] (see also [29]),which can lead to the formation
of unique radio sources —axionic masers. In view of the
results of this paper we conclude that the questions of ax-
ion Bose star formation, structure, and possible astro-
physical signatures deserve detailed study.

In conclusion, we have presented a three-dimensional

numerical study of the evolution of inhomogeneities in
the axion field around the QCD epoch, including for the
first time important nonlinear effects. We found that the
nonlinear effects of the attractive self-interaction can lead
to a much larger density of axions in miniclusters than
previously estimated. Large amplitude density contrasts
form solitons we call axitons, and resemble the bound-
state "breather" solutions of the (1+1)-dimensional sine-
Gordon model. The increase in the axion density may be
sufficiently large that axion miniclusters formed by the
fluctuations might exceed the critical density necessary
for them to relax to form Bose stars.
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