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If string theory controls physics at the string scale, the dynamics of the early Universe before the GUT
era will be governed by the low-energy string equations of motion. Studying these equations, we find

that depending on the initial conditions when the stringy era starts, and on the time when this era ends,

there are a variety of qualitatively distinct types of evolution. Among these is the possibility that the

Universe underwent a period of inflation. A by-product of this analysis is the observation that it is often

possible to erase any evidence of a dilaton at late times.

PACS number(s): 98.80.Cq, 11.25.—w

In this paper we discuss the solutions of the lowest-
order string P-function equations that represent homo-
geneous isotropic four-dimensional spacetimes. The
basic ingredient of this calculation is therefore the mass-
less states of the string, and for simplicity, we consider
only the closed bosonic string. It is quite straightforward
to extend our technique to other types of string theory.
This type of solution is of importance for a number of
reasons. The first is that it illustrates some of the possible
solutions to the string equations of motion as a problem
in its own right. One might think that the only solution
to the bosonic string equations that is consistent with
having spatial sections of spacetime being surfaces of
constant curvature would be the well-known example of
26-dimensional Minkowski spacetime. However, it is
possible to trade off some of these extra dimensions in re-
turn for spacetime curvature, and this is precisely what
we do here.

Another reason for studying the problem is physically
motivated. If string theory really controls physics at the
string scale (presumed to be roughly Planckian although
it could be at a significantly lower scale), then from this
era down to whenever the stringy symmetries are broken
to yield the physics of (presumably} the grand unified
theory (GUT} era universe, it seems reasonable to sup-
pose that the dynamics of the Universe will be governed
by the low-energy string equations of motion. These are
the equations to be studied in the remainder of this paper.

Similar, but much more restricted results have previ-
ously been obtained by Antoniadis, Bachas, Ellis, and
Nanopoulos [1],Love and Bailin [2], Campbell, Kaloper,
and Olive [3], Tseytlin and Vafa [4], Tseytlin [5], and
Kaloper and Olive [6]. A number of other related refer-
ences can be found in [5,6]. Their solutions are all special
cases of our results which in some sense are a complete
set of solutions that are consistent with symmetries of the
spacetime that we are imposing.
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where R is the Ricci scalar of the metric g,b, c is a con-
stant, related to the central charge of the string theory,
and the integral is taken over all of spacetime M. The
scale of string physics is determined by a', the inverse
string tension. Provided that the spacetime curvature is
small on the string scale, then Eq. (1) is a complete
description of the massless modes of the string. Howev-
er, for curvatures large on the scale of string physics, this
action needs to be modified by terms in a', however, in
the era we are considering, they are negligible.

Variation of this action with respect to the metric
yields the string analogue of Einstein's equation

R~b Vgv b )+—,'Hg, d Hb (2)

Variation with respect to B,b gives the axionic analogue
of Maxwell's equation

V.H b'+V. yH b =O.

Finally, variation of the dilaton gives rise to

c =R (Vttp} 20/+ —
,', H,b, H—'—

(3)

(4)

The constant c is given by (D —26)/3a' for the bosonic
string, and ( ,'D —15)/3a' for t—he heterotic or super-
string, where D is the dimensionality of spacetime and a
is the inverse string tension. However, c can be changed
from these values by coupling some conformal field
theory to the string, and so c can have any value in prac-
tice. One often studies critical string theory where c =0.
The reason for such a choice is that it enables Minkowski

In the closed bosonic string theory, the long-range
massless fields are the dilaton 4, the axion field strength
H,b, =H(,b,}=6t)(,Bb,}, which is derived from the two-
form potential B,b, and the graviton, or equivalently, the
spacetime metric tensor g,b Conde. nsates of these fields
can be treated in a way consistent with the symmetries of
the string and then obey the P-function equations [7]. If
we work in the string frame, these equations can all be
derived from the action

4xg'»e~ c —R — + l H b
+abc
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spacetime to be a stable ground state for the string.
However, we are interested in cosmological solutions in
string theory, and so this is no longer a meaningful re-
striction. We regard c as an arbitrary constant in what
follows.

The p-function equations (1)—(4) describe physics as
seen from the viewpoint of the string. However, they are
not convenient for understanding gravitational phenome-
na, because the coefficient of the Ricci scalar depends on
the dilaton field. An easy way to look at spacetime phys-
ics is to perform a conformal transformation on the
metric so as to eliminate the dilaton-dependent term.
This conformal frame is usually referred to as the Ein-
stein frame, whereas the original one is termed the string
frame. Such a conformal transformation yields a new
metric g,b given by

gab e gab

so that the action becomes

(5)

I= f d xg' [ce ~ —R —
—,'(P'(I}) +

,
', e PH, I,c—H' 'j.

(6)

The H equations of motion are

V t, Hb, d)
—0,

H abc 2P yH abc —0

and the Einstein equation is

(8b)

We see from the new action that in the Einstein frame,
gravitation is described by the minimal gravitational ac-
tion but matter fields couple to gravity via the dilaton
with various conformal weights. This is reminiscent of
the situation in Brans-Dicke-type of theories. Variation
of (6} leads to the field equations in the Einstein frame.
The P equation of motion is

Uy=ce ~ ——'e ~H H'"'
abc

cerned, one only needs to ask if quantities in the string
frame blow up, since only then will the string be badly
behaved. In other words, the types of singularity predict-
ed by the singularity theories in general relativity do not
necessarily cause breakdown of physics in string theory.

The Universe on very large scales looks like a four-
dimensional Friedmann-Robertson-Walker spacetime
with a value of k which cannot be observationally deter-
mined. Therefore, on large scales the spacetime metric is

ds = dt —+a (t)do (10)

~ ~
~ ~ aP= —3—=6

a
a 3ag 6f 6k

a a6 a2

where an overdot denotes d ldt. We now aim to charac-
terize all the solutions of (11) and (12).

Although (11) and (12) are the equations in the string
frame, it is straightforward to translate the solutions into
the Einstein frame explicitly. In the Einstein frame, the
metric is

ds =e ~ds = —d7 +b (7)do (13)

where

where deI, is the line element on a unit three-sphere, Eu-
clidean three-space, or the unit hyperboloid depending on
whether k =1, 0, or —1, respectively, and a(t) is the
cosmological scale factor. Consistent with the assump-
tion of homogeneity and isotropy implicit in this metric,
we choose the dilaton field to be independent of the spe-
cial coordinates, and the axion field H, &,

=f (t)e,t,„
where e,b, is the volume form on the surfaces of
t =const. Then the requirement that H,b, be closed im-

mediately implies that f (t) is a constant, f. We can then
reduce the p-function equations down to a set of three
coupled ordinary differential equations:

c=6 —/+6 — +P — + (11}
a a a' a' '

Rab iRgab i l. ~ae~bk igab(~0)

and

7= fdte (14a)

+ 2cgabe (9)
b(7)=e ~" a(7) . (14b)

Thus, the Einstein tensor couples to the minimal
energy-momentum tensor of the dilaton, and the minimal
energy-momentum tensor of the 8-field weighted by e ~.

The central charge term c appears in a way reminiscent
of the cosmological constant, but again with a weight fac-
tor now of e ~. One might worry about the consistency
of this set of equations. On general grounds, one knows
that (4) follows from (2) and (3) as a consequence of the
Bianchi identities. In a similar way, one can derive (7) as
a first integral from (8) and (9).

As is apparent from (9), the right-hand side looks like a
conventional gravitational theory, and therefore one
should not be surprised to discover singularities in the
solutions of (9) where the curvature blows up. Such
singularities are, however, unlike general relativity, not
necessarily unphysical. As far as string physics is con-

3Q = —12
a

a a o ~
2—15—P —3P

a a
(15)

Perhaps the easiest way to find all the solutions to these
equations is to change variables into

g=a /a,
yielding

(16)

To simplify the discussion of these equations, first we
consider the special case of the critical string (c =0) and
a fiat universe (k =0). We can now eliminate f and find
that
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p = —12' —15pg —3p

i=3X'+5pX+S ' .
(17)

which are given by

p=( —3+&3)y . (22}

7= ~t and b =b 'r'
0 (20)

In other words, case (ii) is identical to a radiation-
dominated Universe. It is singular at t =0, even in the
string frame, and unphysical since one finds that f (0.
Cases (iii) and (iv) were originally found by Tseytlin [5],
have f =0, and similar power-law expansions and con-
tractions. Case (iii) is a(r)=aot'i while case (iv) is

a(r)=a, r

The remaining solutions can be explored by examining
the phase-plane portrait using the fact that Eq. (17) re-
sults in

dp 12' +15py+3p
3X'+5PX+P'

(21)

It is shown in Fig. 1, the region of physical solutions is
bounded by the exact solutions of cases (iii) and (iv)

There are several simple analytic solutions that can
easily [1,5,6] be found from (17). They are

8X=
0 0

with any of

(i) A =0, B=O,

(ii} A = ——'„B=
—,',

(iii) A =1—&3, B=1/&3,
(iv) A = 1+V3, B= —1/V3 .

Case (i) is flat Minkowski spacetime (in either the Ein-
stein frame or the string frame) and was first discussed by
Antoniadis, Bachas, Ellis, and Nanopoulos [1]. Case (ii)
is a (t)=aot'i and P(t) =go ——', lnt (setting to =0). If we

transform this into the Einstein frame (/&=0), then
d8 1

dt a
(23)

Using 8 as a dynamical variable we now define y and P to
be

a' P=P', (24)

where a prime denotes d/d8. The analogue of Eq. (17)
can then be rewritten as

P' = —14/P —12/ —12k —3P

y'=5yP+4y +4k+P
(25)

To check consistency, the solutions of Eqs. (25) must
satisfy Eq. (11),which in terms of the new variables takes
the form

6yP+6y +P +6k=2f /a (26)

The evolution is in the direction of the arrows indicated.
With the exception of the exact solutions (iii) and (iv), the
spacetimes are nonsingular. There are two types of evo-
lution depending on which side of the phase plane the
trajectories begin. In both cases tracing the solutions
backwards in time reveals that at earlier times they were
repelled from the contracting version of either the exact
solution (iii) or (iv). For solutions that expand rapidly at
late times, the exact solution (iv) is an attractor. These
type of solutions occupy the left-hand half of Fig. 1. The
solutions that occupy the right-hand half of Fig. 1 are at-
tracted to solution (iii) and on it to the (0,0) point; i.e., the
Universe comes to a halt asymptotically. In Fig. 2 we

plot a (t) and y(t) for two typical cases.
We turn now to a more complicated situation in which

the spatial sectors of the Universe are not flat. In order
to get a phase-plane picture similar to the one we got in
the flat case, we change variables from t to 8 such that

k=o

60
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cL 0
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FIG. 1. A phase-plane diagram in the (g,P)
plane for k =0 and c =0. Evolution is in the
direction of the arrows. The exact solutions
(iii) and (iv) are identified by the half-
dashed —half-dotted lines. The dashed part is a
repeller and the dotted line is an attractor.
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We examine now the phase-plane properties derived from
Eq. (25). First, we construct dP/dy and find that

P = —3y++3y —6k (29)

dP gP
dy 5yP+4y +4k+P

(27)

6yP+6y +P +6k=0 . (28)

Therefore, in the asymptotic regime where y))k, the
solutions which bound the physical solutions are given as
before by Eq. (22) for the new P and y. However, the ex-
act solution to Eq. (28) is

The analytic solutions which bound the regions of the
physical solutions are given by the requirement that

f =0. From Eq. (26) it follows that

Those, there is radically different behavior in the case
k = 1 compared to k = —1 when one gets close to the ori-
gin of the y Pplane. W-e denote by (ASiii) and (ASiv)
those lines that are asymptotic to solution (iii) and (iv),
and turn now to examine the properties of the trajectories
in a closed universe.

For k = 1, physically valid solutions penetrate into the
region that was forbidden in the case that k =0. As in
the Oat case, there are two types of trajectories depending
on which part of the phase plane shown in Fig. 3 they oc-
cupy. All solutions are asymptotic to the lines given by
Eq. (28). However, all the trajectories end up on the ex-

k=1
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FIG. 3. The same as Fig. 1 for k =1 and
c =0.
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FIG. 4. Two typical solutions
of a and y as function of t. The
straight line corresponds to the
points marked by the circles in
Fig. 3.
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panding part of (ASiv). These on the upper part of the
(y, P) plane are repelled from the upper part of (ASiv),
and are attracted to the collapsing part of (ASiii). The
collapse slows down as the trajectories approach solution
(ASiii). The trajectories route depend on whether they
start below or above solution (iv). Trajectories that start
from below go through the left-hand part of the phase
plane in Fig. 3 and continue to collapse with different
rate. The ones that start from above go through the
right-hand part of the phase plane. In this case the col-
lapse turns into a slow expansion along the expansion
part of solution (ASiii). In both cases the further they

started up on (ASiv) the further they will go along solu-
tion (ASiii). In both cases the collapse or the slow expan-
sion turn into rapid expansion as the trajectories are re-
pelled from (ASiii) towards the expanding part of solution
(iv). In Fig. 4 we show two typical sets of evolution for a,
the scale factor, and y to demonstrate each of these his-
tories. One can see that the time scale on which changes
take place is completely different but eventually both
reach the point of fast expansion. In both cases the scale
factor becomes infinite in a finite time.

Now, we turn our attention to an open universe by set-
ting k = —1. There is an elementary exact solution with

k = -1
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Q 0 FIG. 5. The same as Fig. 1 for k = —1 and
c =0.
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P =0 and y = 1 (found already by Tseytlin) for which

a =r+to, (30)

This solution has the same form in the Einstein frame.
All the trajectories on the right-hand side of Fig. 5 ap-
proach this solution marked by a circle on this figure.
Tracing these trajectories to the past reveals that all the
trajectories are repelled from the contracting part of the
asymptotic solution (ASiv). Here since f =0 requires
6gP+6y +P —6=0, all the trajectories start above the

exact solution (iv). Because of this, trajectories that occu-
py the left-hand side of Fig. 5 are repelled from below by
the contracting part of (ASiv). These trajectories are at-
tracted by the expanding part of (ASiii); i.e., these
universes end up in rapid expansion. %e see that in this
case, unlike the case when k = 1, there are two complete-
ly different types of behavior depending on the initial
conditions, Figure 6 shows two of the line evolutions of
typical example of these two difFerent types of trajectory.
In the first case, the Universe ends up growing linearly
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while in the second case it starts from linear contraction
and which then turns into rapid expansion.

We turn now briefly to the case of c%0. The analogues
of Eq. (17) are, for k =0,

P = —&2X' —&5PX—3P' —3c

y=3y +5Py+P +c
(31)

(now the overdot denotes d /dt as for the k =0 case}. As
before the phase-plane properties can be explored from
observing that

dP

3y +5Py+P +c
(32)

The boundaries of the physical allowed regions are given
by f =0, for which

6y +6Py+P —c=0 .

The solutions to Eq. (33) are therefore

P= —3yh+3y +c

(33)

(34)

It seems therefore intuitively apparent that by comparing
Eq. (34) with Eq. (29) that c &0 should be qualitatively
similar to k & 0 and the effect of c & 0 should be qualita-
tively similar to k &0.

It is, in principle, possible to extend our method to deal
with the cases k%0, cAO simultaneously. We do not do
this here because it is too complicated to be in good taste.

Our overall conclusions are that in some stringy era,
the large-scale properties of the Universe are not without
some interest. Let us describe the c =0, k =0 case first.
The contracting part of the exact solutions, the dashed
line in Fig. 1, repels all the trajectories. So the general
evolution will be away from it, into the expanding phase.
As one might have expected by time-reversal invariance,
there are solutions which are the reverse of these. Crude-
ly speaking, these occupy the left-hand half of Fig. 1

whereas the original ones occupy the right-hand half.
These solutions start from the exact solution (iii} and are
repelled towards the exact solution (iv) and so the
Universe ends up in rapid expansion. If one starts in the
upper part of the diagram, the evolution will be towards a
universe that reaches constant size as t ~~, as given by
the attractor shown by the dotted line, or analytically by
Eq. (22}. If, however, one starts in the lower part of the
diagram, the expansion will always lead to hyperinflation.
In our mathematical idealization, the radius of the
Universe tends toward infinity in a finite proper time.
However, it could be the case that in a realistic theory
there is an exit regime when the effective temperature of

the Universe reduces below some critical scale, presum-
ably the GUT scale. For k =1, c =0 (or equivalently for
c &0 and k =0) then for large value of y and P, the
behavior is qualitatively similar. However, for small y
and P, there are significant differences. If one starts in a
contracted era in the upper part of Fig. 3, provided one
does not start too close to the repeller, an era of contrac-
tion will be followed by expansion, which can be very
slow for a significant time. This is called a loitering era
[8]. Eventually, the expansion will accelerate, again lead-

ing to hyperin6ation unless some exit from the string-
dominated era can occur. If one starts very close to the
repeller, then there is again a loitering phase which
occurs during the contraction. Eventually, however, ex-
pansion and then hyperinflation will set in, again subject
to the caveats that we are still in the stringy era. For
k = —1, c =0 (or equivalently c &0 and k =0), if one
starts in the upper part of the picture in a contracting
phase, then this always turns into expansion, and at late
times a (t)-t Th.is corresponds to the fixed point in the
(y, P) plane marked by an open circle in Fig. 5. Similar-

ly, one can start at a point in the lower part of Fig. 5, and
again one discovers that there is an attractive
hyperin6ating solution.

We see therefore that during a stringy era, one can get
a large variety of different behavior depending on the ini-
tial conditions when the stringy era sets in. Furthermore,
depending on when the stringy era ends, one can find a
number of clues to how GUT era physics could have
started off.

There is, in addition to the cosmological interest, the
potential in this work to resolve a string theory puzzle. If
string theory really does describe the physics of gravita-
tion, it seems that there should be a massless scalar com-
ponent to the gravitational field in the form of the dila-
ton. However, as has been emphasized by Damour and
Nordvedt [9], in many theories that contain a dilaton,
one is forced by the cosmological expansion to the gen-
eral relativistic limit. However, their general results do
not apply to the dilaton that emerges from string theory.
Our explicit results, however, show that (() is often driven
to infinity, which corresponds to weak coupling of the di-
laton. The ultimate physical significance of this observa-
tion, however, remains obscure.
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