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The effects of magnetic fields on big bang nucleosynthesis (BBN) are calculated, and the impact on the
abundances of the light elements are investigated numerically. An upper limit on the strength of primor-
dial magnetic fields compatible with observations of light element abundances is thus obtained. In the
framework of standard BBN theory, the maximum strength of the primordial magnetic fields, on scales
greater than 10* cm but smaller than the event horizon at the BBN epoch (~1 min, ~2X10'2 cm), is
<10'' G. This limit is shown to allow magnetic fields at the time of recombination no stronger than
~0.1 G on scales >10" cm. Our results also strongly indicate that, at the BBN epoch, and for field
strengths B <10' G, the effects of magnetic fields on the primordial abundances of light elements are
dominated by effects from reaction rates in the presence of primeval magnetic fields rather than by mag-

netic density effects on the expansion rate.

PACS number(s): 98.80.Cq, 98.62.En

I. INTRODUCTION

It is recognized that primordial nucleosynthesis pro-
vides a unique quantitative window on the early Universe
[1,2]. Since the synthesis of the light elements is deter-
mined by events occurring in the epoch from ~1 s to
~ 1000 s in the history of the Universe, when the temper-
atures varied from ~10'°K (=1 MeV) to ~10° K (<0.1
MeV), the observed abundances constitute a probe of the
Universe at epochs far earlier than those directly probed
by the cosmic microwave background radiation (CMBR)
[t~10° yr; T~10*K (~1 eV)]. Thus, through a detailed
comparison of the predicted abundances with the obser-
vational data, proposed cosmological models can be test-
ed and their controlling parameters can be constrained.
For example, big bang nucleosynthesis (BBN) was found
to constrain the number of families of light neutrinos [3]
prior to accurate accelerator measurements.

In this paper, we reexplore how the strength of certain
primordial magnetic fields can be constrained by BBN. If
magnetic fields of sufficient strength existed in the early
Universe, particularly at or just before the epoch of pri-
mordial nucleosynthesis, they could have had direct
influences on both the expansion rate of the Universe and
the nuclear reaction rates [4,5]. These influences could,
of course, affect the abundances of the light elements pro-
duced in this environment. In addition, if the scale of the
primeval magnetic field were greater than the event hor-
izon, the geometry of the Universe would also be affected
and an anisotropic Universe might result. An analysis of
nucleosynthesis in anisotropic Euclidean universes, in
which the dependence of the primordial abundances of
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“He, 3He, and D on the isotropy parameters was specified
more precisely, has been presented by Thorne [4] and by
Hawking and Tayler [6]. If a significant degree of anisot-
ropy had persisted up to times =20000 years, the pri-
mordial “He abundance would have been reduced to a
few percent. On the contrary, if the anisotropy is impor-
tant only during the early stages of the expansion, the
“He abundance is about 30% while there is no (neligible)
D or 3He production, and one might hope to eventually
reach agreement with the observational values by refining
this model. This had been done by Juszkiewicz et al. [7]
who studied the influence of the anisotropic momentum
distribution of neutrinos neglected by Thorne. The resul-
tant limit on the magnetic field at the BBN time, set by
the condition of small anisotropy for ¢>1 s, is about
B <4.1X10" G [8].

On the other hand, if the primeval magnetic field were
sufficiently spread over distances small compared with
the event horizon at that epoch, the geometry of the
Universe would not be affected [9] and it would still be
described by a Robertson-Walker metric. For this situa-
tion, it has been qualitatively pointed out by a number of
authors [9,10] that, in the presence of a very intense mag-
netic field (B >10'3 G), the neutron would decay more
rapidly than in the field-free case; this could obviously
affect light element synthesis in a dramatic way.

However, in previous studies, only the effects of a very
strong primordial magnetic field (B > 10'* G) on abun-
dances of “He, D, and 3He have been studied, not vice
versa, and no critical limit on the primeval magnetic field
was explicitly derived. The questions we address in this
paper are the following: (1) What is the limit on the pri-
mordial magnetic field? (2) How does the magnetic field
influence the emerging abundances of other light ele-
ments (A4 >9), such as lithium, boron, etc.? We find that
there are still constraints to be explored on the strength
and coherence scale of primordial magnetic fields, using
observational abundances and BBN.
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II. THE DIRECT EFFECTS OF THE PRIMEVAL FIELD
ON BBN

In the early expansion of the Universe, the existence of
a large scale primordial magnetic field may have both
direct and indirect effects on BBN. In this regard, the
two most sensitive and competing effects are (1) the
effects on reaction rates and (2) the effects on the expan-
sion rate. These two effects will further alter the result-
ing abundances of the elements.

For simplicity, we assume that our Universe is fully
filled by randomly oriented and distributed thin-wall
magnetic domains (or bubbles) [11]. The size of each
domain is large enough so that the field inside the domain
can be seen as a uniform field, but it is still small com-
pared with the event horizon. Thus, the magnetic field
will have similar effects on the motion of particles in each
domain. Here, we will neglect the boundary effects since
the wall is assumed to be thin.

As to the effects on reaction rates, we have recently de-
rived the reaction rates as a function of a uniform mag-
netic field B in the presence of an arbitrary degeneracy
and polarization [12]. As an application, if we assume
that the magnetic field is nearly uniform in each domain,
we can use our derived preliminary results (Ref. [12]) as a
first-order approximation for our purpose here. Howev-
er, we would like to point out that, if the magnetic field is
not uniform through the whole Universe but varies with
spatial variables, or if the scale of the magnetic field (or
magnetic bubbles) is much smaller than the horizon scale
and the magnetic domains are disconnected from each
other, the nuclear reaction rates will become inhomo-
geneous; i.e., the reaction rates will differ from region to
region even though the geometry of the Universe is still
not affected. This would require that we introduce reac-
tion rate fluctuations into the standard big bang code
(similar to the introduction ~f the density fluctuations as-
sociated with the first order QCD phase transition [13]),
and perform multizone calculations. Such exploration is
beyond the scope of the present paper and will be ad-
dressed in future work.
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is the mass density of each type of neutrino and antineu-
trino, T, is the neutrino temperature, n, is the number
density of baryons, and Y}, 4;, and Z; designate the mass
fraction, mass number, and atomic number of the ith nu-
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Now let us explore the effects of the magnetic fields on
the expansion rate of the Universe. According to our as-
sumptions, the globally chaotic (but locally orderly) mag-
netic fields will have no effect on the geometry of the
Universe. The geometry of the Universe is still described
by a Robertson-Walker metric. For this metric, the
work-energy equations can be expressed as

4, oy P d p3_

dt(pR )+ .2 dt(R )=0, (2.1
where R(¢) is the distance measure, p is the total mass-
energy density, and p is the total pressure.

In general, we consider that the Universe consists of
three types of matter during the epoch of interest. These
are (1) the strongly and electromagnetically interacting
particles (e.g., nucleons, electrons, photons, etc.), which
can be described as a perfect fluid; (2) the weakly in-
teracting particles, which nevertheless affect the n-p ratio
(e.g., electron neutrinos, etc.); and (3) the effectively
noninteracting particles (e.g., v, and so on) which only
contribute to the energy density but do not enter into
specific reactions. The total mass-energy density p and
pressure p can be expressed as

p=p,tp.tp,tpotps, P=pP,+pP.+pP, TPy tpPp,
2.2)

where

Pe=p,-tP,+» PeTP,~TP,+ >
Pv=py _tpy TPy Pyt Py Toe Tt
Pv=pPy _tpy  tPy FP, TPyt Tt

and the subscripts v, e, v,, v, v,, b, and B stand, respec-
tively, for photons, electrons, e neutrinos, y neutrinos, 7
neutrinos, baryons, and magnetic field. Expressions for
these thermodynamic quantities are given below, for the
case of nondegenerate neutrinos [14]

T,
T I
(2.3)
B 2
PB= g )
[
cleus.

From the assumptions of flux conservation and the
presence of a conducting medium (as appropriate for the
Universe prior to recombination), we can obtain a simple
temperature dependence for B:

BxR l«T?,

Therefore, the energy density of the magnetic field has
the same temperature dependence as the energy density
of the leptons and that of the radiation field.
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We now define

p=pitpy, P=pitp,,
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where G is the gravitational constant, the relation be-
tween the photon temperature and the time is found to be
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| dR 87G 172 Incorporating Eq. (2.5) into Eq. (2.8), we obtain a final ex-
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Moreover, considering the fact that, B < T2, p, « T*, and 43 122
po=4p, = T*, we can introduce a convenient invariant H”EX
measure of magnetic-field strength and assume that the Ty=k T2 2.16)
ratio of the magnetic energy density (pg) to the total oth- (1417 |14 129
er energy density (py) is nearly a constant during BBN. X 88 X
This gives dy/dT=0. We now consider two cases:
where
A. A global zero magnetic pressure (pz =0, but B#0) s
- 10.4, if N,=2 and g.z=9 ;
Physically, this corresponds to a situation where there k= M ~ ‘ 47 N =3 and ‘ s
exists a nonzero local uniform magnetic field (inside each 2c? S N, To and g =

bubble), but a zero total magnetic pressure (pressure free)
due to the random distribution of the tangled magnetic
bubbles. In this case, Eq. (2.14) becomes

172
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43
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(2.15)
Integrating, we obtain

in cgs units, g is the “effective’” number of relativistic
degrees of freedom (helicity states), and a is the Stefan
blackbody constant.

B. A nonzero magnetic pressure (pg =pzc?)

If the magnetic field inside each bubble and the distri-
bution of the magnetic bubbles are not so chaotic, for ex-
ample, if each magnetic bubble is dipolelike, we will have
an averaged magnetic pressure pp <ppc’. In this in-
stance, Eq. (2.14) becomes
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Note that in the limit when the magnetic fields are ab-
sent or very weak (pp=0; y=0, or xy <<1), Egs. (2.16)
and (2.18) both reduce to

To=~xt /2. .19

This is just the formula used in standard BBN calcula-
tions [14,15].

If the magnetic field is very strong, Y >>1, then Egs.
(2.16) and (2.18) become, respectively,
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FIG. 1. (a) The dependence of Ty with ¢ under strong B field

but P;=0. (b) The dependence of Ty with ¢ under strong B
field but Pp0.
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T, =VA73x~ 4kt =17 and Ty=V373~ Vst~ |
(2.20)

The dependences of the temperature on the time ¢ and the
magnetic parameter Y, in the presence of a strong mag-
netic field, are shown in Figs. 1(a) and 1(b). These rela-
tions clearly indicate that the effect of the presence of a
strong magnetic field on the expansion rate of the
Universe is indeed significant.

Now we introduce another magnetic Parameter
y=B/(2B,), where B,=m2c3/e#i=4.414X 10" G is the
field strength where quantized cyclotron line effects begin
to occur; we will refer to this as a quantum critical-field
value [16] (see Appendix A). According to our definition
of the factor y, we have

B2/87 B? v?
= ~0.76 , 2.21)
43p,/8  437aT* T,

where a is the blackbody constant and T,=T/(10'° K).
If we use the “critical” temperature T,~1.28X10'° K
(note: nkT, ~Bcz/ 8w, k is the Boltzmann constant,
n=20 T? is the number density of particles). Equation
(2.21) can be reexpressed as

x=~0.283(T,/T)*y?*.

1l

X

(2.22)

III. NUMERICAL RESULTS AND A LIMIT
ON THE FIELD STRENGTH
AND FIELD COHERENCE LENGTH

We will now take into account the two independent
effects of magnetic fields on reaction rates and on expan-
sion rates calculated in Ref. [12] and Sec. II, respectively,
in a reexamination of big bang nucleosynthesis. We use
the new version of the Wagoner code developed by
Kawano [16]. Specifically, we have replaced the old for-
mulas in the code for both the reaction rates and the ex-
pansion rate, with the newly derived preliminary equa-
tions (3.8)-(3.11), in Ref. [12], and Eq. (2.18) above, and
calculated the abundances. These are to be compared
with observational data to determine the implied con-
straints on the strength and coherence scales of a primor-
dial magnetic field. The observed abundances used are
those summarized by Walker et al. in 1991 [2]. The main
technique used is to adjust y until the calculated abun-
dances no longer match the observational data.

In order to obtain a limit on the strength of primordial
magnetic fields and to focus on the effects on BBN explic-
itly, we have fixed all model parameters other than y in
our calculations: in particular, the neutron lifetime 7,,
the number of neutrino species N,, and the baryon to
photon ratio n=n, /n,,. For our purpose, we adopt the

following values for these parameters [2]:
7,=889.6+2.9s, N,=3,
(3.1
2.8X1071°<y<4.0x10710 .

Moreover, we have assumed nondegenerate neutrinos
(¢, =0, ¢,=0) (Thomas, Olive, and Schramm [17], Steig-
man and Kang [18]). For these choices, we then compute
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TABLE I. Abundance of the elements (n —°Li) in the presence of B fields but nondegenerate neutrinos.
Element B Field
¢.=0 vy=10 ry=1 v=0.5 y=0.1 v=0.05 ¥ =0.001 ry=0

n 4.58x107 1 2.22X10714 1.12X 107 9.15X107 1 825X 1071 5.81X1071° 5.77X1071
'H 0.441 0.495 0.624 0.716 0.751 0.778 0.777

H 1.52%X1073 1.19X1073 7.5X1074 5.59%10™* 5.02x1074 4.65x107* 4.65X107*
*H 4.7X107¢ 3.64X10°¢ 2.25X107¢ 1.67X107° 1.5X10°¢ 1.39x107¢ 1.39X107¢
‘He 6.78X 1077 5.68X10°° 4.15X107° 3.48%10°° 3.28%x107° 3.15%X107° 3.15x10°°
‘He 0.555 0.501 0.373 0.281 0.248 0.219 0.219

°Li 4.55x107"1 2.83Xx1071 1.03x 1071 49610714 37X107°1 2.95x107 1 2.93x 1071
Li 1.41x10°% 8.43X107° 2.66X107° 1.15X107° 8.23x1071° 6.37X1071° 6.37X1071°
"Be 2.03%x1071 2.34X1071 2.89Xx107 13 3.3x10718 3.43x1071 3.54x10713 3.54X1071
8Li 1.45%x107 1 7.46X 1071 1.54X 1071 441X107 1 2.58X1071 1.68X10° 15 1.68X 1071

the primordial abundances numerically. Our computa-
tional results are displayed in both Tables I-III and Figs.
2-4. Each figure contains seven subfigures [(a)—(g)],
which represent the abundances of the elements for
different strengths of the primordial magnetic fields on a
coherence scale of L( < the event horizon at that epoch

~2X10" cm).

As expected, our calculations reveal that the abun-
dances of the light elements can be dramatically affected
by a strong magnetic field. For instance, if the magnetic
fields on scales less than the horizon are as strong as
B > 10" G, the abundances of most elements (except for
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FIG. 2. Abundance of elements (n-3Li) in
the presence of B fields but nondegenerate neu-
trinos.
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TABLE II. Abundance of the elements (*B—'2C) in the presence of B fields but nondegenerate neutrinos.

Element B Field
¢.=0 y=10 =1 r=0.5 y=0.1 v=0.05 y=0.001 y=0

B 227X107% 2.02X107% 1.60Xx 1072 1.40X107% 1.33%x107% 1.29Xx107% 1.29%X107%
Be 1.20Xx 1072 3.11X107% 1.60X 1072 1.40X 1075 1.33%X107% 1.29X 1072 1.29%X107%
log 1.05x1072° 1.58X 1072 2.65X1072° 2.93X107% 2.79X10™%0 2.59%10"% 2.55X1072°
) 432X10715 1.91x107% 3.03X 10716 7.79%X 10~ " 448x107" 2.88x107Y 2.88X 107V
e 2.27X107% 2.02X107% 1.60X 105 1.40X107% 1.33X107% 1.29X107% 1.29X107%
2g 227X107% 2.02X107% 1.60X10™% 140X 107% 1.33X107% 1.29%X107% 1.29%X107%
2c 1.39x 1071 7.19X 1071 1.48X 1071 427X1071 2.50X107"% 1.63X1071 1.60X 10713

protons) increase manifestly. In garticular, the concen-
trations of 2H, *He, °Li, 'Li, *Be, and N are all
enhanced. Some elements, for example, “He, 'Li, %Li,
g 12¢c Bg, ¢, and N show sharp increases (i.e.,
‘He>0.5, 'Li/H>8.43X107°~1078, 3Li/H>7.5
X107 1#~10713, "B/H~10"13, etc.), as illustrated in
Figs. I(a)-I(d) (I=2-4) and Tables I-III. On the con-
trary, if the magnetic fields are as weak as 10!! G, the em-
erging abundances of the light elements, according to our

calculations, are only affected slightly and the variations
become negligible. Figures I(e)-I(g) (I=2-4) display
these outcomes.

For comparison, we have also computed the effects on
the abundances resulting from the energy density of the
magnetic field only (without any variations on the reac-
tion rates). We find that the effects on the abundances of
the light elements from reaction rates dominate the con-
tributions from the energy density, unless the magnetic
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TABLE III. Abundance of the elements (’N—'°0) in the presence of B fields but nondegenerate neutrinos.

Element B Field

¢, =0 y=10 y=1 y=0.5 y=0.1 v =0.05 Y =0.001 =0
2N 227X107% 2.02X107% 1.60X 107 % 140X 107% 1.33X107% 1.29%X107% 1.29X10°%
B¢ 1.26X10716 7.30%x 10716 1.85X 107! 596x10" "7 3.61x107Y 2.38%x 107V 2.35x107Y
BN 227X107% 202X107% 1.60X 10~ % 1.40X 107 % 1.33%x107% 1.29X107% 1.29%x10°%
4C 2.77%1071° 1.31X107'¢ 1.99x 107 4.15X107'8 207X 10718 1.17Xx10718 1.15x107'8
N 4.76Xx107'3 4.17X1071'8 2.06X107 '8 9.24X107"° 6.18X1071° 436X107" 430x107"
40 227X107% 2.02X107% 1.60X 1072 1.40X 107 % 1.33X107% 1.29%X107% 1.29%x107%
BN 1.94x10°% 9.31x107% 1.55x10°% 3.95% 10" % 226X 1072 1.44X 1072 144X 1072
50 227X107% 202X107% 1.60X 1072 1.40X10°% 1.33X107% 1.29%X107% 1.29X107%

field is very intense (B > 10'* G). These results are shown  For other elements, the adopted primordial abundances
in Figs. 5 and 6, respectively. Also, as is true for the  are displayed in Table IV (Walker et al. 1991) [2]. By
standard BBN model, a high ratio n,/n, will globally  comparing the predicted abundances in the presence of B

enhance the high 4 element abundances. fields with the observational determinations (using partic-
We note that the observed mass fraction of helium is ularly the abundance of “He), we can constrain the B field
approximately (Skillman 1993) [19] on scales less than the horizon. Figures I(a)-I(g)
obs + (I=2-4) and Tables I-IIT show the abundances of the
Y,»=0.235%0.01 . 3.2) elements in the presence of magnetic fields, with field
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TABLE IV. Observed abundances.
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Element Where observed Mass fraction

D presolar 1.8X107°<y, <3.3X107%(20)
He presolar 1.3X107¢<y; <1.8X1073(20)
D+°He presolar 3.3X107°<y,; <4.9X1075(20)
‘He H II region Y, =0.23£0.007 (o y=0.009)
Li pre-population II 12+1log("Li/H) £2.15 (95%CL)
°Li pre-population 11 <0.1'Li

Be Hyades <(1—2)x10™"

2 X <1072

strengths ranging from zero to B=8.8X10"* G.
Through the comparison between our numerical calcula-

tions and the observational results, we ascertain that to
keep the abundances of light elements compatible with

the observations, the primordial magnetic fields at the

BBN epoch (~ 1 min.) must satisfy the requirement

log (mass fraction)
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24
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on scales less than the horizon. At this limit, the calcu-
lated abundances of light elements are shown in Table V.

Incorporating our above upper limit into Egs. (2.21)
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density between magnetic fields and cosmic radiations at
the BBN epoch T',;~0.1 as

pe/py~4% . (3.4)

As to the evolution of the fields prior to recombination,
a brief discussion is given in Appendix B, where an
empirical estimate under certain conditions is presented.

IV. CONCLUSIONS AND FUTURE WORK

The effects of the magnetic fields on big bang nu-
cleosynthesis and the cosmological expansion rate have
been investigated generally in this paper for coherent and
chaotic fields on scales smaller than the event horizon.
An upper limit has been provided on the strength of the
primordial magnetic field on scales smaller than the event
horizon. Our results show that, in the framework of
standard big bang nucleosynthesis, the maximum
strength of the primordial magnetic field on scales greater
than 10* cm but smaller than the horizon at the BBN
epoch (~10'2 cm), can only be 10'! G, which implies that
the magnetic fields at recombination time would, in prin-

ciple, be no stronger than 0.1 G. Moreover, in our calcu-
lations, we find that, of the two major effects of a primor-
dial magnetic field, those arising from modification of the
reaction rates will dominate those arising from
modification of the expansion rate (or B-field energy den-
sity), unless the magnetic field is very intense (B >>10"3
G).
Finally, here we would like to make two comments:

A. Rate fluctuations (or inhomogeneous model)

If the magnetic field is not uniform or the size of the
magnetic bubbles is much smaller than the horizon scale
and the bubbles are disconnected from each other, the
nuclear reaction rates will become inhomogeneous; i.e.,
the reaction rates inside a region will differ from those
outside the region, even though the geometry of the
Universe is still not affected. This would require that we
introduce reaction rate fluctuations into the big bang cal-
culation (similar to the introduction of the density fluc-
tuations associated with the first-order QCD phase tran-
sition), and perform multizone calculations.
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FIG. 6. Abundance of the elements affected by energy density of B field (y = 100) only.

B. Anisotropy (or effects on geometry)

If the size of the magnetic bubbles were larger than the
horizon scale, the effects on the geometry of the Universe
would need to be examined, and the Robertson-Walker
metric would need to be replaced by other metrics. In
addition, an anisotropy of the Universe would result
which might have important galactic consequences.
(This has been explored by Thorne, 1967, but not with
the more extensive network used here.)

A subsequent paper will examine these coherence
scales.
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APPENDIX A: QUANTUM MECHANICAL
CONSIDERATIONS

The applicability of classical electrodynamics to elec-
trons requires that the wavelength of the synchrotron line

TABLE V. The calculated abundances at limit B <10'! G.

Light element Abundance
D/H <4.65x107*
T/H <1.39x10°°¢
‘He/H <3.17x107?
“He =0.22

°Li/H <2.95%X107 1
"Li/H <6.374X1071°
"Be/H <3.54Xx107 "
8Li/H <1.68X1071

in the presence of the magnetic field be much larger than
the distances of order of #/m,c, for which classical elec-
tromagnetics will break down because of quantum effects
[20]. Let us now derive the limit at which classical elec-
trodynamics leads to internal contradictions [21].
Consider a system in which a charge e, with mass m,
moves in a uniform magnetic field B. The synchrotron
frequency o of motion (angular frequency) can then be
written as
mc?

eB ’

where E is the total energy of the charged particle and A
is the wavelength of the synchrotron line.
If quantum effects become important, we would have

wo=ecB/E or A~

(A1)

E=mc’=%w or A~#/mc . (A2)
The magnetic field will then satisfy
2
w mc 203
B~B =—"-="C —44x108G, (A3)
ec efi

which presents a limit where quantum electrodynamics
plays a role. Therefore, Eq. (A3) could be considered in
some sense as a quantum critical limit for an organized
primordial magnetic field on large scales. For this criti-
cal value, we can estimate the corresponding temperature
by letting

B2/8m=nkT., n=~20T3K 3, (A4)
thus
B: - 1.28X10° K AS
= ~1.28X .
¢ 167k (AS)

Note that T, is comparable to the temperature immedi-
ately prior to the BBN epoch. This means that, if the pri-
mordial magnetic field prior to the BBN epoch were to be
as strong as B > 10! G, then its origin would probably be
some quantum process in the early Universe. For such
conditions, we would not have a field organized on a



49 CONSTRAINTS ON THE STRENGTH OF A PRIMORDIAL ... 5017

large scale as the Universe expanded out of the quantum
domain, because most of the energy released would be
converted into small-wavelength radiation rather than
into an ordered magnetic field. It is interesting that our
numerical calculations (B < 10'! G) in Sec. III appear to
have ruled this possibility out. Instead, it could be sug-
gested that any primordial magnetic field must have been
initially in the classical regime B < 10! G.

APPENDIX B: EMPIRICAL ESTIMATES
UNDER OHMIC DISSIPATION

In the magnetohydrodynamic approximation, the
magnetic-field lines either diffuse or are “frozen in” with
the fluid motion, depending whether the magnetic Rey-
nolds number is significantly smaller or larger than unity.
If the magnetic stresses are smaller than the pressure in
the system, ohmic dissipation through Spitzer conduction
would dominate. Otherwise, the field lines would dissi-
pate by magnetic stresses moving the matter around and
reconnecting. In an expanding Universe, especially in the
regime of radiation dominated, Alfven velocity is much
smaller compared to the velocity of particles, then the
ohmic dissipation seems more important than the stress
dissipation. If this is the case (note: at BBN epoch,
Pp <<p), the cutoff scale separating diffusion or frozen for
magnetic field, can be calculated as follows. The charac-
teristic diffusion time for magnetic fields on a scale
I[]~L(R /R, )]is [22]

T4=4ml%0 /c? . (B1)

Here R =(1+2z)! is the cosmological scale factor nor-
malized to unity today, z is the redshift, L and R are,
respectively, the coherence scale of the B field and the
scale factor at the BBN epoch, o =(c2/4mn) s ! is elec-
trical conductivity of the Universe, where 7
~4X10"InA /T?’* emu describes the Lorentz resistivity
[23] (for electron-proton collisions) due to electron col-

lisions with neutral hydrogen, T, denotes the electron
temperature in K, and A is a so-called Coulomb integral,
which has a typical value around 15%5 [23]. Taking ac-
count of the expansion time ,( < R?) of the Universe
(or Hubble time), the ratio of the characteristic diffusion
time to the Hubble time can be calculated by

Ta 4nl? o

2
texp c Lruc

) (B2)

where ¢, is the time of the BBN epoch. Noting that
scales that cannot dissipate at recombination
(~10'2-10" s) could not have dissipated earlier. Taking
the calculation at recombination, we thus can estimate
the ratio as

2

T34 (B3)

exp

L
cm

Td

Texp

~17.5

from which we find that if the coherence scale of the
magnetic fields at the BBN epoch is larger than 10* cm
(~107° of the horizon scale), the field will not be dissi-
pated prior to recombination. We now take our con-
straints at the BBN epoch: B <10'"' G on scales of
L>10* cm (and L <10'? cm), and evolve these to the
recombination era by using conservation of the flux B
(= R ~2), the implied magnetic field at the time of recom-
bination, for ohmic dissipation only, would thus be

B,..=0.1G, (B4)

coherent on scales of L 4op,i, > 10" cm (and <10'® cm)
(note: the result would be quite different if the dissipation
is not dominated by ohmic dissipation). On scales much
larger than the size of the magnetic domains (or bubbles),
the physical mechanisms driving field generation are un-
correlated. To put this in current perspective, Hogan
[24] has estimated with certain assumptions that such a
field at recombination would correspond to an intergalac-
tic field limit today of <7X107° G.
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