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We explore constraints on inQationary models employing data on large scale structure mainly from
Cosmic Background Explorer (COBE) temperature auisotropies and Infrared Asrouomy Satellite
(IRAS) selected galaxy surveys, taking care not to apply linear perturbation theory to data in the
nonlinear regime. In models where the tensor contribution to the COBE signal is negligible, we
find the spectral index of density Huctuations n must exceed 0.82. Furthermore, in in6ation models
which generate tensor Quctuations, these must contribute less than 20% of the signal seen by COBE.
The data favor cold plus hot dark matter models with n close to unity and QHDM 0.20—0.35. We
present realistic grand unified theories, including supersymmetric versions, which produce inBation
with these properties.

PACS number(s): 98.65.Dx, 12.10.Dm, 98.80.Cq

I. INTRODUCTION

The inflationary universe scenario [1] provides an at-
tractive resolution of the well known "horizon, " "flat-
ness, " and "causality" puzzles encountered in the stan-
dard big bang cosmology. This scenario is most easily
realized within the framework of both ordinary and su-
persymmetric grand unified theories (GUT's). In the
simplest realizations of inflation, the density fluctuations
are Gaussian and close to the Harrison-Zeldovich form,
and the background density equals the critical density p, .
Primordial nucleosynthesis implies that less than 10'%%up of
the background density is composed of baryons, and so
the bulk of matter is "dark, " presumably in the form of
relic elementary particles.

Almost a decade ago it was pointed out by Shafi and
Stecker [2] that two types of dark matter, cold and hot,
would provide, within the inflationary context, an ele-

gant way of understanding observations, which indicated
a surprising amount of clustering on larger than galaxy
scales. Since the cold component clusters only on smaller
scales, and the hot component clusters only on larger
scales, such a universe would have an enhanced large
scale power. Examples of GUT's containing cold plus
hot dark matter (C+HDM) were also presented. The
implications of this picture for microwave background
anisotropies were worked out in 1989 [3,4]. Mass func-
tions [5], bulk streaming motions [3,4], cluster number
densities and correlation functions, as well as "great at-
tractors" were also found to be compatible [6,7] with
data.

Recent data on large scale structure from a variety
of sources, particularly Cosmic Background Explorer
(COBE) and Infrared Astronomy Satellite (IRAS) se-
lected galaxy surveys, provide additional strong sup-
port to this remarkably "simple" scenario for structure
formation. The COBE group [8] found an anisotropy
amplitude, which they characterized by an averaged
quadrupole moment amplitude bT/T = Q ps/T

6.2 6 1.5 x 10 . As we have emphasized [9], the ear-
lier predictions [3,4] for C+HDM models (3/4 CDM,
1/4 HDM) with negligible baryonic matter content were
7.8 x 10 s/bs, while for CDM alone they were signif-
icantly smaller (4.7 x 10 s/b), where bs ——(rms mass
fluctuation on the scale 8h i Mpc) i. Including a
5% baryon density (implied by primordial nucleosynthe-
sis) modifies these predictions to 8.2 x 10 /bs for this
C+HDM mixture and 5.1 x 10 /bs for CDM. Obser-
vationally derived values of bs seem to fall in the range
1.3 ( bs ( 2.5, meaning the COBE result was in re-
markable agreement with C+HDM models. COBE also
lent some weak support for the inBationary power spec-
trum; the data are consistent with the P(k) oc k" spec-
trum with n = 1.1 6 0.5 [8]. Following the COBE result
other pieces of evidence pointing to the C+HDM model
were discovered: compatibility with early quasar forma-
tion [10,11], compatibility with galactic correlations and
velocities [12—14], Automated Plate Machine (APM) cor-
relations [14,15], quiet local Hubble flow [16], "cosmic
mach number" [17], and counts in cells [18,19]. Thus,
there seems no doubt that the C+HDM model is a can-
didate worthy of serious consideration.

While we know that the primordial density power spec-
trum P(k) oc k with C+HDM provides a good fit to the
data, it has long been known that the in6ationary sce-
nario does not quite yield this simple form. In recent
studies, these correction factors have been exploited to
yield power spectra P(k) oc k with n significantly less
than 1 as a means to repair the relative large and/or
small scale problems of the pure CDM model. In this
paper, one of our tasks will be to undertake a study of
the range of allowed n. (Note that in this work we will

only consider n(1, although inBationary models where n
exceeds unity can be constructed [20].) Since we do not
precisely know the HDM fraction of the universe, we will

explore the two-dimensional parameter space n —OHDM,
and examine the constraints imposed by the data.

We do this by comparing the model predictions with
data from COBE, the power spectrum of IRAS galaxies,
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and bulk velocities from the potential Bow reconstruction
algorithm (known as POTENT) analysis. We will also
consider requirements for the early formation of quasars.
After fitting the normalization and the bias factor for
IRAS galaxies, we evaluate y as a function of the pa-
rameters n and OHDM. We present the results as y con-
tour plots in the n —OHDM plane. %e also consider the
possibility that some of the COBE signal was produced
by the long-wavelength gravity waves generated during
inflation.

Because of uncertainties in the simulation of structure
formation in the nonlinear gravity regime, we will con-
centrate chiefiy on structure, which is still described by
linear perturbation theory (scales ) 20h i Mpc). This
avoids the difFiculties inherent in identifying galaxies and
clusters and separating out complicated dynamic effects,
e.g. , the velocity bias of galaxies. Our main aim is to
explore a large region of parameter space, and try to
identify that part of it for which running more detailed
computer simulations would make the most sense.

Finally, if we are to take seriously the whole picture
of infiation and C+HDM, we need to identify plausible
models of infiation, which are compatible with our anal-
ysis of the large scale data. Here we will consider only
"realistic" models of infiation. By this, we mean mod-
els which go beyond the usual minimum requirements of
infiation, i.e., sufficient infiation for solving the horizon
and fatness problems as discussed in [1]. We also de-
sire the infiating field to be a part of a larger theory,
which contains the following elements: neutrinos with
masses in the eV range; a cold dark matter candidate; a
high-energy particle physics structure, which is compat-
ible with low-energy physics and its hints about higher
symmetries; and a successful baryogenesis following infla-
tion. Without these elements we find the infiation model
to be somewhat cd hoc.

The plan of the paper is as follows. In the next sec-
tion, we will describe our testing of infiationary models
with large scale structure data in the linear perturbation
regime. This will turn out to strongly limit the power
spectrum. In Sec. III we will consider some general con-
straints from data, which coxne from structure in the non-
linear regime. This will limit mainly the HDM &action.
In Sec. IV we consider models of infiation, which satisfy
all of our requirements for realistic infiation models. In
particular we present some new examples of chaotic in-
flation based on supersymmetric grand unification. We
end with some general conclusions in Sec. V. %e have
attempted to make this paper soxnewhat self-contained
for a more general audience.

II. CONSTRAINTS FROM LARGE SCALE
STRUCTURE DATA IN THE LINEAR REGIME

In this section, we will describe data and our analysis
of theoretical predictions for these observations, but first
we will discuss a few general issues concerning the models
and the testing strategy employed here.

First of all, the problem with drawing strong conclu-
sions about any given model of structure formation is
that there are so many parameters to vary that we have

a multidimensional parameter space to explore. We will
choose best guess values of three of them, the baryonic
&action Ob~„» ——pb~, „~~/p„ the cosmological constant
A, and the Hubble constant, Hp ——100h km sec i, with
h observationally constrained to the values 0.4&h&1.0.
Constraints on the age of the universe Rom globular star
clusters, nuclear cosmochronology, and white dwarf ages
imply that high values of the Hubble constant are for-
bidden, i.e., 6 & 0.6 in an 0 = 1 universe. Thus these
models will be allowed only if the observations eventu-
ally settle into a more restricted range 0.4 & Ii & 0.6.
Since many quantities vary as h there is still some free-
dom despite this narrow range of Hubble constant. In
the present analysis we will use only the central value,
Ii = 0.5.

Primordial nucleosynthesis strongly constrains the
baryon density [21] as 0.010 & Ob~„h & 0.015. Using
h = 0.5, we can express this 95%%up confidence constraint

Ob y „——0.05 6 0.01 . (2.1)

%e note that allowing for the uncertainty in h, the bary-
onic fraction could range &om Ab,„„0.03 —0.09.
We intend to explore this uncertainty in the Hubble con-
stant and baryon &action and its implications in a future
publication. Once we have fixed the baryon density, the
other densities can be completely specified by the hot
dark matter density OHDM as

~cDM = 1 baryon ~HDM.

The hot dark matter fraction (combined with the Hubble
constant) also specifies the neutrino mass. If we have one
favor of neutrino whose mass is in the eV range, usually
taken to be v, then

m„. & t'0.5)
p23eV& I, h y

(2.2)

We will set the cosmological constant (A) to zero.
There is evidence to support this choice. The local
(within 60h i Mpc) velocity field implies values of 0
close to unity [22]. Furthermore, in a A-dominated uni-
verse, there seems to be tdo few gravitational lensing
events [23], and the bulk streaming velocities are too
small [18].

The growth of density fluctuations is aff'ected by the
dynamics of the matter content, producing a scale-
dependent modification of the density-fluctuation power
spectrum. The relative growth as a function of scale is
discussed in Appendix A, and the results are sumxna-
rized in Fig. 1, where we present the transfer functions
in Fourier space as a function of Fourier wave nuxnber
k = 2m/A. In Fig. 1, we see that increasing the neutrino
&action decreases the axnount of growth, and hence the
ainplitude, on small scales (large k). We also note that
there are some modifications of the shape of the spectrum
on quite large scales. For example the transfer function
with OHDM ——0.3 is slightly steeper at k 0.07h Mpc
than that of either OHDM = 0.0 (CDM) or OHDM = 0.5.

In order to do our comparison in the most unambigu-
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I tions. In Sec. III we will consider some constraints from

nonlinear structures to help us pin down the dark mat-
ter &action. We will first give a brief description of the
large scale structure data, followed by a description of
our calculations for different models.

A. Large-scale structure data

Here we will discuss the particulars of the data we are
using. We explain our reasons for choosing the data and
method of interpretation of this data.

.01
.01 . 1

k (h Mpc ') COBE data
FIG. 1. Transfer functions for the cold plus hot dark matter

models. The curves represent the relative growth of density
nuctuations as a function of scale. The curves represent the
present time (z=0) transfer functions and in a universe with
OCDM +AHDM +Ab&zyo: 1 where we have taken the canon-
ical value of Ab, y „——0.05 from primordial nucleosynthesis.

ous way, we will confine our attention mostly to the
regime where linear theory is appropriate. In the past,
it was common to normalize linear power spectra by use
of the fact that the rms optically selected galaxy den-
sity fluctuations are bN/N = 1 on a scale of 8 b. i Mpc.
In the most naive case, where one assumes that galax-
ies (light) trace the mass distribution, one would set the
rms mass Quctuation also equal to one on this scale. More
recently, however, it has become apparent that the galax-
ies are more strongly clustered than the mass, i.e. , they
are biased tracers of the mass. The usual method for
dealing with this complication is to assume that there
is a linear relation between the optical galactic density
and mass Quctuations using a bias parameter b, which is
independent of scale b = (bN/N)/(bM/M) The mass.
fluctuation 0'(R) in a sphere of radius R is calculated in
linear theory by

OO

o (R) = dk k Pgh(k) 3
27t 0

(2.3)

where ji(x) is the first spherical Bessel function and the
term in brackets is the Fourier transform of a sharp edged
sphere of radius R. Clearly, when a perturbation ampli-
tude approaches unity, linear theory is no longer appro-
priate. Even with b as large as 2, this implies o(8h
Mpc) = 0.5, which is still quite nonlinear. Using the
spherical collapse approximation (see Appendix B) we
estimate that for cr = 0.5, we are already highly con-
taminated by nonlinear e8'ects. If we consider scales for
which a (R) & 0.4 we estimate that the nonlinear correc-
tions will be &30%.

A look at Fig. 1 shows that the greatest difference
between the models considered here occurs on the small
scales. Limiting our range to A: & O.sh Mpc implies
that our testing will have a somewhat weakened ability
to discriminate between models with diferent HDM &ac-

The large amplitude of the COBE measured temper-
ature Huctuations is characterized by the extrapolated
quadrupole moment Q, ps. This amplitude was a fac-
tor of 2—3 larger than predicted in the usual CDM models
fit to galactic structure, and so gave strong support for
the C+HDM models [9]. However, various authors do
not seem content to use the COBE analysis of the am-
plitude. Instead they choose to use the sky variance at
10, which, when used with a Gaussian beam, implies
a somewhat smaller amplitude for the fluctuations (e.g. ,
[15,24] corresponding to Q, ps = 15.3 pK). The COBE
beam pattern, however, is only approximately a Gaussian
shape. More careful analysis of the COBE results [25]
using the actual beam pattern seems to confirm the orig-
inal higher value of the amplitude. In addition, use of the
correct beam pattern reduces the variance of the fit am-
plitude, so the best fit n = 1 COBE amplitude now cor-
responds to Q, , ps = 17.4 + 3.1 pK (extrapolated from
the hexadecupole). Although it is customary to quote
the results in terms of the quadrupole moment, this cor-
responds to only the very small wave number end of the
spectrum. The best-fit amplitude of the quadrupole mo-
ment will be somewhat dependent on the value of n used
in the analysis. In order to find a better quantity than the
quadrupole, Wright et al. [25] recommend normalizing
the amplitude to the hexadecupole bT4 ——12.8 6 2.3 pK,
when n g 1, as in the inflationary models we consider
here. This yields a best fit amplitude less dependent on
the value of n.

We note that the COBE results have been confirmed
by a balloon experiment from the MIT/GSFC/Princeton
Collaboration [26], which sees the same temperature cor-
relation function as COBE and find similar values for the
fiuctuation amplitude, which they specify with Q,~, ps.
However, they currently only have data &om the north-
ern hemisphere and their limits on Q, , ps are not as
constraining as those for COBE. In the future they plan
to cover the southern hemisphere as well, which would
improve the limits of the COBE power spectrum expo-
nent.

Ideally, we would like to include the detections of
smaller scale anisotropy experiments in this analysis.
There has been a wave of new detections of temperature
anisotropies on 1 —2 scales. It is not clear that all of
the detections are giving a totally consistent picture, and
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even difFerent scans with the same instrument give dif-
ferent results. A possible explanation is that the system-
atic errors these experiments face are quite complicated.
We expect that these uncertainties will be resolved and
that we will know the amount of degree scale anisotropy,
which exists w'ith some precision. We also point out that
C+HDM models, when normalized to COBE produce the
same degree scale anisotropies as similarly normalized
CDM models. The only difFerences occur for anisotropy
measurements && 1'. Since the degree, scale anisotropies
are all in the right ballpark for 0 = 1, n 1 models nor-
malized to COBE, we take this as an encouraging sign
for the models we consider in this paper.

g. The IRAS large ecale -eumey of yalaaiee

The IRAS survey of galaxies done by the QDOT
(Queea Mary-Durham-Oxford- Toronto) Collaboration
[27], extends as deep as several hundred Mpc, approach-
iag the smallest scales observable by the COBE satel-
lite. Combining the COBE data with the IRAS survey
of galaxies thus covers the whole range of scales where the
fiuctuations can be described by the linear theory. The
QDOT IRAS survey has measured redshifts for 1-in-6
IRAS galactic sources (1824 galaxies) with IRAS fiuxes) 0.6 Jy. The IRAS selected galaxies seem to be more
uniformly distributed than optically selected galaxies and
may therefore give a fairer representation of the universe.
By concentrating on measuring only 1-in-6 galaxies, the
QDOT Collaboration obtained a deep sparse sample out
to a depth larger than that of the Berkeley IRAS sur-
vey [28], which measured redshifts for all IRAS sources
above a fiux of 1.2 Jy. Using the redshift of the source
as a distance indicator, combined with angular position
data, oae has a three-dimensional picture of the galaxy
distribution. This distribution caa be aaalyzed to di-
rectly extract the power spectrum of density Quctuations
[28,29]. The results of the Feldman, Kaiser, Peacock [29]
analysis is shown as the power spectrum data ia Fig. 2.

We will use this QDOT IRAS data to test models with
theoretical power spectra given by

Pu, (k) = Ak" [T(k)] . (2.4)

For n 1 and the transfer functions T(k) in Fig. 1, we
can see that the power spectra go like P(k) k on very
large scales and like P(k) k —k 4 on very small
scales, with a peak somewhere around k 0.02 —0.10.
In order to get the proper normalization for the amount
of structure on scales up to the power spectrum peak
scale, one must measure the power on scales larger thaa
the power spectrum peak scale. In the mass fIuctuation
integral [Eq. (2.3)] there are significant contributions to
the mass Buctuations in 20 Mpc spheres coming from 100
Mpc scales (k 0.03h Mpc ). Thus we feel that to test
power spectra of the type considered here, we require a
survey out to a depth at least as large as the QDOT
survey. A comparison of the QDOT and 1.2 Jy Berkeley
power spectra, (see Ref. [29]), suggests that the Berkeley
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FIG. 2. We show the calculated model power spectra using
our best Bt model parameters for n = 1.00 only. The values
of bs and bI have been St as described in the text. The values
of br are close to 1.0, with the values bl = 1.1, 1.1, 0.9, 0.9,
and 1.0 for OHDM ——0.0, 0.1, 0.2, 0.3, and 0.4, respectively.

survey may still be too small to be seeing all of the large
scale power.

8. POTENT bulk Pote eelocitiee

We also use the bulk flow velocities from the POTENT
analysis [30]. They represeat the the rms velocities of
spherical regions of radius B. The velocity has first been
filtered with a Gaussian of width R = 12h ~ Mpc to re-
duce noise. This data is showa in Fig. 3. Unfortunately,
the POTENT analysis suffers f'rom the problem that not
enough of the universe has been sampled to get a fair
estimate of the average velocities. This is exacerbated
by the fact that velocities are even more sensitive to the
very large scale power than the mass fluctuation. How-
ever, we would still like to use these velocities because
they do aot depend on the bias. (Velocities are gener-
ated by the gravity of density fiuctuations. ) Since we
have velocities from one local patch, we will include the
cosmic variance of the predicted velocity for any given
patch of the tt~tverse ia our analysis. Our treatment will
be described in the next section.

B. The g~ test of parameters

We are interested in the limits we can obtain on the
paramters n and OHDM. The procedure for doing this has
been explained in detail in an article by Avni [31],so we
will relate only a few salient features. To begin, we will
call n and OHDM the "interesting parameters. " In order
to do the testing, we must fit two other parameters, the
normalization and IRAS galaxy bias, which we call "un-
interesting parameters. " After fitting the uninteresting
parameters for each value of n and OHDM, we then s»m
the square of the difFerences between the predictions y;"
and the observations y,. ', weighted by the observational
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FIG. 3. The values of the bulk streaming velocities ex-
tracted by the POTENT analysis program with one o error
bars [29]. Also shown are predicted velocity curves for se-

lected models. The models with low n and gravity waves can
be ruled out by this data even though the cosmic variance for
the velocity predictions in a single region are quite large. To
illustrate this we have plotted the 68% con6dence limits on
the prediction of large scale streaming velocities for the 25%
HDM model.

errors o, '. We call this sum S

( th obs

S(fIHDM) 'it) = ). i

i=i
(2.5)

There will be a minimum value of this sum S;„for some
value of n and OHDM. We then define a quantity b S

+S(f1HDM~ ii) = S(~HDMi 'it) Smin. (2.6)

AS then has a y2 probability distribution with 2 degrees
of freedom (for the two interesting parameters).

The confidence levels for accepting or rejecting the
models are then calculated using the y (2) statistic. To
understand the results of the testing procedure, we will

make plots of our n-OHDM space, and then draw coun-
tours corresponding to y2(2) confidence levels of 25, 50,
68, 95, and 99 %. Models outside of the contours are
ruled out with at least that degree of confidence.

We would like to be precise about the meaning of this
test. Given that the Bee parameters are n and AHDM,
this test limits the range of these parameters. As we
will show, it rules out OHDM = 0 (all dark matter is
CDM) models with )99% confidence for all values of n.
However, if one believes a priori that OHDM ——0, for
example, then the test we have done will not give us the
allowed range of n for a pure CDM model. For that
information, one needs to redo the test using the S
of the best-fit CDM model and calculate limits based on
y2 with 1 degree of freedom {n). On the other hand, the
fact that all CDM models will be excluded in our version

of the test already informs us that models in which we
allow BHDM g 0 yield much improved fits to the data
than any of the pure CDM models.

In our analysis we use the 36 values of the IRAS P(k),
the 5 POTENT velocity values, the bI determination,
and the COBE amplitude. The COBE amplitude has
been independently confirmed by the far infrared survey
(FIRS) balloon experiment [26]. Since so far their re-
sults are only presented as a confirmation of COBE, we
will count the COBE result twice in our sum S: once
for COBE itself, and again for the FIRS experiment.
This forces the amplitude of density perturbations to be
slightly closer to the COBE normalized amplitude than
by weighting it as only one point. The results of the
analysis is quite similar if we were to weight COBE as
only one data point. Thus we have efFectively a total of
X = 44 data points, which contribute to S.

For each value of n and OHDM we must 6t the uninter-
esting parameters, i.e., find the values of b8 and br, which
minimize S(bs, by) for each model. We will now proceed
to discuss how we compute the yt".

C. Model predictions from linear theory

Here we will explain how we compare our theoretical
power spectra Pth(k) to the data presented in the pre-
ceding section. First of all, we can calculate the hexade-
cupole bT4 (measured by COBE) with the formula given
in Ref. [32] for the coefficient of the fourth spherical har-
monic for each of the power spectra we are considering.
However, we can find an efFective wave number k,g for
which the amplitude of P(k,H) is directly proportional to
the amplitude of the hexadecupole. We have found that
the value k,g ——1.05 x 10 6 Mpc accurately charac-
terizes the hexadecupole moment for the limited range of
n we are studying (0.80 ( n ( 1.00).

The COBE experiment cannot distinguish between
temperature fiuctuations generated by the Sachs-Wolfe
effect of scalar (density) fiuctuations and. tensor (gravity
wave) fiuctuations, both of which are products of infia-
tion. This signal confusion is worsened by the fact that
the ratio of the moments generated {at least on COBE
scales) for scalar and tensor contributions are nearly in-
dependent of scale [33—35]. The overall amplitudes of the
moments for scalar and tensor modes, however, can be
quite di8erent, and one must construct a specific model
of inflation and then evaluate the density perturbation
and gravity wave amplitudes during inQation. In some
models of inflation, such as "new" inflation [1], the con-
tribution of gravity waves to the COBE signal is neg-
ligible, and the COBE signal relates only to the scalar
density perturbations.

Models of inflation, which produce a significant
amount of gravity waves, cannot be summarized with
a universal formula. However, there is a relation de-
rived f'rom the model "power-law infiation" [36],which re-
lates the gravity wave (tensor) contribution to the COBE
signal (b,T/T)T to the contribution from the density
(scalar) fiuctuations signal {AT/T) ~ via the spectral ex-
ponent of the density power spectrum n [24,34,37]:
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(b,T/T) ~2

b.T~T (2.7)

P(k) ~ 1+ +, P(k) .
2 1

3bl 5S
(2 8)

However, on smaller scales there is the opposite effect;
the Doppler shifts from the peculiar velocities of galaxies
become large in comparison to the Hubble velocities and
in fact wash out this redshift clustering effect. This effect
can be described with a velocity dependent factor [39]

P(k) ~P(k)~"'(" ),
2 kR

(2.9)

This relation also is reasonably accurate for chaotic in-
Hation models. Since the COBE signal is a quadrature
sum of the multipole moments, decreasing n decreases
the &action of COBE signal due to density waves, and
thus implies a smaller amplitude for Pth(k). Thus the
amplitude of the COBE quadrupole moznent is v 8 —7n
times larger than would be expected from the density
component alone. We will consider models with gravity
waves produced according to this formula.

To simulate the IRAS power spectrum PI(k) we have
to apply a couple of correction factors to our theoretical
PtI, (k). First of all the distribution of galaxies in redshift
space on large scales appears more clustered because of
the Doppler contribution to the redshift from velocity
perturbations [38]. With a biased galaxy distribution
(br) this correction can be made by multiplying with the
factor

The value of br is somewhat more constrained than
values of bs. For the IRAS galaxies, separate determi-
nations of bI have been made by comparing their veloc-
ities and distributions. These dynamical tests yield the
95% confidence values br = 1.16 + 0.42 (Ref. [40]) and
br = 1.23 6 0.46 (Ref. [41]). However, the POTENT
analysis [22] of the Berkeley IRAS galaxies finds that the
95% confidence interval for br ——0.5 —1.3. We therefore
combine these measurements to say that bl ——1.1+0.3 to
cover the 95% confidence overlap region of the br determi-
nations. We consider the measurement of br = 1.1 + 0.3
to be a bona /de data point, which we add to our y2
test. As is usual, we will assume a constant bias factor
independent of scale and we will allow bl to vary in seven
linearly spaced steps between 0.8 and 1.4. We calculate
S for each of the values of br and bs, and find the set
(br, bs), which gives the lowest value of S, and plot the
corresponding b,S in our 0„—n contour plots. Some of
these models, which have bI = 1.00 are shown in Fig. 4.

We calculate the POTENT rms velocities by the same
procedure as described in Ref. [10]. In our comparison
of the rms POTENT velocities to theoretical rms veloc-
ities, we will incorporate the cosmic variance of the ve-
locity field. The idea is that with a Gaussian density
field, the velocity field will also be Gaussian. The mag-
nitude of the velocity vector will have a g2 distribution
with 3 degrees of &eedom. The variance of the rms ve-
locity is much larger than the POTENT velocity errors.
For example the 68% theoretical confidence range on the
average predicted velocity magnitude (v) corresponds to

where R„=4.4 h i Mpc for IRAS galaxies.
Applying these corrections to a linear power spectrum

seems to give reasonable agreement with the power spec-
trum of "galaxies" in N body simulat-ions. For example,
Feldman, Kaiser, and Peacock [29] present such a power
spectrum (from Ref. [13]) for a model with 30% HDM.
The N-body spectrum becomes slightly higher than our
linear spectrum for k&0.15 presumably due to nonlinear
corrections. The worst disagreement (&30 %), occurs at
the small wavelength end k = 0.2h Mpc i of the /DOT
IRAS P(k). This error is still much smaller than the
/DOT error bars, so we believe our procedure is rela-
tively insensitive to nonlinear effects.

To do the testing, we first must calculate the linear the-
ory power spectra for all models with a primordial power
spectral index 0.80 ( n ( 1.00 and 0 & 0„&0.5. We
have limited n to be & 1 because we are considering only
grand unified models of "new" and "chaotic" inQation.
We calculate the power spectra for these models in steps
of bn = 0.02 and hO„= 0.05 using our form for P(k):

Pth(k) = Ak" [T(k)] (2.10)

We will vary the amplitude A by a factor of 2+ away
&om the COBE implied central value in 20 logarithmi-
cally spaced steps. However, since the definition of A is
author dependent, we will discuss our results in terms of
the parameter bs for each model. Thus we are effectively
varying bs in a range centered on the COBE best fit 68.

I I I I I I I
]

------- CDM, n=.84, b,=1.28

25% HDM n=.9B, be=1.41
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FIG. 4. Here we show the IRAS /DOT power spectrum
data [27] and the COBE amplitude constraint [23] (converted
to a redshift space power spectrum constraint for bI = 1.0).
The models shown have negligible gravity wave contributions
to the COBE anisotropy, and have best fit normalizations
b8 ——1.26, 1.41, and 1.54 for the models shown with 0%, 25&p,
and 45% HDM, respectively. We have shown only half of
the +DOT data so the plot is easier to read. The value of
n = 0.84 yields the best-fitting CDM model without gravity
waves. Note that simply tilting a CDM spectrum cannot re-
produce the large scale "bump" in the IRAS power spectrum,
which is generally why CDM models do not fare as well as
C+HDM models.
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((v) —0.48(v), (v) + 0.32(v)), while the POTENT errors
are less than 15%. This is plotted in Fig. 3 for the
n = 0.96, 25'%%uo HDM model. If we normalize an n = 1.00
power spectrum to COBE then the predicted velocities
are within the POTENT 1o error bars, regardless of the
HDM fraction (see, e.g. , n = 1.00, 50% HDM model in
Fig. 3). As we decrease n below 1.00, we will decrease
the predicted velocities well below the POTENT values.
Thus the upper limit on the predicted velocity will be the
most relevant quantity for comparing theory to observa-
tions. We combine this upper limit in quadrature with
the POTENT 10 error, and use this as a fairer estimate
of the error bar in our S values.

While adding errors in quadrature is strictly correct
only for Gaussian errors, the velocity distribution is not
too far f'rom a Gaussian. We plot several theoretical pre-
dictions for (v) against the POTENT velocities in Fig.
3. Even with these huge error bars, we find that the
predicted velocities for models with significant gravity
wave contributions will still have trouble matching the
POTENT derived velocities.

D. Results of linear data analysis

.95—
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FIG. 6. g (2) contours in the n-QHDM plane for models
with gravity waves. Moving outward from the center of the
top edge of the graph are contours corresponding to 25% (dot-
ted), 50% (dashed), 68% (heavy long dashed), 95'%%uo (solid),
and 99'%%uo (heavy solid) confidence levels.

The results of our test are presented in Figs. 5 and 6
for models without and with gravity waves, respectively.
Starting with our absolute best-fitting model (n = 0.98,
25'%%uo HDM) and working outward, we plot five concentric
curves with confidence levels of 25, 50, 68, 95, and 99 %.
When one reaches the level of 50%, areas where the the-
ory does not match the data become discernible in the
data plots. The first thing to note about the graphs is
that models with n = 1.00 do quite well for a large range
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FIG. 5. X (2) contours in the n-IIHDM plane for models
with a negligible gravity wave content. Moving outward from
the center of the semicircular region on the graph are contours
corresponding to 25% (dotted), 50% (dashed), 68'%%uo (heavy
long dashed), 95'%%uo (solid), and 99% (heavy solid) confidence
levels.

of HDM fractions. This result supports earlier claims
that n = 1 models normalized to COBE have sufficient
power to explain "large-scale power" apparent in galac-
tic clustering measures. If the measurement errors were
smaller our test would be an even better discriminator of
models.

We have two scenarios to discuss: models with and
without gravity waves. First we point out one general
trend, which is common to all models, and which does not
show up in the AS plots. As we decrease n we decrease
the amount of mass clustering power on small scales. To
increase the galactic clustering power to compensate for
this, one needs to increase the amount of galactic bias-
ing br Since ou.r program finds the best-fit br, we will

point out that small n models correspond to highly bi-
ased models (large by). We could better limit the models
if we had more precise information about bI.

The y contours for models with no gravity waves are
shown in Fig. 5. The first feature noticeable in the plot
is that models with OHDM&0. 05 are ruled out at 99%
confidence for any value of n. Next we note that all
models with n&0.82 are ruled out at the 99% confidence,
independent of the HDM fraction. This limit rises from a
minimum (n & 0.82) at AHDM = 0.1 to the limit n & 0.87
for OHDM ——0.5. This is easily understood since mod-
els with a lot of "tilt" already have little galaxy scale
power, and large HDM fractions exaggerate this behav-
ior. The region of best fit (confidence levels & 50 %)
occurs in a roughly rectangular region 0.94&n&1.00 and
0.15&OHDM&0. 45 That these fits are quite good can be
seen from the direct comparisons to data shown in Figs.
3 and 4 for a few models.

The y2 contours for models with gravity wave con-
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tributions according to Eq. (2.5) are shown in Fig.
6. It is readily apparent that the allowed parameter
space is much smaller. Again, models with OHDM

0.05 are again ruled out with 99% confidence. Here,
though, the 99% confidence limit on n rules out mod-
els with n&0.93. The region of best fit (&50% con-
fidence levels) occurs in a roughly rectangular region
0.97&n& 1.00, 0.15&OHDM &0.45. Including significant
amounts of gravity waves forces the normalization of the
density power spectrum to be much lower, which depletes
the amount of clustering power.

We note that our 99%%uo confidence limit on n in models
with gravity waves implies that &80 % of the COBE
signal is attributed to the effect of density fiuctuations.
This tells us that to fit large scale structure one requires
that the COBE signal cannot be dominated by inflation
generated gravity waves. Our best-fit models are those in
which at least 90% of the COBE signal is due to density
fluctuations. Our two conclusions &om this analysis are
that the power spectrum must be close to the Harrison-
Zeldovich form (n = 1.00) and that the COBE signal
must be mostly due to density fluctuations.

III. CONSTRAINTS FROM DATA ON
NONLINEAR STRUCTURES

As noted in the preceding section, we find the best
models still have a fairly large range of AHDM. This is not
surprising, since we have confined ourselves to only the
largest scales, k&0.2h Mpc i, where the transfer func-
tions for all the models do not differ much (see Fig. 1).
The best place to discriminate between these models is on
smaller scales, where we have data only on the nonlinear
part of the power spectrum.

A. The data

The relation between nonlinear structures and the am-
plitude of the linear power spectrum is quite complicated,
and it is nontrivial to extract strong conclusions &om
this data. We will consider two such constraints, which
we feel can be used relatively safely —constraints on the
amplitude of a (8h Mpc) or equivalently bs, and the re-
quirement that quasars form early enough to be compat-
ible with observations. The quasar constraint is a lower
bound on the power spectrum amplitude while a(8h
Mpc) is an upper bound (at a somewhat larger scale).

High mdshift qeasars

The discovery of quasars with high redshifts (about 20
with z & 4) was a direct challenge to theories of structure
formation. One needs a minimum amplitude for density
fluctuation on galactic scales to account for the quasar
population. Efstathiou and Rees (Ref. [42]) considered
the formation of quasars in a highly biased (bs ——2.5)
n = 1 CDM model. The basic strategy is that in order

where R is the radius of the initial collapsing region ap-
propriate for the objects in question and a, is the linear
theory value of a(R), which corresponds to the gravi-
tational collapse and virialization of the object. Using
the spherical collapse approximation (see Appendix A)
a, = 3(127r)2~s/20 = 1.69. In this application we use the
Gaussian filtered mass fiuctuation a~(R)

et:(B) = J dkk P(k)e (3 2)

where the subscript "G" is to remind us that we are using
a Gaussian filtering function. The parameter v then has
the physical meaning of the ratio of the overdensity in a
collapsed object to the ambient rms overdensities. Thus
specifying v tells us the amplitude of the density fiuctu-
ations on the scale R. Also, since the calculated number
density depends exponentially on v, it is hoped that er-
rors in the measured number density will not significantly
change the value of v.

Efstathiou and Rees (Ref. [42]) estimated that the min-
imum mass for a quasar halo was & 2 x 10i2MO (h = 0.5).
They found that a bs ——2.5, n = 1 CDM model could ac-
count for the number density of quasars at least out to a
redshift of z = 5. Haehnelt and Rees (Ref. [43]) improved
on this treatment by showing that the b = 2.5 CDM could
fit the quasar luminosity function at a variety of redshifts.
Since both increasing the HDM fraction and reducing n
lessen the amount of power on small scales, it is obvious
to ask whether the amplitude of quasar scale fluctuations
has decreased below that required for making quasars.
Haehnelt (Ref. [11]) used the techniques of Ref. [43] to
limit the HDM &action in n = 1 models and n in CDM
models, finding that n & 0.75 in CDM models and the
HDM fraction must be AHDM & 0.3. Schaefer and Shafi
(Ref. [10]) showed that 25% HDM and n = 0.94 —0.97 is
compatible with the quasar density out to a redshift of
z 5.

The Press-Schecter technique is, however, not with-
out errors. Even if we knew the quasar number density
perfectly, and hence could deduce the exact value of v,
there would still be uncertainties. These uncertainties
have been discussed before in a variety of places. Here
we follow the discussion of Ref. [24]. The uncertainties
in v can be found by

Alnv = Kino. — AlnM.
da (R) dR

dB dM
(3.3)

First of all it is not clear what value of o to use. While
most authors use the value 1.69, comparison of Press-
Schecter results to N-body simulations imply values of

for a massive black hole to form and power the quasar
emission, one first requires a host dark matter halo to
supply the gravitational potential to induce baryonic in-
fall. The number density of structures for a given power
spectrum can be computed using Press-Schecter theory
or the techniques in Ref. [51]. The number density of
structures depends exponentially on a parameter v given

by oc
(3.1)

a(R)
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0, anywhere from 1.33 [42] to 1.69 [44]. To bracket these
values we can assume o. = 1.5 + 0.2. Second there are
errors in the quoted mass of the object. The theoretical
value for the quasar halo mass is somewhat uncertain,
and the mass of the object derived &om the luminos-
ity function comes with an additional error. To evalu-
ate the total uncertainty one needs to know the value
of [der(R)/dR](dR/dM) For the quasar halo mass of
2 x 10 2Mo, the Gaussian filter radius is R = 0.6h
Mpc. For n = 1 models [do(R)/dR](dR/dM) ranges
from 0.14 for CDM models to 0.033 for 50% HDM. As-
suming a factor of 3 error in the observational and theo-
retical masses, we then have

6 lnv = +0.13 + 0.04 6 0.04 (3.4)

for 50% HDM (n = 1), which has the smallest uncertain-
ties of the n = 1 models. We conclude that there could
be an uncertainty of about 20% in the amplitude of the
density fluctuation a (R) derived Rom the quasar density.

In order to have the proper quasar density at early
redshifts, one needs to have rr(0.6h i Mpc) & 1.1 today
(using cr, = 1.5). The eIfect of the hot dark matter on
the growth of density fluctuations at these scales changes
the above threshold value by only a few percent [ll]. To
forbid models, which are unlikely to have quasars form
early enough, we make the replacement

0(0.6h iMpc) —1.1
0.22

(3.5)

whenever cr(0.6h iMpc) & 1.1. We have weighted this
contribution to S by 20 to strongly penalize models
without sufficient small scale power. Since there are
about 40 data points in our y2 analysis an amplitude
0(0.6h Mpc), which is 40% (like two standard devi-
ations) smaller than our threshold amplitude will cause
AS to be so large that the model will be ruled out by
the quasar data alone. Decreasing the penalty factor will
loosen our constraints on high HDM fraction and low n
models. Increasing the penalty will drive us closer to the
limits usually quoted (AHDM & 0.30, or n & 0.75 for
OHDM = 0 [10,11]).

2. cr(8h i Mpcj

bio" "'"' '(8h Mpc) = 0.69 + 0.09 (3.6)

Since it has become traditional to specify the ampli-
tude of linear theory by 68, some attention has been paid
to determining the value of bs Rom observations. There
are several ways of getting at this quantity, which seem
to be converging on the range bs ——1.5 —2.0 for the
0 = 1 models. We will consider some of the more recent
attempts to constrain this parameter.

The easiest way to estimate the density fluctuations
is by finding the variance of the galactic number den-
sity. For the IRAS galaxies we have two estimates of the
number density fluctuations: one &om the /DOT survey

[45]

which is in perfect agreement with the estimate from the
Berkeley survey [46]

nonlinear(8h —i M ) p 69 y p p4 (3 7)

The error on the averaged combined measure-
ment is essentially the same as the Berkeley error,
birr" "'"' '(8h i Mpc) = 0.69 6 0.04. The 95% confi-
dence upper limit is then bio" "l'"' '(8h i Mpc) & 0.77
If we take an extremely small value for bg = 0.5, which
is the POTENT 95% confidence lower limit, this would

imply that o" "l'"' '(8h i Mpc) & 1.54. If we use the
spherical collapse model (see Appendix B) to determine
what that means in terms of the linear density fluctua-
tion, this implies

o""'"(8h Mpc) & 0.71 or bs & 1.40.

To be extra cautious, we will adopt the constraint

o""' '(8h Mpc) & 0.80 or bs & 1.25

(3.8)

(3 9)

for a new round of y testing.
A few remarks are in order here concerning the value

of bs. Early investigations found that CDM models with
n = 1 required values of bs 2 —3 [47] to get agree-
ment with galactic velocity dispersion data and corre-
lation functions. However, large scale structure data re-
quired that CDM have smaller values of bs It was p.ostu-
lated that dynamic eIfects, especially "velocity bias" [48]
might accommodate smaller values of b8. High-resolution
simulations [49], however, find bs & 1.4, despite their con-
firmation of the existence of the velocity bias effect. This
conclusion seems to also hold for n, & 1.00 [50]. Reference

[50] also suggests that this is true even in models with
C+HDM. However, they did not consider the effect of the
dynamical eIfects of HDM in their study, and this seems
to allow us to use bs ( 2 with significant amounts of
HDM [12—14]. No systematic study has been done to de-

termine what values of b8 are allowed, although bs ——1.5
seems to work with n = 1 00) OHDM 0 30 Our con-
straint bs & 1.25 seems to be easily consistent with these
case studies.

Another constraint on the mass fluctuation amplitude
comes &om cluster properties. Since clusters are a few

Mpc in size, they are an almost ideal choice for deter-
mining bs. However, to determine the number density
of cluster mass structures analytically, one must use a
procedure such as the "BBKS"method [51] or the Press-
Schecter [52] model. There are some uncertainties asso-
ciated with this technique however, which we have dis-
cussed in the preceding section on quasars. In Ref. [6] it
was found that bs ——1.12 —0.96 for models with 0—50%
HDM, based on R & 0 Abell cluster number abundance.
To arrive at this number van Dalen and Schaefer (Ref.

[6]) used the spherical collapse model. The R = 0 Abell
clusters are the poorest Abell clusters and represent ini-

tially weaker density fluctuations. The smaller amplitude
density fluctuations tend to be highly asymmetric [51]
and collapse faster than spherical perturbations (see, e.g. ,

Ref. [53]), so a spherical collapse inodel probably gives bs

values that are too small. It was estimated that more ac-
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curate values for bs would be at least 30% larger, i.e.,
bs ——1.46 —1.25, consistent with the adopted restriction
bs&1.25.

Perhaps a more reliable way to study the mass Huctua-
tions in clusters is to select them by their x-ray tempera-
tures, as this gives a direct indication of the gravitational
mass potential. These studies tend to give results con-
sistent with much higher bs, implying bs 2.0 —2.5 [54],
bs ——1.6 —1.9 [44], and bs ——2.0 [55]. Thus we find our
restriction b8 & 1.25 is, if anything, too conservative.

.95—

B. Results of nonlinear analysis .85—

In Figs. 7 and 8 we again plot the y2 contours for
models with and without significant gravity wave temper-
ature anisotropies. We note that because our method of
enforcing the nonlinear constraints is somewhat ad hoc,
the contours in Figs. 7 and 8 no longer have a clear sta-
tistical meaning. We believe that the "allowed region" in
our graph is perhaps larger than the data really allow be-
cause we have been quite conservative in our treatment
of these limits. The efFect of the nonlinear constraints
is quite clear The .restriction bs & 1.25 forces the nor-
malization of small OHDM, n 1 models to be too low
to match the large scale structure data. This is symp-
tomatic of the CDM models, which, when normalized to
COBE, have too much small scale power. The effect of
enforcing the lower limit on the amplitude from quasars
is to cut out a triangle of parameter space correspond-
ing to large OHDM and small n. This is symptomatic
of OHDM 1 model problems, there being not enough
small scale power to explain the early epoch of quasar
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FIG. 7. Same as Fig. 5, but we have added the constraints
from nonlinear data. We have added the restriction that
bs & 1.25 and that we have sufBcient power for quasar for-
mation. The procedure for adding these constraints in a y
analysis is described in the text. The signi6cance of the con-
tours is here not well de6ned because of the way we have
added the nonlinear constraints.
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FIG. 8. Same as Fig. 6, but we have added the constraints
from nonlinear data. We have added the restriction that
bs & 1.25 and that we have sufBcient power for quasar for-
mation. The signi6cance of the contours is here not precise
because of the way we have added the nonlinear constraints.

formation. If we had increased the penalty for violating
the quasar formation limit, we would shift the limit con-
tours on high OHDM to the left of the graph, but not past
OHDM & 0.30 for n = 1.00.

What we are left with is a patch of parameter space
which has n ~ 1 and OHDM = 0.25 6 0.15. This is in
agreement with earlier studies and shows that models
with OHDM jOcDM 1/3 are significantly better fits to
the data than with no HDM. The range of n is roughly
the same as in the linear analysis, although the nonlinear
quasar constraint has efFectively chopped off the low-n,
high-HDM fraction corner of parameter space of the pre-
vious best fits. Our allowed region of parameter space
overlaps the allowed region found by Liddle and Lyth
(Ref. [56]). However, their analysis took the nonlinear
constraints of Refs. [11,44] at face value so their allowed
region is somewhat smaller than ours They not.ed how-
ever, that their allowed region was meant to be suggestive
of trends in the data and should not be taken literally.
On the other hand we are taking pains to be overcon-
servative with nonlinear constraints in the hope that our
limits will be firmer.

Thus we find the following properties, which it is de-
sirable for in8ation to have. We require a density per-
turbation spectrum, which is quite close to a Harrison-
Zeldovich spectrum as the data do not seem to favor
much "tilting. " For models with a negligible gravity
wave contribution to the COBE signal, the best fits oc-
cur for 0.93&n&1.00. In models with some gravity wave
contribution, we find an even tighter range of best-fit n
values, namely, 0.97&n&1.00. Since we used Eq. 2.5
to determine this, we see that for n = 0.97 the grav-
ity wave contribution to COBE is only 10%. Thus the
data favor models for which density perturbations are
&90% responsible for the COBE signal. We also find
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0.15&OHDM&0. 45 gives the closest 6ts to the data, which
implies we would nominally like one flavor of neutrino
with a mass m„= 3 —10 eV. (The best fits imply a nar-
rower range OHDM ——0.20 —0.35 implying m = 4 —8 eV
with 6 = 0.5.) With these attributes in mind we proceed
to explore possible models for inflation.

IV. MGDELS GF INFLATIGN

A. In6ation with nonsupersymmetric SO(10)

For de6niteness, let us consider the following breaking:

SO(10); SU(4), x SU(2)L, x SU(2)~

SU(3), x SU(2)L, x U(1)y MxM~

A recent two-loop renormalization-group calculation in-

volving the gauge couplings gives [58] Mx 10 —10is
GeV and M~ I, 10 + GeV, consistent with the mea-
sured values of n (Mz) and sin Oiv(Mz).

A simple version of the seesaw mechanism for neutrino
masses [59] suggests the hierarchy:

2. 2. q~ —1 2m, : m„, : m, m„:m: 10 m&. (4.1)

One can of course design other models for which the
above relation does not hold, but we will con6ne our at-
tention here to just this simplest version. Here the three
mass eigenstates vz, v2, and v3 primarily consist of v„
v„, and v, respectively, and we have assumed (see be-

low) that the heavy (right-handed Majorana) neutrino
associated with the third family is a factor 10 (or so)

Grand unified theories (GUT's) provide the simplest
kamework for implementing the inflationary scenario.
Although supersymmetric GUT's are currently more
popular, for completeness we will also consider the ordi-
nary nonsupersymmetric versions. The simplest example
of the latter is provided by SO(10) with an intermedi-
ate mass scale. The minimal nonsupersymmetric SU(5)
model is excluded both by the precise determination of
sin 0~ and by proton decay experiments. This is just as
well &om our point of view, since, as observed a decade
ago [57], non-SUSY SO(10) models with an intermediate
(B Lbreaki-ng) scale M~ I, ( 10 GeV) strongly sug-
gest that the v neutrino mass is in the eV range. The
presence of a U(1) axion symmetry not only resolves the
strong CP problem but also provides the cold dark mat-
ter component.

Two versions of the inflationary scenario, "new" and
"chaotic, " are readily realized in GUT's. The spectral
index n of density fluctuations in the simplest realistic
models typically lies between 0.96 and 0.92, although in
some versions of chaotic inflation with SUSY GUT s, n
could be as low as 0.88. Values of n much smaller than
this are not particularly well motivated, both from the
point of view of model building as well as observations of
the large scale structure.

heavier than the other two.
The Mikheyev-Smirnov-Wolfenstein (MSW) interpre-

tation of the solar neutrino data suggests [60] that the v2

mass is 10 ' —10 eV. With mq(mi) 130 —150
GeV, as suggested by recent analyses of the electroweak
data, we expect the vs (essentially v, with some admix-
ture of v„and v, ) mass to be 5 —10 eV. [Without the
numerical factor in Eq. (4.1), this mass would exceed the
cosmological bound. ] Note that according to this simple
SO(10) example, unless the v —v„mixing happens to
be tiny, the two-neutrino oscillation experiments by the
CHORUS and NOMAD Collaborations should determine
whether or not the "w" neutrino is cosmologically signif-
icant.

The SO(10) model with the above symmetry-breaking
chain suggests the existence of some dark matter in the
form of r neutrino. However, two essential ingredients are
still missing, implementation of inflation and a candidate
for cold dark matter (CDM). [Recall that in6ation with
only hot dark matter (HDM) does not seem compatible
with the observed large scale structure, especially galaxy
formation. ] The simplest way to incorporate CDM here
is to invoke a U(1) axion symmetry [61] broken at a scale
around 10ii —10i2 GeV. Both the axions and neutri-
nos are then cosmologically significant. It may be useful
to reiterate how this has come about. In nonsupersym-
metric SO(10), an intermediate scale is needed to bring
about consistency with the measured value of sin 8(Mz)
as well as with the lower limits on the proton lifetime.
This forces the gauged B —L symmetry to break at an
intermediate scale, which, for the above chain, is about
10i2+i GeV. Coupled with the seesaw, this strongly sug-
gests that the w neutrino mass ( mi /Mg L, ) is in the eV
range. That is, the neutrino is a signi6cant component of
the dark matter. Cold dark matter is then needed to rec-
oncile the inflationary scenario with observations related
to large scale structure.

As far as inflation is concerned, the most straightfor-
ward scenario is realized by introducing a weakly coupled
gauge singlet field P in the manner of Shafi and Vilenkin

[62]. The part of the potential, which drives (new) infla-

tion is given by

V(P) = AP ln
~qM'j 2

(4.2)

f AT ) 32m. Vs

( T )~ 45 V"Mp~
(4.3)

where M~(= 1.2 x 10 GeV) denotes the Planck scale,
and the right-hand side is to be evaluated when the scale

where M denotes the vacuum expectation value (vev) of
P. The quantity A can be reliably estimated by consider-

ing the contribution of the scalar perturbations to the mi-

crowave background quadrupole anisotropy and identify-
ing it with COBE s determination of Q, , ps. [Note that
for the potential in (4.2), the spectral index n = O.S4, and
the tensor contribution to the anisotropy is negligible. ]

One has (the subscript S denotes the scalar contribu-
tion)
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k i, corresponding to the present horizon size, crossed
outside the horizon during infiation. Equation (4.3) can
be rewritten as

]ET/T]s 0 06.7V ANH ] ln(ljP~/M )]', (4.4)

where N~ (- 55) denotes the number of e foldings expe-
rienced by this scale, and PH is the field value when the
scale crossed outside the horizon.

The logarithmic factor in (4.4) is of order 1—10, assum-
ing that the vacuum energy density that drives inflation is
comparable to Mx. For M~ 10 ' GeV, M M~ ——

1.2 x 10i@ GeV, and taking (b,T/T) conE --6 x 10, the
fundamental quantity A is estimated to be

%=2.2x10 ' (4.5)

Any infiationary scenario is incomplete without an ex-
planation of the origin of the observed baryon asymrne-
try in the universe. In the present case the infiaton mass

m4, 10 '5 GeV, and so the basic idea is to create an ini-
tial lepton asymmetry via inflaton decay into one or more
species of the heavy ("right-handed") majorana neutri-
nos. The appearance of "sphaleron" induced processes at
the electroweak scale converts a speci6ed fraction of this
asymmetry into the observed baryon asymmetry. Details
of how a satisfactory scenario is realized along these lines
can be found in Ref. [63]. We mention here a few salient
features.

(i) The reheat temperature T„10ss GeV so that
the out of equilibriuin condition on the "heavy" ( 10iz

GeV) neutrinos is readily satisfied.
(ii) The requirement that for temperature below T„

the rates for lepton number violating processes (vv ~
H 'H ' and vH ~ vH ', where H' is the electroweak
scalar Higgs boson) be smaller than the expansion rate
(H 20Tz/Mp, where I denotes the Hubble constant)
of the Universe, leads to the following constraint on the
light neutrino masses [64]:

4eVm„~ , =20eV.
P'„/].0io GeV) ~

(4.6)

(4.7)

This is fully consistent with a cold plus hot dark matter
scenario where neutrinos in the mass range 3 —10 eV are
needed.

(iii) In the present approach the colored scalar triplets,
which mediate proton decay are not needed for baryogen-
esis and consequently are allowed to have masses M~.

(iv) Finally, it is possible, following Ref. [65), to iden-
tify the infiaton with the field that spontaneously breaks
the axion symmetry. This would make for a more eco-
nomical approach.

(v) With an appropriate reinterpretation, the chaotic
irjLBationary scenario can be realized within the &ame-
work of this SO(10) model. The ratio of the scalar to the
tensor contribution in this case is

B. Supersymmetric inflation

The presently measured gauge couplings of the stan-
dard model, when extrapolated to higher energies with
supersymmetry (SUSY) broken at scales around 10s GeV
[66], appear to merge at scales around 10i GeV. This is a
boost for supersymmetric GUT's, with SU(5) or SO(10)
being the obvious gauge groups. In the presence of un-
broken matter parity, either of them can provide a cold
dark matter candidate in the form of a lightest supersym-
metric particle (LSP). However, hot dark matter in the
form of massive neutrinos most naturally appear in the
SO(10) model. The supersymmetric SO(10) scheme has
some additional features, which make it attractive &om
the particle physics viewpoint.

(a) A Zz subgroup of the center of SO(10) [more pre-
cisely spin (10)] is left unbroken if tensor representations
are employed to do the symmetry breaking. This Z~ sym-
metry [67], which is not contained in SU(3), x SU(2)l, x
U(1)i, acts precisely as matter parity.

(b) In some versions of SUSY SO(10), the important
parameter tanP (—:P"/P~, the ratio of the two VEV's
which provide masses to "up" type and "down" type
quarks) is predicted to lie close to mi/ms [68]. One con-
sequence of this is the identification of the "bino" [the
supersymmetric partner of the U(1)i gauge boson] as
the LSP, with mass 200 —300 GeV.

(c) Fermion mass ansatzes have recently attracted a
fair amount of attention and are most simply realized
within the framework of SO(10) [69].

To summarize, particle physics considerations as well
as observations of large scale structure, which favor a cold
plus hot dark matter scenario, together suggest SUSY
SO(10) as an attractive way to proceed. Infiation, ei-
ther new or chaotic, can be implemented by introducing
a suitable singlet super6eld. Remarkably enough, sin-
glets are typically employed to achieve the breaking of
the GUT's symmetry (without breaking SUSY), and we

exploit one of them to induce inflation.
Let 4 denote the SO(10) singlet (inflaton) superfield,

y(g) are the Higgs superfields in the 126 (126) repre-
sentations whose VEV's provide Majorana masses to the
right-handed neutrino, and 16,(i = 1, 2, 3) are the matter
super6elds. To simplify the discussion, we restrict atten-
tion to the sector involving an interplay only between
these super6elds. This allows us to discuss the salient
features of the (chaotic) infiationary scenario including
baryogenesis. Consider the renormalizable superpoten-
tial

W = aC(&& Mx)+ 4 + C' +'Y' 16'16 & .M z P

(4.8)

Note that 4 ~ 4 under the rnatter parity contained in
SO(10) (similarly y, g m y, g, and 16; m —16;).

The superpotential TV gives rise to a supersymmetric
ground state in which (VEV's refer to the scalar compo-
nents of the superfields)
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(4.9)

It is clear that matter parity is unbroken, and we expect
the I.SP to contribute to the cold dark matter compo-
nent.

Even though B-I is now broken at M~ 10
GeV, the right-handed r neutrino mass must be of or-
der 10 —10 GeV, if the "light" ~ is to be the dark
matter component. The inflaton must be at least twice
as heavy, and one simple way to have my 10 GeV
is to arrange the coefficients n and M in (4.8) to be of
order my/M~ and my, respectively. The decay rate of
the inflaton into right-handed neutrinos is given by

couplings 4, @s are also absent [otherwise U(1)' would
break at scales M~].

In the absence of SUSY breaking the superpotential TV

is taken to be

W = hyyC + (44)'+ . .
M~

(4.11)

V(P, P) Ms~/—
~

+ r (4.12)

where y denotes some matter super6eld with the cou-
pling h of order unity. Assuming a radiative breaking
scenario along the lines envisaged in supergravity models
with electroweak breaking, the effective potential takes
the generic form

1 (m4, )
4vr (Mx )

(4.10) Minimization of (4.12) leads to the result

With m~ 10 GeV, the reheat temperature T„ is of or-
der 10 GeV. Baryogenesis via leptogenesis now proceeds
along the lines given in Ref. [63]. Note that because of the
relatively low T„, the otherwise vexing gravitino problem
is neatly avoided in this approach.

Depending on the details, the spectral index n lies be-
tween 0.94 (if the quartic potential dominates) and 0.96
(with a quadratic potential dominant during the chaotic
inflationary phase). The ratio (AT/T)T/(AT/T)&
0.22 and 0.11, respectively.

C. Inflation without the singlet

The question we wish to address here is the following:
Is it possible to implement inflation with GUT's without
the gauge singlet? Surprisingly perhaps [70], an affirma-
tive answer appears possible for a special class of super-
symmetric GUT s in which, up to a normalization con-
stant, the GUT scale is determined in terms of Ms and

Mp, the SUSY breaking scale and the Planck scale re-
spectively. Moreover, the normalization constant is Axed
from the quadrupole anisotropy. Such models [71] natu-
rally arise after compactification of the ten-dimensional
Fs x Fs heterotic string theory [72], and models based
on G = SU{3),x SU(3) I, x SU(3)~ or its subgroups pro-
vide some elegant examples. The scalar 6elds needed to
spontaneously break G to SU(3), x SU(2) L, xU(1) can be
used to drive inflation.

The key ideas are relatively straightforward and per-
haps best illustrated by a simplified example. Con-
sider a rank five gauge symmetry II—:SU(3), x
SU(2)1, x U(1)y x U(l)', where the extra factor
U(1)' is to break at some superheavy scale M (be-
low M~). Let P, g denote the pair of Higgs scalars
whose vev's do this breaking. Note that (P)
(P)' so that the D term vanishes. Since the only in-

dependent dimensional parameters are Ms and MJ (M
is determined in terms of them), the 44 terms in the
superpotential are either absent or carry coefficients of
order Ms. (Here 4, 4 denote the corresponding super-
fields. ) Moreover, in order to ensure F flatness, the cubic

(4.13)

Provided that K is sufficiently small, the potential in
(4.12) will yield a satisfactory (chaotic) inflationary sce-
nario. It turns out that K 10 (from COBE), which
gives M 10 GeV. The spectral index n 0.92, while
the ratio of the tensor to the scalar quadrupole anisotropy
is (AT/T)27, /(AT/T)2s = 0 4 Va. lu. es of n = 0.88 (but no
lower) can be entertained within this framework. This
is just as well, since our analysis in the earlier sections
seems to favor the range 1.0 ~ n ~ 0.9.

To summarize, grand unification provides an elegant
framework for implementing both the new and chaotic
inflationary scenarios. Some popular models based on
SO(10) or SU(3), x SU(3)l, x SU(3)R predict the value
of the spectral index n in the range 0.96 to 0.92. Cold
dark matter, in axions and/or LSP, as well as hot dark
matter in massive neutrinos are readily incorporated in
these schemes.

V. CONCLUSIONS

We have performed a y test of the hot dark mat-
ter &action OHDM and spectral index n in the predicted
linear theory power spectra with data on scales ranging
&om 1 to 10 Mpc, mainly &om the COBE satellite and
the @DOT IRAS survey of galaxies. We find that the in-

flation based scenario of large scale structure formation,
in which the dark matter consists of cold plus hot com-

ponents, can provide a good 6t to large scale structure
data.

Taking the primordial power spectrum to have spectral
exponent n, we find with 99% confidence, respectively,
that n&0.82 (n&0.94), in models with {without) signifi-
cant gravity wave contributions to the COBE anisotropy.
The precise bound depends slightly on the HDM &ac-
tion. We 6nd in models with a signi6cant gravity wave

anisotropy, that the COBE signal must contain a contn-
bution of less than 20% from the gravity waves.

Although pure CDM models are a considerably worse

fit to the data t,han C+HDM models, if one insists on

only one type of dark matter, i.e., CDM, the best 6ts are
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for n = 0.84 (n = 0.92) in models without (with) gravity
waves, respectively.

The best fit region for all data, including some con-
straints &om non-linear structure, is roughly a tilted
rectangle (see Figs. 7 and 8). For models with neg-
ligible gravity wave anisotropies, we obtain limits on

OH~~, which depend on n, roughly OH~~ o.30—
1.2(1 —n) + 0.15, for n ) 0.87 (95%%uo confidence lim-

its). For models with a large tensor COBE anisotropy,
the tilted rectangle extends for a shorter range of n, im-

plying AHDM —0.30 —2.5(1 —n) 6 0.15, for n ) 0.95
(95% confidence limits). Thus, the best fits occur for

OH~~ 0.15 —0.35, with n very close to unity.
Realistic examples of inBation Rom grand unification

theories, including both supersymmetric and ordinary
GUT's, which have these properties have been presented.
These models are also consistent with other cosmological
and particle physics constraints.

Note added in proof. Since we submitted this paper
we have extended our analysis to include values of n ) 1.
We find that n & 1.17 with 99% confidence regardless
of the dark matter composition and that OHg~ must
always be less than 0.6 even with n ) 1. If we allow the
Hubble parameter h to vary &om 0.5 we find that the best
fit values of n and OHp~ change; smaller n and larger
HDM fractions are favored when h ) 0.5 and larger n
and smaller HDM fractions are favored for h & 0.5. Pure
CDM models are allowed when h is as small as 0.3, but
for h ) 0.4 we find OHDM ) 0 at 95%%uo confidence. Thus
for the canonical range of Hubble values 0.4 & h & 0.6
a mixture of cold and hot dark matter is required to fit
the observations.
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APPENDIX A: TRANSFER FUNCTION
CALCULATIONS

As described in Ref. [3], we integrate the Fourier space
evolution equations in (conformal) time using the gauge-
invariant variables for the density 6, and velocity V
perturbations in each energy density component (CDM,
neutrinos, photons, and baryons) as given in Ref. [73].
Here we integrate the equations in co+formal time in-
stead of the scale factor as we had done previously. We
begin the integration well before the matter dominated
era (z = 8.3x10s ) and integrate up until the present time
(z = 0). We have used only one favor of massive neu-
trino, with the other two 8avors essentially massless. For
the baryon equations we use the equations for the differ-
ence between the baryon and photon density and velocity

TABLE I. Transfer functions with Ob,„„——0.05, h = 0.5.

0„
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

t1
-1.150
-0.8654
-0.2942
0.1157
0.31?6
0.3128
0.1363
-0.1454
-0.4276
-0.6522
-0.7882

t2
29.60
17.65
1.393
-8.820
-12.69
-10.60
-3.540
6.144
15.15
21.44
24.04

t3
48.49
165.1
274.6
330.0
334.9
296.3
219.1
127.6
53.35
15.98
25.49

t4
-43.17
-277.1
-472.6
-541.4
-495.8
-361.6
-142.9
78.64
193.1
131.2
-1.47.3

132.4
343.4
538.2
660.8
726.1
756.5
771.2
840.3
1084
1582
2395

perturbations [the variables Sb, = 6c ba,yo„—(3/4)Acr
and Vb, = Vb,„—V„given in Ref. [73], Sec. II-5].
For the massive neutrinos we use the imperfect fiuid
treatment of Ref. [74]. We numerically integrate the
equations using a Haming predictor-corrector routine as
we have found it tracks the oscillations of the relativis-
tic components more accurately than Bulirsch-Stoer or
Runge-Kutta routines. After recombination is completed
(z = 900) we switch from integrating the baryon-photon
difference equations to simply integrating the baryon and
Photon comPonent (b, b,y „, b„, and Vba, y „,V„) equa-
tions separately.

We have checked the results of our code by comparing
our baryonic transfer functions against those of Ref. [4]
who gives values for Ob, y „=0.1 and 0.01 and found
good agreement, although here we present results only
for Og«~~„——0.05. We have fit the transfer functions
to an inverse fifth order polynomial and the results are
given in Table I. We find a fifth-order inverse polynomial
works a little better for C+HDM models than a fourth-
order one, as is more usual for CDM models. The transfer
functions given here are not baryonic transfer functions,
but rather are fits to the total density perturbation (i.e. ,
+ = f~CDM+c, CDM + flv+cv + f~baryon+c, baryon)
fine our transfer function as

A(k, t, ) A(k = O, t;)
A(k, t ') A(k = 0, tp)

(A1)

where t; and to are the initial and present times, respec-
tively. The transfer functions are accurate to a few per-
cent down to k = 1h/ Mpc

APPENDIX B:ESTIMATING THE
CONTRIBUTION OF NONLINEAR EFFECTS

In the preceding section we alluded to the fact that
nonlinear effects were becoming important at 8h Mpc.
We would like to estimate the size of the nonlinear effects.

T(k) = . (A2)1+ t,k" + t2k'+ t3k" + t4k'+ t,k"
In Table II, all coefficients are for k in Mpc (with h=0.5).
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p 9 (0 —sino) z

pb 2 (1 —cos8)
(B1)

where pb is the background density and 0 is the conformal

To get a crude estimate we use the "spherical collapse
model" treatment (see, e.g. , Ref. [75]). This approxi-
mates a spherical overdensity in a Hat universe locally as
a miniature closed collapsing universe, so one can follow
the collapse into the nonlinear regime. We can define the
nonlinear overdensity as 0" "'", which is given by the
following equation:

time coordinate, which parametrizes a closed space-time.
For the same value of 0 the linear theory predicts o ~ '"~

0 ('") = —[6(0 —sine)]'~'
20

(B2)

hus if o~" "'"~ = 0.6, we can estimate 0~ '"~ = 0.4, a
50% correction. To keep within a range where the per-
turbations are linear we must restrict ourselves to scales
where o ~" "'"~ & 0.4, where nonlinear corrections are es-
timated to be ( 30%.
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