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Generational seesaw mechanism in SU(6) s X Zs
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For the gauge group [SU(6)] x Zs which unifies nongravitational forces with Savors we analyze
the generational seesaw mechanism. At the tree level we get m„. = 0 and m„m„„MI,/MH,
where ML, ~ 10 GeV and MH & 10 GeV are the weak and horizontal interactions mass scales,
respectively. The right-handed neutrinos get Majorana masses Mz of the order of the scale where

SU(2)R is broken. A low energy exotic neutral lepton with a mass of the order of M&/MR is

predicted. Radiative corrections can produce m„. g 0, four orders of magnitude smaller than the
other neutrino masses.

PACS number(s): 12.10.Dm, 12.15.Ff, 14.60.Lm, 14.60.St

I. THE MODEL

In Refs. [1,2] we presented a model based on the gauge
group SU(6)gSU(6)~SSU(6)R x Zs = G which uni-
6es the known nongravitational interactions with Ha-

vors. Since G includes the so-called horizontal inter-
actions, it leads to predictions for some masses and
mixing angles of ordinary fermions. In G the three
known families belong to a single irreducible repre-
sentation, each family being defined by the dynamics
of SU(3)c8SU(2)1,SU(2)RU(1)v, the left-right
symmetric (LRS) extension of the standard model.

The seesaw mechanism [3] expresses the smallness of
the neutrino masses in terms of the "large" masses of
some other neutral fermions. This mechanism is very
simple to implement for a single neutrino and, as far as
we know, it has been implemented in a consistent way
only for two families [4].

In this Brief Report we carry through in detail the
diagonalization of the 18 x 18 electrically neutral mass
matrix which appears in the context of our model. The
detailed results obtained here con6rm the qualitative re-
sults inferred in the second paper of Ref. [2]. Although
our result does not provide a natural generational ex-
tension of the seesaw mechanism for three families, it
provides a scenario where 3 of the 18 neutral particles in
the model, mainly members of left-handed doublets, get
tiny masses.

SU(6) ~ in G is the color group which consists
of three hadronic and three leptonic colors; it in-
cludes the SU(3)~U(1)~&

~
subgroup of the LRS.

SU(6)L,SSU(6)R is the fiavor group which includes the

SU(2)r, eSU(2)R gauge group of the LRS.
The gauge bosons and Weyl fermions in G are clearly

defined in [2]; let us specify here some of them. The
known fermions are included in Q(108)I, = Q(6, 1,6)L, +
Q(1, 6, 6)1, + g(6, 6, 1)L,, which has the particle content

(d."' d„'" d "' Z; I,,' r; )
2/3 2/3 2/3 go L+ youx uy &z 1 1 1

JoS& 8y 8z 2 2 2
Q(6) 6) 1)L, Q/3 z/3 Q/3 Q + Q

C~ Cy Cz

g-
z y z 3 3 3
2/3 2/3 2/3 0 + P
x y z 3 3 3gl,

where the rows (columns) represent color (fiavor) degrees

of &eedom; E,. ', L,+. ', and T,. ', i = 1, 2, 3, stand for
leptonic 6elds with electrical charges as indicated, and
d, u, s, c, b, and t stand for the corresponding quark fields,
eigenstates of G [z, y, and z stand for SU(3)& color in-

dices].
Q(1, 6, 6)L, = Q stands for the 36 fields charge con-

jugated to the fields in @(6,6, 1)l„while @(6,1,6)L, rep-
resents 36 exotic Weyl leptons, 9 with positive electric
charges, 9 with negative (the charge conjugated to the
positive ones), and 18 are neutrals. As is clear we are us-

ing a, b, ..., A, B, ..., n, P, ... = 1, ..., 6 as SU(6)L„SU(6)R,
and SU(6)~ tensor indices respectively.

The most economical set of Higgs Belds and vacuum
expectation values (VEV's) which break the symmetry
from G down to SU(3)cU(l)@M and at the same time
give a tree level mass of order ML, 10 GeV to the
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top quark (what we call the mod@ed horizontal sunnual
hypothesis) is [2]

&i = &(675) = &.,(.b)
+ &,(A, B) + &i,(.,P)

[A,B] [a,P] [a,b]

with VEV's (Pi)—:M in the directions [a, b] = [—b, a] =
[1,6] = —[2, 5] = —[3,4], [A, B] similar to [a, b] and
[o', P] = —[P, a] = [5,6],

&2 = «1323) = &2,I'-,»+ &2.~'A, B) + &2,i-.p»
(A,B) (aP) (o,b)

with VEV's (p2) = M' in the directions {a,b} = {b,a}=
{1,4} = —{2,3},{A,B}similar to {a,b} and {a,P} =
V. }={4,5},

[~ p]=[4 6]
($3 ['A B) '(4s)) = MR, and

4 = &(108) = &4,.+ &4,.+ &4,A (5)

with VEV's such that (PA) = (P ) = 0 and (gP&)

Ml, 10 GeV, with values different &oxn zero only in
the direction (g») = (P4) = (Ps) = (Pz) = (P4)
(~:) = (~:) = (~ ) = (~:)'= M'

'
According to the analysis presented in Ref. [2), (Pi) +

($2) breaks G down to the I RS group, and (pi) + ($2) +
(Q3) breaks G down to SU(3)&SU(2)z, U(1)i . Also,
since we are not interested in studying CP violation, we
will assume throughout this paper that (P;), i = 1,2, 3, 4,
are real numbers.

~3,[a,b]
+ ~3, [A,B) + ~3,[ Pn]

~

[AB] [~ p] [»] (4)
II. GENERATIONAL SEESAW' MECHANISM

with VEV's ($3[ [' b]]) (4' ... , )
[a,b]

The Higgs fields and VEV's presented in the previous
section imply the Yukawa-type mass terms

p [+ bl { b) A B [~ p] (~ p) [~.p] ~ b [»B]
@a@b (41,[n,P] + ~2, In, P1) + @n6 (~1,[A,B] + ~2, (A,B) + ~3,[A,B]) + @A@B(~1,[a,b] + ~2, (a,b))

6

+ ). & &"(&A) + H c.
a,a,A=1

(6)

The analysis of the tree level mass matrices for the quarks and the charged leptons produced by this expression was
done already in Ref. [2]. In order to diagonalize the mass matrix for the neutral leptons, let us write it first in the
basis defined by Ne = (E E E Ti) T2, Ts) L L L E E E T T T Li, I2, L3)L„where the
upper c symbol denotes the fields in Q(l, 6, 6)L, . In this basis the mass matrix has the form

( 0
0
0
0
0
0
0
0
0

ML,

ML,

Ml,
0
0
0
0

-M'
0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

ML, ML,

ML, MI.
ML, ML,
0 0
0 0
0 0

o
0 0
0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
o o o o -M'
0 0 0 M' 0
0 0 0 0 0

Ml, ML, Ml, 0 0
ML, ML, ML, 0 -M
ML, ML, ML, M 0

o o M o o
0 —M 0 0 0
M 0 0 0 0

0 ML, ML, ML, 0
0 ML, ML, ML, 0
0 Ml. ML, ML, 0
0 0 0 0 ML,
0 0 0 0 ML,
0 0 0 0 ML,
0 0 M' 0 0
o —M' o o o
0 0 0 0 M
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

M o o o o
0 0 0 —MR 0
0 0 MR 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 —M' 0)
0 0 M' 0 0
0 0 0 0 0

ML, MI. 0 0 M
ML, ML, 0 -M 0
ML, Ml. M 0 0

0 M 0 0 0
—M 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 MR 0 0 0

—MR 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0)

Since the gauge bosons responsible for the horizontal
transitions in the model get masses of order [2] M and
M', and since the horizontal transitions include Qavor-
changing neutral currents, we must impose the experi-
mental [5] constrain M, M' ) 100 TeV. The other mass
parameter in Mt, , MR, is the xnass scale which charac-
terizes the breaking of SU(2)R and produces mass terms
to the right-handed neutrinos; since in xnost of the models
it is responsible for the seesaw mechanisxn, MR 10
GeV. So it is natural to think that we can diagonalize
M«e under the ass»mption MR » M M' » ML, by
the use of a double perturbation theory.

According to the survival hypothesis [6] we identify

I

the left- and right-handed neutrino states as the mass-
less states which appear in the limit ML, ——MR ——0.
In this limit ~t„, is a rank-12 matrix with the zero
eigenvalues associated with the following eigenvectors,
(i) [Ese; (ME2 —M'Tse)/V; (MEio —M'T2e)/V]l„with
V = (M +M' ) ~, which we define as (vi, v2, v3) r„due
to the fact that they are a basis for the physical neutrinos
v„v„,v [they are SU(2)L, doublets, SU(2)R singlets]; (ii)
[E3', (ME2' —M'T2')/V; (MEi' —M'T2')/V]1. , which
we define as (vi, v2, vs) g, due to the fact that they are a
basis for the right-handed neutrinos v,', v„', v' [they are
SU(2)1, singlets, SU(2)R doublets].

This suggests the use of a new basis defined by N1 ——
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(v1) v2) v3, N1) N2) N3) L1) L2) L3) v] ) v2) vs) N1¹2,¹3,L1, L2, Ls)l„where N1 ——T1, N2 = (MT3 +
M'E29)/V, Ns ——(MT26 + M'E16)/V, L; = Lg, i = 1, 2, 3,
¹

=T etc.1 1

A. First perturbation

Prom now on let M = M' = MH. In the erst approxi-
mation given by ML, ——0 and in the basis Nq, the squared
mass matrix takes the form M~ = M»+ M~N where~y Q is an 18 x 18 diagonal matrix w ith entries given

2M&2, 2M&2, M&2) and M21& is an 18 x 18 nondiagonal
orthogonal matrix with the only entries different &om
zero given by (M1~)]4 7 —(M]1v)7 ]4 —~2M~M~ and

(~1 )15,12 (~]1v)12,15 M~/2
M1 is a rank-15 matrix with the three zero eigenvalues

related to the three left-handed neutrinos. We diagonal-
ize it perturbatively under the assumption M~ )) M~.
The list of eigenvalues and eigenvectors of JH21 is, up to
second order in perturbation theory, the following (where
our expansion parameter is b = MH/M~): v1, v2, and vs
have eigenvalue zero; Nq, L3, N~, and I3 have eigenvalue

MH j N2 N3 y L&, and L2 have eigenvalue V = 2MHj, v2

has eigenvalue M&2', v 2(b —3h )L1+ (1 —b)N2—:L'1,

has eigenvalue M1,,(1 + 4b )—:o.'1,' (1 —b )L1 —1/2(b-
3bs)N2 —= N2, has eigenvalue 2M&b = nz', ~2(1—
b2)vs — 1 (1+h2)¹3= vs, has eigenvalue M&(1+b )—:
p12;

1 (1+ b2)vs + ~1(1 —h2)¹3 = Ns, has eigenvalue

M&2b2 = p22, (b+ bs/2)L2+ (1—b2/2) v1 = L2, has eigen-
value M& (1+b ) = p1,' (1—h /2) L 2

—(h + h /2) V1 = V1

has eigenvalue M&b = P2.
These eigenvectors define a new basis which we denote

I

as N2. Notice in particular that the state N2, has an
eigenvalue of order M~~/M&~ which is a seesaw eigenvalue
produced by the two mass scales MH and M~. This
state is the only intermediate mass exotic predicted by
this model.

B. Second perturbation

In the basis N2, JH~ is diagonal up to second or-
der in perturbation theory. To diagonalize ~~ we ap-
ply an orthogonal transformation to N2 and obtain the

L1) L2 ) L3) V] ) V2 ) V3 ) N1 ) N2 ) N3 ) L1) L2) Ls)L, )

where v, , i = 1, 2, 3, and v2 are the same as in Nq,
but N1 =(N1 + Ls)/1/2) N2 = (N2 + L1)/1/2) Ns =
(N3 + L2)/~2) L', = (N1 —Ls)/y 2) L2 = (Ns —L2)/))) 2)

(N2 Ll)/V2) L~1~ = L1s) L2 —(L2s + vs~)/")/2)
L3 (Ls + N1 )/~2, v1' = (L2, —v3 )/~2
(Ns + v] )/1/2, N,"= (Ls —¹)/1/2, N2" = N2, ) and
Ns" = (Ns, —v1, )/1/2.

In this last basis the mass matrix JHt„, can be
written as fat„, —— M& + V', where M'D is an
18 x 18 diagonal mass matrix given by
diag(0, 0, 0, MIr, V 2M~, —v 2M~, o.'1, p1) MH, —p1, —MR,
—P2, M~, —o.—2, P2, —MIr, v 2MH, ~2M~), and V' is
a perturbation to MD proportional to ML, which can be
written as

f 06x6 A6xg 06x3
I 3x9

V~ = A9x6 09x9 +gxs ) A6xg =
( 03x6 +sxg 03x3 )

Ag 6 = ( Agxs +gxs ) (7)

where O„x are zero matrices with n rows and m
COlumnS, and A3x9 ——A9x3 and B3x9 —B9x3 ar g

T T

by

g1 0 712 1 gs 2 g4 )
Asx9 — 0 715

—1/~2 gs 1/2 717 1/y 2 0 7ls

0 q5 —1/~2 7ls ~2 7I7 1/~2 0 gs )
(8)

—1 1 1 —1 —h2 —1 K2 —h'

Bsxg —— ~2r1 —b 1/~2 ~2 0 p1 —1/~2 ~2I42 p2

( v 2~1 —h 1/v 2 1/2 0 p1 —1/1/2 1/2tc2 p2

respectively, where ~1 = 1 —h, pc&
——v)2b(] —3b2),

7h = 1 —3h /2, g2
——1 + h /2, 713

—1 —b —hs/2, g4—
—(1+h + b /2), g5 ——&2(1 —3h /4), 116 = b2/2~2, g7 =
(1—b+b' —b'/2)/v 2, gs ———(1+b+b2+bs/2)/~2, p1 ——

(1—b —b' —b'/2)/1/2, and p2
———(1+b —b2+ bs/2)/~2.

Now P' produces corrections to the eigenvalues
and eigenvectors of M12 of the order of ML, /M
(,ML, /M~ = (' and sxnaller (higher orders). These cor-
rections are important only for the smaller eigenvalues,
i.e., for the eigenvalues corresponding to vq, v2, v3, and
N2". For these states we use matrix perturbation. the-
ory [7). The second order perturbative corrections to the
3 x 3 mass matrix for the states (v1, v2, vs) follow &om
the diagonalization of the mass matrix

9

) - (Asxg), (Agxs)
(~12) +3, +3

Then, according to Eq. (8),

f 8. 8, 8, )
C = Og 82 82 (11)

(8 8 8

where 81 = Mr, (f+ 3bg')K2, —82 = Mr, (', and 83 =
6ML, b (' 0. C is a rank-2 matrix with the two
eigenvalues different from zero given approximately by
Ml, ((+3b(' 6 (') Ml, (=Mr2/M~

The state associated with N2' is not degenerate, and
so a straightforward second order perturbative calcula-
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tion gives a mass correction = MI, ('/~2 = MI, /~2 M~
which is smaller than its original value (Mli/MR).

III. CONCLUSIONS

In the context of the model presented in Refs. [1,2]
and for the mass hierarchy M~ && MH & 10 GeV &&

ML, 102 GeV we have diagonalized the 18 x 18 mass
matrix for the neutral leptons. The original mass matrix
includes only tree level mass terms and the diagonaliza-
tion was done by using a double perturbation theory,
with corrections up to second order in the parameters.

Our analysis gave four neutral leptons with small
masses. Three of them are mainly members of left-
handed doublets, one with zero mass and two with seesaw
masses of order Mlz/Mli. The fourth is mainly member
of a right-handed doublet, left-handed singlet, with a see-
saw mass of order Mli/M~.

Under the assumption that the neutrinos do not oscil-
late we can identify the real neutrino states as the mass
eigenstates (neutrino oscillations can be analyzed in the
context of our model, but it is a tougher matter because
it requires to identify simultaneously the known charged
lepton states, which in turn requires a consistent treat-
ment of the mass radiative corrections). We obtain at
the tree level m„. = 0 and m„„rn„MI /MIr

These results and the direct experimental upper lixnit

[8] m„„& 0.27 MeV imply M~ ) 10" GeV, which is
consistent with the experimental constraint [5] M~ ) 10
GeV. If instead of using the direct experimental limit for
m„„we use the more stringent cosxnological constraint
[9] m„„10 eV, we get MH 10 ~ GeV, a value just
allowed by the renormalization group equation analysis
[2]. Also the experimental lower limit of 10 GeV for the

mass of any exotic neutral lepton imposes, via the result
for the Nz' mass, the relation MR & M~/10 GeV& 10
GeV.

%hen the first order mass radiative corrections are in-
cluded we expect modification in our results of the order
of e /MH, where e 1 GeV is the order of the radiative
masses expected in our model (the radiative corrections
must produce xnasses for all the known charged particles
but the t quark). Then we should expect m„e /MH,
three or four orders of magnitude smaller than the other
two neutrino masses.

Looking at our results we realize immediately that
the prejudice of using M~ ~ 10 ' GeV in order to
get the seesaw mechanism for the neutrinos is not well
founded in the context of our model, because for the
hierarchy M~ && M~ && ML, it is the intermediate
mass scale M~ that is responsible for the seesaw mecha-
nism. If we repeat the calculations for the mass hierarchy
M~ && M~ && Ml„ then we get results very similar to
the previous ones with the roles of MH and M~ inter-
changed; that is, it is now the intermediate mass scale
M~ 10 GeV that is responsible for the seesaw mecha-
nism. The fact is that with three mass scales, and due to
the particular form of the matrix Mq„„ the two larger
mass scales produce seesaw mechanisms, but obviously,
the seesaw mechanism associated with the lower mass
scale dominates.
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