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0(a, ) calculation of the decays b =s+y and b =s+g
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We present an exact a, calculation of the Wilson coeScients associated with the dipole moment

operators. We also give an estimate of the branching ratio for b usy. We Snd that higher dimensional

effects are under control within 9% for B(busy) =(4.3+0.37)X10 4.

PACS number(s}: 12.38.Bx, 11.10.Jj, 13.40.Hq

In spite of great sucesses of the standard model (SM)
there are theoretical issues which demand further ex-
planations, one of which pertains to the internal cancella-
tion of various flavor-changing neutral current ampli-
tudes, an understanding of which presumably has bearing
on the origin of masses and CP violation. Thus, various
theoretical constructs have been advanced and must be
ipso facto constrained by these processes. It is also clear
that they are very sensitive to the vagaries of masses
present, enhanced by QCD. Impetus is further provided
by the fact that rare processes such as b ~s+y, s+g are
not just experimentally bounded but observed or on the
verge of being observed. Thus, it has become an earnest
enterprise to ascertain accurately the theoretical esti-
mates of their rates, particularly from SM even as "back-
grounds" for future extensions. While the methodology
needs to be quite technical, the outcomes have wide im-
plications.

In an article [1] by us recently, we presented a SM
leading logarithmic analysis of the heavy particle effects
on the process busy, which incorporates a complete
operator mixing. Among the results, we find that our
mixing matrix differs in some elements from the work by
Misiak [2]. Also, without inclusion of their mixing with
evanescent operators, [3] which lead to extra contribu-
tions {in unit ofg, /8' )

~ro„o„=1 /3 ~7'o„o„= 8/3-
kayo„o„= —1/2, hyo„o„4

the results by Ciuchini et al. [4] coincide with ours. (We
thank Misiak for correspondence on this. ) Whether one
should or should not introduce these evanescent opera-
tors is far from being resolved. In our opinion, one does
not need them to derive the effective theory in our ap-
proach. In this article, the results of Ref. [1]in the lead-
ing logarithmic approximation (LLA} will be used when
needed. It may be remarked that the difFerence is not nu-
merically significant for the processes under considera-
tion. For earlier work, see [5,6].

More importantly, by choosing two different limits for
extrapolation, m, =m~ and m, &&m~, we estimated the
effects due to higher orders in mt'/m, to be about 20/o.
In view of recent interest in the experimental branching

L,tt= gC;0;, (2)

where C; are the Wilson coeScients and 0; are sets of lo-
cal operators, made of light fields.

Of particular interest in the present order a a, calcu-
lation are the coefBcients C0 and C0, with the accom-
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panying operators

05, =ig,sG„„cr„„(m,PL +m&Ptt }b/2, (3)

and 05& =05, (g, G„„~ ,'eF„„). ——
Before we go on further, let us define

ratio [7] for B,~E'+ y and an impending value for the
inclusive rate B,~X,+y, together with the sensitivity of
these processes as a short distance probe, an uncertainty
in short distance analysis of 20% is hardly satisfactory or
even acceptable. The purpose of this publication is to
provide some remedy.

One can trace the uncertainty to the fact that
mtrlm, =25o//o for m, =150 GeV. It strongly suggests
that one should calculate the order a, diagrams exactly,
wherever there are internal top and/or W-boson propaga-
tors. This is what we have done.

In all two-loop diagrams (and their attendant counter-
terms) which. contribute to this calculation, we keep all
orders in x =m, /mt' but discard terms proportional to
O(mt, /m, n ) or O(m, /m, n ) (we have factored out the
Fermi weak-coupling constant). The amount of algebra
is highly nontrivial and is aided by SCHOONSCHIP [8].

Given a diagram in which there are top and/or W —
P

internal lines, there are various sequences of operations
one can follow to isolate its dependence on the heavy
masses [9]. In any case, the underlying method is based
on partitioning of the diagrams into heavy parts and
operator inserted matrix elements. For the present situa-
tion, we treat the top and/or the W —P as being corre-
spondingly heavy, relative to other masses and external
momenta. A heavy part always contains at least either a
top or a W —P or both internal lines. Vertices made of
light particles and momenta acting on them and Wilson
coefficients which contain all dependence of heavy masses
are organized within this formalism. In this way, we ob-
tain the effective Lagrangian
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Co:—16&Ca /G, (i = 1,2), and 6,=2~26+ V;, V,&,

where Gz is the Fermi weak-coupling constant and Vs
are the Cabibbo-Kobayashi-Maskawa matrix elements.
We expand Co in power series in a, :

Si
I

C(tt~) (4)

The ao results will be given in Eq. (7}. Here we first re-
port the exact a, results (in the R ' scheme to be defined}

(&)Co4a (x —1)
5293 1

576 (x —1)'
21 989 1

3456 (» —])z
1817 1 247
1728 (x —1) 10368

2m~
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1
+Sp 1 —— 11 1 + 139 1 191 1 + 31 1 2

4 (» —1)~ 12 (» —1)3 12 (» —1)~ 4 x —1 3

713 1

648 54 8

where the last terms in large square brackets in each of
the two equations above are the contributions due to u
and c quarks. Sp stands for Spence function. Equations
(5) are to be contrasted with the asymptotic results
(m, »ma, )

and

C (1)C o (asym)m/4a=
611

51

35
ln

288

+(1/54)ln(ms, /p ),
72

m t

95+ H+ 171+ + ln

+(1/54)ln(ms /p ),

Co" (asym)n/4a =—.
(6)

obtained by discarding all 0(ma, /m, ). One can use Eqs.
(5) to check some of the mixing matrix elements of the re-
normalization group equations (RGE's). Unfortunately,
po o, go o, po o, and yo o do not enter to this

I

order. Their determination has to come fram three loop
diagrams. In our opinion, direct Feynman diagram com-
putation of Green's functions for processes to extract
mixing matrix elements should be the definitive pro-
cedure.

We plot exact a, result Eqs. (5) in Fig. 1, together with
the asymptotic result Eq. (6) for Co ' m'/4a, . For x =4,
the discrepancy is in fact about 50%%uo. It is interesting ta
note that the exact Co" is quite flat between x =1 to
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x =10.The dotted line is the a, exact result, also known
as the Inami-l. im functions f10):

(o)
—2x —3x +6x —x —6x lnxC(0)

51 4(1—x}
7x —12x —3x +8x +(12x —18x }lnx2 3 4 2 3 (7)

52 4(1—x)
We see that, below x=6.9, the second order QCD
correction is bigger than the lowest-order result. This
has been known for the approximate results for some
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C"'+'"( ct)+C"""""(» )052 052 mw (8b)

Chisher order(m m } and Chisher Order(m
052 t W 052 w

are the remaining LLA sums with the boundary condi-
tions set at mt=mw and m, »mw, respectively. One
could, in principle, use Eq. (7) for the initial conditions
and perform a LLA sum. The analytical result in this ap-
proximation would be valid if one matches Eq. (7) to the
C; at the scale p= m ~, or at the scale lu= m„or at any
other scale p, =O(m~). However, the numerical results
are very sensitive to the choice of the scale in the bound-

—1.68

-- 1.47

time and in fact is an impetus for looking into rare decays
of this genre.

Note that if one uses Eqs. (7) as (a part of} the bound-
ary conditions, then (5) are the a, solution of RGE for all
values of x, insofar as the overall coefScients to lnp are
concerned. We would like to stress that to renormalize
the heavy graphs in the full theory, SM with all the
quarks, we are using the R scheme. For the effective
theory, we use the modified minimal subtraction (MS)
scheme to renormalize the local operators. We also re-
peat that we do not introduce any evanescent operators
in this analysis. If instead the MS scheme is used
throughout, the exact result to order a, is obtained if one
makes the replacement m, ~m, [1—a2/min(m, /)u )] in
(7); this replacement is just a finite renormalization to go
from the R' scheme to the MS scheme. Note that
Co '+"'(p, =mh„„„)will give the initial conditions if one

is to perform a next to leading logarithm sum. For this,
one has to compute the anomalous dimension matrix to
order a„which requires another order of technical devel-
opment.

We shall make the assumption that after a, correc-
tions, it is safe to add the leading logarithmic terms to
complete the leading QCD sum. In other words, we as-
sume that the higher-order QCD corrections can be ap-
proximated by LLA either in the limit m~/m, (& 1 or in
the limit mis/m, =1. This assumption can be tested as
in our previous publication. For CO, there entail two
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difFerent extrapolations:
+ (exact)+Chigher order(m (8a)OS2 OS2 t mw

ary conditions, and one loses control over the uncertain-
ties due to a particular choice of the scale. These extra-
polations we propose are used to estimate these errors:
we first perform two LLA sums in the limits m~=m,
and m, »mw, for which boundary conditions are unam-
biguous. We then assume that for the physical case
m, -140 GeV the corresponding numerical values for the
C,- are somewhere in between the values of the C; ob-
tained in the two limits. Put differently, Eqs. (8a)—(8b)
are intended as follows: We want to improve the calcula-
tion of the C "' in Eq. (4) by taking into account some of
the higher m~/m, effects, which are not given by LLA.
A next to LLA sum to all orders in a, is extremely
difFicult and practically a long wait. We will nevertheless
assume that including all the m~/m, effects to order a,
gives a good approximation, together with the C "' for
n & 1, calculated in LLA.

For the physical process b~s+y, some four quark
operators also contribute, resulting in an efFective cou-
pling [21]

Co~ =Co +(1/8n )Co +(3/Sir )Co . (9)

Also, to remove the dependence on
~ 6,~, which is not ac-

curately known experimentally, we normalize the b usy
partial width to the well established semileptonic b ~cev
partial width, and use the relation [11] ~ V;, Vis ~

=
~
Vcb ~.

This ratio is given as

I'(b sy } a@ED

I'(b~cev} 6ng(m, /mh)

2a, (mb )
1— f(m, /mh)

(10)

where g(m, /mb ) =0.45 and f(m, /mh ) =2.4 correspond
to the phase space factor and the one-loop QCD correc-
tions to the semileptonic decay, respectively.

In Fig. 2, we have plotted B(busy ) as a function of

I I I I I I I I I I I I

BR(b m s g)F10
-5.70

-4.88

-4.05
(I)Co (exact) :— 1.26

Co (exact)
—1.05

--3.23

(I)
—0.84

Co (asym)
1.5

240
2 25 3

( m, /m„)
I I I I I I I I I

I I I \I e \/M

1.5 2 2.5 3
(m/m )

FIG. 1. C0 (mb) dependence on m, to order a, with
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mb=4. 8 GeV, m~=81 GeV, a, (mb)=0. 19. See text for ex-
planation of various curves.

FIG. 2. Branching ratio for busy as a function of m, with
@CD corrections. The solid line represents the interpolation
given by Eq. (8a); the dashed line represents the interpolation
given by Eq. (8b); the dotted line represents the values of the
branching ratio for m, =140 GeV. We used mb=4. 8 GeV,
m~=81 GeV, a, (mb) =0.19.
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B(b ~cev) =0.108 . (12)

The vertical dotted line to guide the eyes intersects these
curves at m, = 140 GeV and gives, respectively,

B(b ~sy ) =4.66X 10

B(b —+sy ) =3.93 X 10
(13)

From Eq. (13},we obtain the mean value (this is our esti-
mate}

B(busy )=(4.3+0.37) X 10 (14)

This is to be compared with an upper limit 5.4X10
given recently by the CLEO Collaboration [7].

The uncertainty due to subleading logarithmic and
higher dimensional efFects is about 9%, which is a big im-

provement and more reliable over what we gave before,
where m, /mtt, efFects at a,'" were not treated. This 9%
is only an educated guess of the uncertainties due to short
distance estimates of ~C, ~

. Those due to long distance

physics have been ignored. Also, Eq. (10) as a good ap-
proximation can be but is not questioned.

We now give some technical details. We use the gen-

m, . The solid and dashed curves are obtained with the
aid of the interpolation equations in Eq. (8), together with

B(bu sy) =[I'(bu sy)/I (b ~cev)]B(b ~cev), (1 1)

eral linear covariant gauges ( —I/2a)(B„G„) for the
gluons. The complete cancellation of a for Co and Co
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is a stringent confirmation on the correctness of the alge-
bra. The gauge fixing for 8' fields is —C+C with
C+ = t}—„W„++ma P++ie A„W„+. For oversubtrac-
tons and renorrnalization, we use the R * scheme. Thus,
let I be a one light particle irreducible (1LPI) diagram,
which contains the heavy particles, and let y represent a
1LPI graph or subgraph (yCI ) with external generic
momentum p. We define

~~=pole part of p, E'=ll 4,
r' '=y(p=o)+p y(J =0)a

Qp
Qm+ + p y(J =o}

m! m

The R * renormalization procedure is defined as

( Yheavy} ( y~ )yheavy~ (ylight) (1 'ry)yhgh& ~

where m is so chosen that the neglected terms are
genuinely of 0(1/m h„„„).It is important to repeat that
the results of Eqs. (5) and (6) are given in the renormal-
ized top mass under the R ' scheme, where P =0.

Except for trivial factorizable cases, all two loop in-

tegrals we need are related to [12]

2 i i
(m~ m2 mz) dnkdiq

1

+m, k+q +m q +m

+ [1—2y z —21n( m m i }]——— n.4
—2 1 2 1 1

(n —4)' n —4 ~ ' 2 12

+ [yz —yz+(1 —2yE}ln(hami) —ln (hami )+f(a =mz/m i, b =m3/m i)],
where

2 1 2 2 1 2V2 1+—ln +—ln +—ln
y& 4 y, 4 x, 4 y,

This work was partially supported by the U.S. Department of Energy. Y.-P.Y. would like to thank members of the
Particle Theory Group at the Institute of Physics, Academia Sinica, for hospitality.

f(a, b) =—lna lnb+1 a+& —1 V2
Sp +Sp

1 &2 m——ln +
2 V' x, 4 y2 6

x, z= —,'(1 —a+b+t/), y, 2= —,'(1+a b+&), and &—=+(1—a+b) 4b. —
Assuming a, b » 1 (i.e., we take m 2

=m„m 3
=m n, »m i

=mh, ), we expand f ( a, b ) in series of mh „which must be

retained to proper orders in intermediate steps. Details of this work are to be published [1].
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