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We examine the spectrum of supersymmetric particles predicted by grand unified theoretical
(GUT) models where the electroweak symmetry breaking is accomplished radiatively. We evolve the
soft-supersymmetry-breaking parameters according to the renormalization group equations (RGE).
The minimization of the Higgs potential is conveniently described by means of tadpole diagrams.
We present complete one-loop expressions for these minimization conditions, including contributions
from the matter and the gauge sectors. We concentrate on the low tanP fixed point region (that
provides a natural explanation of a large top quark mass) for which we find solutions to the RGE
satisfying both experimental bounds and fine-tuning criteria. We also find that the constraint from
the consideration of the lightest supersymmetric particle as the dark matter of the Universe is
accommodated in much of parameter space where the lightest neutralino is predominantly gaugino.
The supersymmetric mass spectrum displays correlations that are model independent over much of
the GUT parameter space.

PACS number(s): 12.60.Jv, 11.30.Pb, 12.15.Ff, 14.80.Ly

I. INTRODUCTION

Why should one be interested in supersymmetry? Un-
til recently, the reasons have been principally theoret-
ical. Supersymmetry (SUSY) is a beautiful extension
of the Poincare symmetry with new dimensions of space
and time that explain the existence of fermions [1]. It
solves the hierarchy problem of widely separated elec-
troweak and grand unified scales through cancellations
among diagrams that give quadratically divergent Higgs
boson mass corrections. Moreover supersymmetry may
be a necessary consequence of string theory.

The recent upswing in interest in supersymmetry de-
rives from high precision measurements of standard
model (SM) parameters at the CERN e+e collider LEP.
Renormalization group evolution with minimal SM par-
ticle content of the SU(3), SU(2), and U(1) couplings
from Q = M&2 do not converge at a single high scale, in
contradiction with the prediction of the SU(5) grand uni-
fied theory (GUT). However, with the xninimal particle
content of supersymmetry included, the evolution is in
excellent agreement with LEP data and suggests a grand
unified scale at M~ 2 x 10 GeV and eH'ective SUSY
mass scale within the range M& & MsiisY & 1 TeV [2].
Encouraged by this success, the evolution of Yukawa cou-
plings is also being vigorously pursued, with Yukawa uni-
fication constraints such as Ag

——A at the GUT scale
[3]. While the unification of gauge and Yukawa cou-
plings is an extremely attractive feature, the existence
of supersymmetry will only be confirmed when new par-
ticle states are seen directly and the associated R-parity
conservation or violation is tested in the production and
decays of these supersymmetric particles.

The idea of a radiative breaking of the electroweak
symmetry is an old but still popular one [4—14]. It is
very attractive to explain the breaking of the electroweak
symmetry through large logarithms between the Planck
scale and the weak scale [5]. For the radiative corrections
to be strong enough to drive a Higgs boson mass-squared

parameter negative (thus breaking the electroweak sym-
metry), a Yukawa coupling of that Higgs boson must be
large at the GUT scale. With the top quark mass large
(mt ) 100 GeV), the SUSY GUT unification can natu-
rally explain the origin of the electroweak scale. A heavy
top is required to drive one of the soft-supersymmetry
breaking parameters (a Higgs doublet mass) negative.
Today we know the top quark mass is large and that
the top has a large Yukawa coupling. There is a relation-
ship between the electroweak scale and the top quark
Yukawa coupling through the RGE's; consequently the
radiative symmetry breaking mechanism has important
consequences for the supersymmetric particle spectrum.
Indeed a large top Yukawa coupling is the motivation for
the fixed point solutions [15] advocated recently in the
context of GUT theories [16—19]. These solutions predict
a linear relationship between mt and sin P, given further
constraints on the SUSY particle spectrum.

There are at least two other motivations for supersym-
metry. In the context of SUSY GUT's, the grand unifi-
cation scale is raised suKciently high to suppress proton
decay to experimentally acceptable levels, when an addi-
tional R-parity symmetry is invoked. R-parity symmetry
has an important consequence, providing the second ad-
ditional motivation for supersymmetry —it implies that
the lightest supersymmetric particle (LSP) is stable. It
is now generally believed that baryonic matter is insuf-
ficient to make up the total gravitationally interacting
matter of the Universe. The LSP provides a natural can-
didate for the (cold) dark matter of the Universe, since
the LSP is forbidden to decay into baryons by R-parity
conservation.

II. SOFT-SUPERSYMMETRY
BREAKING PARAMETERS

Retaining only the dominant Yukawa couplings A~, Ag,
and A, the superpotential [20] is given in terms of the
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superfields by symmetric tensor in two dimensions with e12 ——1. The
Yukawa couplings are defined by

A, Q*H't +X Q*H&b

+A L'H~~7'+ P,H1H2~

+2m,
vsinP '

+2m'b— 7vcosP
+2m.
vcosP '

(2)

where Q = (t, b), L = (7, v ), and Hi —(Kio, Hi ) and
Hi = (H2+, H2) and e;~ with i, j = 1, 2 is the anti-

where tanP = v2/vi is the ratio of the vacuuin expec-
tation values of H2 and H1. The p terxn in the super-
potential contributes to the Higgs potential which at the
tree level is

&o ——( &, + p')IHil'+ ( '„,+ p, ')IH, I'+ms2(. ;;H,*H,'+H.c.)
+s(a'+g") IHil'- IH. I' + —,'&'IH; H2I',

where m&, m&, and m3 are soft-supersymmetry-
breaking parameters. We shall define as usual the soft
Higgs mass parameters

2 2 2
m1 =m~ +P

2 2 2
m2 =mH +P,

(4a)

(4b)

Of the 8 degrees of &eedom in the two Higgs doublets,
three (G+, Go) are absorbed to give the W+ and Z
masses, leaving five physical Higgs bosons: the charged
Higgs bosons H+, the CP-even Higgs bosons h and H,
and the CP-odd Higgs boson A.

There are soft-supersymmetry-breaking gaugino mass
terms

+A A L'K~~7'+ IJBHiH~~) (6)

and soft squark and slepton mass terms

Mq [tLtL + bLbL] + MUtRtR + MDbRbR

+ML [7L rL + +Li L] + Mg7R7R ~ (7)

2M1BB+ -M2R' W + 2M3g g

for the b-ino B, the W-inos W (a = 1, 2, 3), and the
gluinos g (b = 1, . . . , 8). Corresponding to each superpo-
tential coupling there is a soft-supersymmetry breaking
trilinear coupling

e,~ (A, A,Q'H2t' + AsAsQ'Hi ~b'

8m' —~ M,' ~ = ——g,'M,' ~ 1 &+ A,'X«2 ~,
Q~ i

(8)

where Xq ——Mq + M~„+M&, + A~ and t = lnQ/M~.
The A, term is the means by which the mass squares are
driven to lower values as the scale decreases. Because the
Higgs field is uncolored, the group theory factors allow

M~ to be driven negative with M~„and M remaining
positive, thus breaking only the electroweak gauge group.

According to conventional wisdom the squarks and
sleptons have a universal soft-supersymmetry breaking
mass m& at the unification scale. Then any deviations
&om degeneracy at the SUSY scale are suppressed by
the associated quark or lepton mass, which is small ex-
cept for the top squarks. The Savor-changing neutral
currents (FCNC's) are thereby suppressed to an accept-
able level. The universal boundary condition applies in
minimal supergravity models with the canonical kinetic
energy. Recently there has been some interest in relaxing
this condition [22—24].

Analytical expressions can be obtained for the squark
and slepton mass parameters when the corresponding
Yukawa couplings are negligible (i.e., for the first two
generations). For a universal scalar mass ms and gaug-
ino mass m, at the GUT scale (this condition need not

apply in general in string theories), one has the relation

3

m&
——ms+ ) f;m& + (Ts f —eysi Her)Mzcos2P,

The RGE for the soft-supersyxnmetry breaking param-
eters are given in the Appendix, and the RGE for the
gauge and Yukawa couplings are summarized in Ref. [16].

An interesting aspect of the supergravity breaking
mechanism is the origin of the 3 —2 —1 supersymmetry
at low scales. Why is the electroweak gauge group the
one that is broken, and not /CD? Consider the renor-
xnalization group equations &om the Appendix for the
scalar states H2, tR, and QL retaining only the /CD
gauge coupling g3 and the top Yulmwa coupling Aq terms
[21]:

c;(f)
b,

1

(1 —~b;t)' (10)

Here Ts I is the SU(2) quantum number and ey is the
electroxnagnetic charge of the sfermion. The 6; are given
in the Appendix and c;(f) is ~ (0) for fundamental

for the squark and slepton masses where the f; are (posi-
tive) constants that depend on the evolution of the gauge
couplings:
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(singlet) representations of SU(N) and io Y for U(1)I .
The squark mass spectrum of the third generation is more
complicated for two reasons: (1) the efFects of the third
generation Yukawa couplings need not be negligible, and
(2) there can be substantial mixing between the left and
right top squark fields (and left and right bottom squark
fields for large tang) so that they are not the mass eigen-
states.

The gaugino evolution is particularly simple by virtue
of their simple renormalization group equations; at one-
loop order the gaugino masses parameters Mq, M2, and
M3 scale in exactly the same proportions as do the gauge
couplings so that

mg —M3(mt) = M2(mt) = Mi(mt)
3 t Q3 mg

A2 mt ng mg

III. ONE-LOOP CONTRIBUTIONS:
TADPOLE METHOD

m3 =BP, .2
(14)

When the neutral components of the Higgs doublets re-
ceive vacuum expectation values vq and v2, the potential
develops tadpoles. Inserting [26]

f ~2(@I+Vi + i)t)I) t

)
(15a)

Although the tree-level Higgs potential is not reliable
for the purpose of analyzing radiative breaking of the
electroweak symmetry [6], it provides a convenient start-
ing point for our discussion. Recall the tree-level poten-
tial Eq. (3). The parameter m32 is related to B and p,

by

Figure 1 shows a typical evolution of the soft-
supersymmetry breaking parameters. The characteristic
behavior exhibited by the mass parameters are typical of
renormalization group equation evolution. The colored
particles are generally driven heavier at low Q by the
large strong gauge coupling. The Higgs boson mass pa-
rameter m22is usually driven negative (at least for tan P
not too small), giving the electroweak symmetry break-
ing. Assumed universal boundary conditions at the GUT
scale yields correlations between the masses in the super-
symmetric spectrum.

Fixed-point solutions to the RGE predict that the scale
of the top-quark mass is naturally large in SUSY-GUT
models but depends on tan P. The prediction is that [16]

( ~2(A + v2+ t42) ) ' (15b)

into Eq. (3) one can identify

Vt)Ldpole =

tlat'I

+ t24 2 ) (16)

where ti and t2 are (tree-level) tadpoles:

ti —(m~, + p')vi + Bpv2+ s(g'+ g' )vi(v,' —v2),

(17a)

mt
' = (200 GeV) sin P .

mt
' = mt(mt) 1+—ns(mt)

3%
(13)

Note that the propagator-pole mass m,
' is related to

this running mass mt(mt) by [25]

&2 ——(m&, + lLt )v2+ Bpvi —s(g + g' )v2(vi —v2) .

(17b)

The minimum of the Higgs potential is determined by
setting the first derivatives of the fields to zero:

Evolution of sparticle masses

BVp

Bg;
)9Vtedpoie

8$,

700-
Therefore the tadpoles tq and t2 must vanish at the min-
imum. With our normalization of @I and $2 [i.e., includ-
ing the factor of ~ in Eqs. (15a) and (15b)], the W and
Z masses are

500

U 400-

6 300-

200

gm2+ p2

m I/2

2 1 2Mw —4g (vi + v2) )

Mz = —,'(g'+ g")(vi + v')

(iga)

(19b)
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0
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Mi
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)
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which implies vi2+ v22 = v = (246 GeV) . A particularly
useful form of the minimization conditions is obtained by
forming the linear combinations Tq and T2 of the tadpoles
given by

FIG. 1. An example of the running of the soft-
supersymmetry-breaking parameters for n, (Mz) = 0.120,
mt(mt) = 150 GeV, tan p = 10, mi = 250 GeV, mo ——100
GeV, and A = 0, where the superscript G denotes the GUT
scale.

t'Ti& fcosP —sinP'& t'ti&
)I

—
I(slnp cosp ) IEt2) (20)

where cosP = vi jv and sinP = v2/v. From Eqs. (17a)
and (17b) we have
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(m& + p )vi —(mJI + p )v2 + g (g + g )v (vi —V2)

(m&, + p, ) cos p —(mII, + p, ) sin p+ I~(g + g' )v cos2p

T2 —— (m&, + m&, + 2@ )viv2+ Bpv

z(m&, + m&, + 2P ) sin 2P + BP

(21a)

(21b)

We see that the rotation (20) through the angle P conve-
niently places all of the dependence on gauge couplings
(D terms) in Ti. Setting Ti ——0 and dividing by v cos 2P
yields the familiar tree-level condition

1 m&, —m&, tan p
2 tanz P —1

(22)

Setting T2 ——0 and dividing by v the other tree-level
condition

Vj ——Vo + AVj,

where Vo is the tree-level Higgs potential and

1 ( At 3&
AVi —— Str JH

~

ln

(24)

is the one-loop contribution given in the dimensional
reduction (DR) renormalization scheme [27]. The su-
pertrace is defined as Strf(M ) = P,. C;(—1) "(2s; +
1)f (mz) where C; is the color degrees of freedom and s;
is the spin of the i~" particle. To determine the minimum
one must set the first derivatives of the efFective potential
to zero

BVj 8VO 1 8M f' JH

{26)

We note that f(m2) usually involves the mass eigenstates
of the theory; one therefore ought to use the coupling of
the Higgs fields to the mass eigenstates in tadpole calcu-
lations in order to facilitate comparisons between mini-
mization techniques. Evaluated at the minimum of v1,
tadpole contributions involve the coupling BM /8$ and
the usual integration factor ss, Ate (tn &, —1);setting
tadpole contributions to zero is therefore equivalent to
minimizing the potential. More generally, the nth deriva-
tives of the effective potential are related to the diagrams
(at zero external momentuggt) with n external lines; the
minimization conditions at one-loop are obtained by cal-
culating diagrams with only one external line —the tad-

Bp= 2i—(m~, +m~, +2@ ) sin2P,

is obtained. Notice that the signs of B and p, are not
determined by the minimization conditions (only the rel-
ative sign is known), giving rise to two distinct cases.

We can extend the above technique to include one-loop
contributions to the Higgs potential, deriving equations
analogous to (22) and (23) by setting to zero linear com-
binations of tadpoles rotated through the angle P. The
one-loop effective potential is given by

poles [28, 29].
In order to maintain the linear combinations in (20)

for the tree level relations, we calculate with appropri-
ate combinations of Higgs fields in the external Higgs
line in the tadpole diagrams. The Feygtman rules usually
express these external Higgs lines as the physical Higgs
bosons H or h, which are obtained from the Higgs fields

pit g2 by a rotation by an angle a (in the opposite direc-
tion to the rotation P performed above):

&II)t & cosa sinai
g

h
p (—siiia cosa) (27)

As with the tree-level tadpoles, we need to rotate the
one-loop contributions by the same angle P in order to
express the minimization conditions most simply. We
therefore define the desired linear combinations g, »
of Higgs Eelds:

( g ) (cosp —sinp& (@il
&») &" p '-p) «I)

/cos(p+ a) —sin(p+ a) ) (Hlt
(sin(p+ a) cos(p+ a) ) ~( h

y
(28)

L&
I
I
I
I
I
I

FIG. 2. The one-loop tadpole diagram. The loop consists
of matter and gauge-Higgs contributions.

To include the one-loop corrections, we calculate the tad-
pole diagrams in Fig. 2, and add the suitably regularized
result to the tree-level results.

This tadpole technique is not new, and is equivalent
to procedures followed previously. However it provides
an alternate way of organizing the calculation and of un-
derstanding why the contributions have their particular
form. Moreover, the analytical expressions obtained with
the tadpole technique are often very useful, particularly
in certain regions of parameter space that are difficult to
explore by simply minimizing the potential numerically
(e.g. , the low-tan P fixed-point region).

The method of determining the minimization condi-
tions at one-loop by calculating tadpoles is especially
convenient for including the corrections from the gauge
and Higgs sectors. The loop integrals are standard, and
the only work is to determine the coupling between the
particle in the loop and the Higgs bosons g and» in
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rni(pp)rn2(pp) —&'y'(pp) = 0 . (29)

For Q & pp, the VEV's vi and v2 vanish. For Q & pp
the VEV's become nonzero. In the supergravity theo-
ries under consideration mH becomes negative, allowing
Eq. (29) to be satisfied. Figure 3 describes the potential
in the regions of interest [30].

At some lower scale Qp & pp, the Higgs potential be-
comes unbounded from below. The scale Qp at which
this occurs is determined by the condition

Eq. (28). This approach is easier than including the field
dependent masses in the formal expression in Eq. (25)
and then numerically finding the potential minimum. On
the other hand, calculating tadpoles alone determines
only the first derivatives of the one-loop Higgs potential,
and does not yield by itself the Higgs potential away &om
the minimum. Fortunately, the minimization conditions
are all one needs for many analyses.

It is crucial to include the one-loop corrections in the
effective potential in determining the vacuum expecta-
tion values (VEV's). As shown by Gamberini, Ridolfi,
and Zwirner [6], the tree-level Higgs VEV's vi and v2 are
very sensitive to the scale at which the renormalization
group equations are evaluated. Thus it is necessary to
determine the proper scale at which there are no large
logarithms so that the tree-level results are reliable. As
is well known, there is a simple hierarchy of scales in
these theories. As the soft-supersymmetry breaking pa-
rameters are evolved down &om the high scale, the Higgs
potential evolves so that an asymmetric minimum devel-
ops at some scale yp. This scale is determined by the
condition

Tg+ ATg ——0,

T, +AT, =0.
(31a)

(31b)

evolve from zero at or above the scale p,o all the way to
infinity at the scale Qp, the VEV's are very sensitive to
the scale at which they are evaluated.

The solution to this conundrum was provided in
Ref. [6]. The inclusion of the one-loop contributions
to the Higgs potential stabilizes the VEV's with re-
spect to the scale Q at which the parameters (which
evolve according to renorinalization group equations) are
evaluated. The standard three cases considered are (i)
MsUsv & Qp & pp, (ii) Qp & Msusv & pp, and (lli)
Qp & pp & Msusv. In case (i) the scale Qp is de-
termined by dimensional transmutation in the sense of
Coleman and Weinberg [31]. It was initially realized that
the one-loop contributions were important in this case,
because the minimum of the Higgs potential is driven to
the fiat direction ("D-flat") at tan P = 1 [32), and it was
crucial to include the one-loop contribution to lift this
degeneracy. This yields a light Higgs boson at tree level

(exactly zero mass if tanP = 1), which is still accept-
able experimentally when the one-loop corrections to the
Higgs boson mass are included [26]. However the pre-
dicted SUSY mass spectrum for the case of dimensional
transmutation must be light and already experimentally
excluded [6]. Case (ii) has been the subject of much re-
cent work. Case (iii) is not of interest since electroweak
symmetry breaking does not occur.

To determine the minimum of the potential we include
the one-loop tadpole contributions

~i(Qp) + m2(Qo) —21&(Qp)&(Qp)I = o. (30)
The contributions ATi and AT2 are given in the Ap-
pendix.

This implies that in the tree-level potential the VEV s vi
and v2 must be driven off to infinity because the poten-
tial becomes unbounded from below. Because the VEV's

Q ) P p VEV'sW Q Pp VEVS 0

Pp )Q )Qp VEV's ok VEvs= ~

C

FIG. 3. (a) The VEV's vanish for Q ) pp. (b) For Q =
po, the VEV's become nonvanishing but small. (c) For some
scale q in the range Qo & Q & po the VEV's have the correct
magnitudes to give correct electroweak symmetry breaking.
(d) For Q & Qp the potential becomes unbounded from below.

IV. ABSENCE OF FINE-TUNING

a, Mz
z aa; (32)

The requirement that the supergravity model not be
fine-tuned has been recently applied to limit the region of
parameter space. This constraint requires that the scale
of supersymmetry breaking not be too high. Obtaining
reasonable criteria for declaring a particular theory un-
naturally fine-tuned remains a subject of debate.

The fine-tuning constraint becomes particularly re-
strictive in the small and large tan P regions. For small
tanP (near one), the Higgs potential has its minimum
near the D-Hat direction. This implies naturally large
VEV's. Then there must be a cancellation between the
two large terms on the right-hand side of Eq. (22) to ob-
tain the experimentally observed value for Mz. Hence for
tan P -+ 1, the supersymmetric Higgs boson mass param-
eter p must be tuned ever more precisely —the fine-tuning
problem. In this section we discuss the various attempts
to quantify this constraint.

The kinds of criteria advocated by other authors are
as follows.

Barbieri and Giudice [33] introduced a naturalness cri-
teria
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for various fundamental parameters a; = mo, m1 JLL
G

A, B to obtain an upper bound on the supersymmetric
particle masses. They required that 6 ( 10, i.e., no
cancellations greater than an order of magnitude.

Lopez et aL [9] define several fine-tuning coefficients:
e.g. ,

6Mz ~p
Mz

(33)

6Q, 6P;
(35)

They show that a reasonable upper bound on the simplest
coefficient c„implies an upper bound on p.

Arnowitt and Nath [7] require that mo ( 1 TeV, a
condition that is easily applied phenomenologically.

Ross and Roberts [8] and de Carlos and Casas [34]
consider the fine-tuning of Mz in terms of Aq.

6Mz~ 6A,
(34)M2 P2

where c is required to be less than some small number,
e.g. c & 10. Ross and Roberts, who work strictly with
the tree-level Higgs potential, argue that tan P 2, while
de Carlos and Casas argue that the one-loop corrections
to the Higgs potential ameliorate the fine-tuning.

Olechowski and Pokorski [10] look at a full set of
derivatives as in Eqs. (33) and (34):

where the Q~ are the electroweak scale parameters Aq, A,
v, tanP, M&, Mq, M&, and the P; are the GUT scale

find that small tanP tends to be more unnatural, and
moreover for large values of tanP, near where the top
and bottom quark couplings are equal, that the model
becomes rapidly more fine-tuned as tanP is increased.
These constraints are clearly quite involved. While they
test a panoply of fine-tuning relations, we feel they are
overly complex for such a qualitative and arbitrary notion
as naturalness. Therefore we abandon this notion in favor
of a more intuitive definition similar to Lopez et cl. [9].

Castano, Piard, and Ramond [11] choose a numerical
definition in which the number of iterations the computer
has to find a solution is limited. It is not obvious how
this algorithm compares quantitatively to those defined
above.

Recently Kane, Kolda, Roszkowski, and Wells [14] in-
troduced a parameter

f = )m, ~/Mz2, (36)

and required it to be less than 50.
Our physical definition of naturalness is simply

)p(Mz) ( ~y(mq) ~

( 500 GeV. A measure of the reason-
ableness of this definition is the eff'ect that small changes
in p, have on Mz. From the tree-level equation for M&
[see Eq. (22)] it is readily apparent that larger values of
~p~ become more unnatural. In Fig. 4 we plot the de-
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TABLE I. Values of ~c„~and )cn~ obtained at tree
and one-loop levels for the axed-point solution of Fig. 4.

A. General model [5]

m1
2

100 GeV (loop)
100 GeV (tree)
200 GeV (loop)
200 GeV (tree)

(y) o)
8.8
13.5
25.6
57.0

(y) 0)
8.2
10.9
27.0
46.8

(V&0)
7.3
13.5
20.3
57.0

(y & o)
5.2
6.3
16.9
27.6

The universal parameters at the GUT scale are mo,
A, mi, p, B . In the minimal supergravity model,2'
these five parameters describe the Higgsino and gaug-
ino sectors. The universality of the scalar masses at the
GUT scale provides for the suppression of dangerous fIa-
vor changing neutral currents involving the squarks of
the first two generations.

pendence of Mz on p and B for both the tree-level cal-
culation and the full one-loop contributions to the Higgs
potential. It can be seen that the one-loop contributions
reduce the fine-tuning to an extent. This comparison can
be related to the plots of the VEV's as a function of scale
Q as discussed in Ref. [34].

The plots in Fig. 4 correspond to a low-tanP fixed-
point solution [16—19]; in such cases the tree-level and
one-loop-level values turn out to be comparable for either
p, and B in the region defined by our naturalness criterion
(only the degree of fine-tuning changes). Consequently,
including the one-loop corrections in the Higgs potential
does not have a critical impact on the phenomenology.
This result does not extend to other regions of the mq-

tanP plane since there our criterion for naturalness im-

plies a larger allowed range of mo and mi in which the
one-loop contributions can change p and B significantly
(see Sec. VII).

One can consider quantitative fine-tuning criteria anal-
ogous to those considered above:

Mz
Mz

ra~= Cgy (37)
z

with, e.g. , ~c„(,~c~~ & 30, where the derivatives on the
left-hand side are obtained at the physical Z mass scale
and the derivatives on the right-hand side are at the GUT
scale (denoted by the G superscript). Since the ROE
equation for y, is proportional to y, the value of by/y, is
scale independent, but bB/8 depends on scale. Table I
gives the values of (c„jand (c~( determined for the tree-
level and one-loop curves for the low-tanP fixed point
solution of Fig. 4.

Note that inclusion of the full one-loop contribution
substantially reduces the fine-tuning constants ~c„~and
~c~~. Our entries for )c&) are somewhat larger than those
found in Ref. [9] because our model has a value of tan P
that is closer to tan P = l.

V. MODELS

The introduction of supersymmetry introduces many
new unknown parameters to the standard model. The
advantage of the popular supergravity models is that this
number of new parameters is reduced to five or less. The
models discussed here should only be viewed as examples
of possible supersymmetry breaking scenarios. Some fea-

tures may be more general, however.

B. No scale [32,35,38]

In no-scale models two of the five parameters are zero
at the unification scale,

mo =O A =0.
Thus the scalar fields are massless there, and mi is the
sole origin of supersymmetry breaking.

C. Strict no-scale [32,35]

The strict no-scale model is a version of the no-scale
model with

B =0,
at the unification scale.

(39)

D. Dilaton [22]

When the dilaton S receives a VEV, one encounters
a breaking of supersymmetry that is of a different na-
ture than that of the minimal supergravity scenarios de-
scribed above. The dilaton F-term scenario leads to sim-

ple boundary conditions for the soft-supersymmetry pa-
rameters:

G1
mo —— m1, A = —m1 .

This model therefore has only three parameters. When it
is required that y receive contributions from supergravity
only, the additional unification constraint

BG =2mo, (41)

is obtained. The dilaton version of supersymmetry break-
ing has been studied in the MSSM in Ref. [37] and for
the Hipped SU(5) model in Ref. [38].

E. String inspired

Supersymmetry breaking in strings is a nonperturba-
tive effect, since supersymmetry is preserved order by
order in perturbation theory. Very little is known about
nonperturbative effects in string theory. Recently the
authors of Ref. [23] have proposed to parametrize our
ignorance of the exact nature of the breakdown of su-

persymmetry. The dilaton breaking scenario above is a
specific case of more general scenario of supersymmetry
breaking in which the moduli fields T also receive a
VEV. If one restricts oneself to the case where only one
T field and the dilaton S get VEV's, then the amount
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of SUSY breaking that arises &oxn each sector can be
parametrized by the "Goldstino angle [23]" e. The dila-
ton breaking case corresponds to sin 8 = 1. The angle 8
is constrained by low-energy phenomenology since purely
dilaton breaking gives a»~reversal boundary condition
for the scalar masses, and the breaking of supersymme-
try when the moduli field gets a VEV will give rise to
FCNC's in the low-energy theory. According to Ref. [23]
the more general case, where substantial contributions
to supersymmetry breaking arise &om the moduli field
getting a VEV, is not ruled out.

The unification scale in the string-inspired model is
roughly an order of magnitude higher than the scale at
which the gauge couplings unify in the MSSM. Presum-
ably large threshold corrections due to nondegenerate
GUT particles could account for this discrepancy.

F. Large tanP scenario [39]

The correct electroweak syxnmetry breaking does not
occur for too large values of tan P. If tan P
mq(m|, )/mi, (mq), then the bottom quark Yukawa drives
the Higgs masses parameter m2i negative first (instead of
m2 f'rom the top quark Yukawa coupling). For tan P close
to this limit considerable fine-tuning is required to get the
correct electroweak scale. This situation is ameliorated
somewhat with the inclusion of the one-loop corrections
in the effective potential [10].

VI. AMBIDEXTROUS APPROACH TO
RGE INTEGRATION

Many RGE studies of the supersymmetric particle
spectrum have evolved from inputs at the GUT scale (the
top-down method [11])or from inputs at the electroweak
scale (the bottom-up approach [10]). Our approach (sim-
ilar to Ref. [9]) incorporates some boundary conditions
at both electroweak and GUT scales, which we call the
ambidextrous approach. We specify mq and tan P at the
electroweak scale (along with Mz and Miv) and mi,
mo, and A at the GUT scale. The soft supersyxnmetry
breaking parameters are evolved &om the GUT scale to
the electroweak scale and then p(Mz) and B(Mz) [or
p(mq) and B(mq)] are determined by the tadpole equa-
tions at one-loop order. Subsequently p and B can be
RGE evolved up to the GUT scale. This strategy is ef-
fective because the RGE's for the soft-supersymmetry
breaking parameters (see the Appendix) do not depend
on p and B. This xnethod has two powerful advantages:
First, any point in the mq —tanP plane can be read-
ily investigated in specific supergravity models since m&

and tan P are taken as inputs. Second, the tadpole equa-
tions Eqs. (A34a) and (A34b) are easy to solve in the
ambidextrous approach. The Tq equation can be solved
iteratively for p, (Mz), and then the Tz equation explic-
itly gives B(Mz). We stress the numerical simplicity: no
derivatives need be calculated and no functions need to
be numerically minimized.

We now describe our numerical approach in more de-
tail. Starting with our low-energy choices for mq, tanP,
(13 and mb (and using the experimentally determined

values for o.i, o.2, and m [40]) we integrate the MSSM
RGE's from mq to MG. with M& taken to be the scale
Q at which o.i(Q) = a2(Q). The slight dependence of
sin e~ on mq [18], not taken into account in our anal-
ysis, does not significantly change the low-energy results
for the SUSY mass spectra, although it can change the
value of MG, , by about 25%%uo for mq(mq) = 160 GeV. We
then specify mi, mo, and A, and integrate back down2'
to mq where we solve the tadpole equations for p(mq) and
B(mq). We can then integrate the RGEs back to M~ to
obtain p, and B at M&. A few remarks are pertinent:

(1) We integrate the two-loop MSSM RGE's for the
gauge and Yukawa couplings [16], but only the one-loop
MSSM RGE's (as given in the Appendix) for the other
supersymmetric paraxneters. We retain the important
two-loop gauge and Yukawa efFects (until recently only
the two-loop gaugino RGE's existed [41] and we desire
to be consistent with regard to the order for the soft-
supersymmetry breaking parameters).

(2) The GUT scale M& is defined as the scale where o.i
and a2 intersect. Typically the difference in aq and n,
couplings at M& is ( 2% for o., = 0.120. Threshold cor-
rections at the SUSY scale and unknown GUT threshold
contributions [42—45] can easily account for such a dif-
ference. Our philosophy is to represent the net effects
of both SUSY and GUT thresholds in terms of the in-

put value for o.,(Mz). The fact that n, is a measured
quantity provides an additional xnotivation for this ap-
proach which may be superior to including only low-

energy threshold corrections as has been done in some
analyses. We do not include threshold efFects on Yukawa
couplings [the value of mg(ms) is an input in our anal-
ysis] which we have studied elsewhere [16, 18]; the fixed
point solutions of interest here survive except in the case
of very large threshold effects.

The two-loop RGE formulas for soft-supersymmetry
breaking parameters have been derived very recently [46],
and changes of several percent in the one-loop results are
estimated. In the future more refined RGE studies of
the SUSY mass spectra can incorporate these two-loop
results along with the threshold effects, which are of the
same order in their contributions.

(3) We take the lower bound of our integration at mq

instead of Mz for several reasons. As shown by sev-
eral groups [6, 9—11,34], inclusion of the one-loop effects
into the effective potential makes electroweak symmetry
breaking roughly independent of scale; the scale Q = mq

is roughly the value for which the large logs cancel among
themselves in the one-loop corrections to the minimiza-
tion conditions. We choose m& as the boundary since
the RGE's (in particular for the gauge and Yukawa cou-
plings) are simple at scales above mq, and it is nontrivial
to extend thexn below mq. In addition, the choice of mq
facilitates comparison with previous work on gauge and
Yukawa unification and fixed points.

VII. RESULTS

We discuss the supersyxnmetric spectr»m and phe-
nomenology for several representative points in the mz-
tan P plane. For the most part we focus on the low-tan P
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fixed-point region since it is very attractive to explain
the large top quark mass as a fixed point phenomenon
[16—19]. Moreover, the supersymmetric spectrum in this
region is largely unexplored, probably due to fears of ex-
cessive fine-tuning. However, as addressed in Sec. IV,
these fears are not necessarily justified; there remains
substantial viable parameter space for which fine-tuning
does not pose great concern, particularly with the in-
clusion of the full one-loop corrections to the effective
potential [10].

The mb —tanP parameter space can be divided into
several distinct regions, as shown in Fig. 5.

We discuss the supersymmetric mass spectrum for each
of these regions. Unless otherwise specified, we take
A = 0, ns(Mz) = 0.120, and mb(mb) = 4.25 GeV.
The qualitative behavior in each region should not de-

pend greatly on these parameters.

A. Low-tanp Sxed point

As a typical example of the low-tanP fixed values re-
gion we consider the point mq(mt) = 160 GeV, tanP =
1.47 [for which At(M~) = 2.7]. We aim to determine
the GUT-scale parameter space for which this solution
can be obtained &om the minimization of the effective
potential. Using the tadpole method, we explore a grid
of m0 and mi values and apply both experimental and

naturalness bounds. For the lower experimental limits,
we adopt the values listed in Table II following Ref. [47].

Figure 6 shows the allowed parameter space for both
signs of p along with the most restrictive constraints in
each case. The contours of constant [y, [

are ellipses in the
mo —m i plane for

[ p[ )) Mz.
2

For small m0 the masses of 7i and yz are nearly degen-
erate The re.quirement m-, ) Mxo (so that the LSP is a
neutral particle) excludes a small wedge of the parameter
space at small m0 with m i & 100 GeV in the p ) 0 case.

2

Note that the p ( 0 case has more available parameter

TABLE II. Approximate experimental bounds that we

apply in Fig. 6.

Particle
Gluino

Squark, slepton
Chargino

Neutralino
Light Higgs boson

Experimental limit (GeV)
120
45
45
20
60

a) p, &Q

300

E
200-

lOt
II

IQ
CI

$00

Dark Matter

Excluded

Dark Matter

Allowed

100-
m~ 45

50

I

150 200
m

$/
[Gt:&]

1j2

rrl+ & fAy
l

I

250 300

space; it is also slightly more natural, as indicated kom
the fine-tuning constants given in Table I.

We have indicated the light scalar Higgs experimental
limit with a dashed line in Fig. 6; care must be taken
when enforcing this particular constraint since the al-
lowed parameter space is somewhat sensitive to the ex-
act m& limit. Moreover, the m& bound includes only the
one-loop quark-squark contributions given in [48], and it
is expected that inclusion of the chargino and neutralino
contributions can affect the mass of the light scalar Higgs
by a few GeV [49].

Overall we find substantial phenomenologically viable

60

50-

40

C$
30-

MSUSY ™t;IX (MZ) =0.12

(e)

b(mb =4.25 GeV

(c) 400

Q
300-

E

b) @&0
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Dark Matter
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I
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0
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tYl [6~v]

112
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m (m, }GeV

FIG. 5. The allowed mg(m~) —tsn P parameter space as-
suming Yukawa unificstion Ab(Ma) = A~(Mo) [16].
shaded area indicates the region for which mb(mb) = 4.25 +
0.15 GeV. Points representative of distinct regions within this
parameter space are denoted with labels (a)—(e).

FIG. 6. The allowed mo, m & region is shaded for the low-
2

tanP fixed point mt, (m~) = 160 GeV, tanP = 1.47 solution
with (a) p & 0 and (b) p ( 0. The experimental bounds in
Table II and the naturalness bound [p(mq)[ ( 500 GeV are
imposed with A = 0 GeV. A semiquantitative dark matter
constraint [given by Eq. (45)] is also shown.
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parameter space, especially for p ( 0. However the max-
imal values of the GUT parameters mo and mi are not

large (mo & 350 GeV, m i + 225 GeV) implying a rather
light low energy supersymmetric mass spectrum. Also
included in Fig. 6 is the semiquantitative dark matter
constraint of Drees and Nojiri [50] [see Eq. (45) below].
For this low-tanP fixed-point case it implies that mo
250 GeV, though this approximate bound ought not to
be taken strictly.

We now investigate the supersymmetric particle mass
spectra dependence on mo and mi independently for
this low-tanP fixed-point solution. Figure 7 illustrates
the dependence of the supersymmetric spectrum on ma
in the mo ——0 limit. For the squarks and sleptons we
plot the lightest mass eigenstates; in addition we plot

the heaviest top squark m~, for reference. We label the
chargino and neutralino masses such that M + & M ~

X$ X2
and Mxo ( Mxo ( Mxo & Mxo. For some of the m,Xl X2 X3 X4

parameter space (with y, ) 0), 7 is the LSP, a scenario
that is unlikely to be cosmologically viable. In order that

be the LSP, mo ) 20 —30 GeV is necessary here.
Figure 8 shows all the squark and slepton masses for

the same low-tan P fixed-point solution with p ( 0. Note
that the squarks of the erst two generations can be heav-
ier than those of the third; the up and charm squarks are
degenerate as are the down and strange squarks. The
slepton masses are approximately generation indepen-
dent in this case, though this need not be true in general
(e.g. , see Table III below).

Figure 9 illustrates the dependence of the supersym-

{a)

U 300

200

0

b,
!!!II!!!!S!I!!!1SK

Illiii~—

I

300

0

0

300

FIG. 7. The low-tan P
fixed-point solutions for (a) p &
0 and (b) p & 0 with mo
0 GeV and A = 0. The
experimentally excluded region
includes all experimental con-
straints except for the bound
on mg, since it is sensitive to
chargino and neutralino contri-
butions [49].

O 300

E

300

0
0 50

a I I ~ —~4. - ~ -s. .—.

100 150 200 250 300

mlg2 [G V]

Ã~8P".::i(:"'-"'-'g:--.A.;=".-'

0
0 50 100 150 200 250 300

ml(2 [GeV]



4918 V. BARGER, M. S. BERGER, AND P. OHMANN

limiting the allowed mo and mi region. To summarize,
2

the medium-tan P fixed point region allows larger values
of mo and mi &om our naturalness constraint while the
experimental restrictions on this parameter space do not
change much from the low-tan P case.

Q 300-

200-

0
0

I I I I I

50 100 150 200 250 300

1111/2 KeV]

C. High-tanP Sxed point

This region describes the SO(10) relation Ai ——As =
where A; & 1. There is not much parameter space

remaining without weakening our naturalness condition.
For the case mi(mi) = 178 GeV, tanP = 61 [with mo ——

400 GeV, mi = 400 GeV, and p(mi) —575 GeV] the
particle spectrum is given in Table III.

As before the above particle spectrum is calculated at
the scale mq. We obtain no natural solutions for p & 0.

FIG. 8. The squark and slepton masses for the low-tan P
fixed-point solution in the no-scale model with p ( 0. The
solid (dashed) lines correspond to the third (first and second)
generation. The excluded regions are the same as in the pre-
vious figure.

metric spectrum on mo. (Here we take mi = 150 GeV. )
The mass of most of the SUSY particles increase with
increasing mo [see, e.g. , Eq. (9)].

We also give qualitative descriptions of the allowed pa-
rameter space in the other significant mi —tanP regions.

D. Low-tanP, not a Sxed point

This region has a large amount of viable parameter
space; naturalness bounds allow substantially higher val-
ues of mi [mi & 330 GeV for mi(mi) = 160 GeV with

2 2

tan P = 3], and experimental constraints do not further
restrict this parameter space to any great extent (though
the sneutrino and chargino bounds are pushed upward
somewhat). In fact, the Higgs constraint is weakened a
great deal for p ) 0, allowing relatively low values for
mo and m i . Moreover, the light top squark constraint is

2

less important in the p & 0 case.

B. Medium- tanP Sxed point

TABLE III. Particle spectrum for mt, (m~) = 178 GeV,
tanP = 61 (where mo = 400 GeV, mi = 400 GeV, A = 0).

2

Particle
Gluino

Top squark, bottom squark
Up squarks, down squarks

Stau, tau sneutrino
Other sleptons

Char ginos
Neutralinos

Higgs bosons: m~, mH+, mH, mh

Mass (GeV)
1078

751,900; 763,881
1029,1060; 1026,1063

183,454; 417
431,494; 487

323,590
167,323,579,588
364,377,363,131

The allowed mo —m 1 parameter space is substantially
larger in this case than it is for the low-tan P fixed point.
Our naturalness condition allows substantially larger val-
ues of mo and mi [mp & 725 GeV and mi & 325 GeV
for mi(mi) = 192 GeV, and tanP = 15]; however, dark
matter constraints will still require mo & 300 GeV. For
p & 0, experimental bounds on m„-,m-, , and m~ ~ push
the lower bound for mo and mi up slightly. For /i & 0,

2

experimental bounds for m„- and m-, also become more
restrictive, but the mz ~ and m~, constraints become less
restrictive. In both cases the constraint &om the lightest
scalar Higgs boson mass becomes less restrictive; even
in the p & 0 case, it will not play an important role in

E. High-tanP, not a Sxed point

The allowed parameter space is reduced by the lightest
stau constraint (which cannot be the LSP), though some
parameter region remains. The allowed parameter space
is bounded by chargino, stau, dark matter, and our nat-
uralness constraint which give 180 & mo & 300 GeV and
85 & m i & 400 GeV for mq(mi) = 160 GeV, tanP = 45.
The light Higgs and the light top squark constraints are
not important for either sign of p.

In addition we varied AG from —500 to +500 GeV
in the low-tan P fixed point case; we found little change
in the resulting parameter space except that the light
top squark constraint is more (less) restrictive for A
negative (positive) and p, & 0. The fixed point solution
in radiative electroweak symmetry breaking has also been
studied recently in Ref. [13].

A critical constraint [47, 51, 52] on the supersymmetric
spectrum is the rare decay b —+ 8p. We remark here that
regions of the parameter space illustrated in the previous
figures are not ruled out by this constraint. This will be
the subject of a forthcoming paper [53].

VIII. SUSV MASS SPECTRUM CORRELATIONS

For smaller values of tang it is clear from the tree-
level expression Eq. (22) that [/i[ is usually large com-
pared to the the electroweak scale Mz. Furthermore the
fine-tuning problem in this situation is softened when



SUPERSYMMETRIC PARTICLE SPECTRUM 4919

M„o Mg, (42a)

M+-M ~ = M& —— —M&- 2M&
XQ 2M„o,

(42b)

the one-loop contributions to the Higgs potential are in-
cluded. For values of p, just a few times larger than Mz,
the particle spectr»m is governed by certain asymptotic
behaviors which we discuss in this section.

As discussed previously, the gaugino masses are re-
lated (through one-loop order) by the same ratios that
describe the gauge couplings at the electroweak scale.
This observation, together with the fact that [IM[ is large,
yields simple correlations between the lightest chargino
and neutralinos and the gluino [7, 54]: namely,

0!3
my =M3 = —M2

O.2
(42c)

where the quantities in these equations are evaluated at
scale mq. The heaviest chargino and the two heaviest
neutralino states are primarily Higgsino with

M„+ M„o M o jp[. (4S)

The lightest Higgs boson h has small mass for tanP
near one at the tree level by virtue of the D-Hat direction;
its mass comes f'rom radiative corrections [26, 55]. The
heavy Higgs states are (approximately) degenerate —M~
because at tree level MA = —

2p
= -Bp ls large.

The squark and slepton masses also display simple
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asymptotic behavior at large [y[. The first and sec-
ond squark generations are approximately degenerate
(though not degenerate enough to ignore their contri-
butions to the minimization of the effective potential).
The squark and slepton mass spectra are shown in Figs.
7—9. The splitting of the top squark masses grows as ~p~

increases. This splitting of the sbottom states does not
change much with p for small tan P.

IX. DARK MATTER
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The neutralino as the LSP is an ideal candidate for
the dark matter since it is stable and interacts weakly.
The MSSM utilizes R-parity conservation so the lightest
neutralino must annihilate to ordinary matter (yy m R-
even matter) to a sufficient extent to avoid overclosing
the Universe [56]. For a b-ino-like LSP, dark matter con-
siderations put an upper bound on the parameter mo.
We adopt the conservative viewpoint that the contribu-
tion of the LSP alone to the dark matter of the Universe
must be less than the closure density. In addition to the
general case, Roberts and Roszkowski [57] apply an ad-
ditional constraint in which the neutralino is required to
make up a substantial fraction of the dark matter; this
requirement provides a lower bound on mo as well. The
recent results from COBE suggest that the dark matter is
a mixture of hot and cold dark matter. Although it may
be simpler to assume that all of the cold dark matter is
composed of one contribution, it is perhaps premature to
assume this. We remark that the recent exciting claims of
experimental evidence for dark matter in our galaxy [56,
59] only solves the local baryonic dark matter problem
[60]. The origin of the nonbaryonic dark matter needed
to close the Universe is still unknown.

The typical situation in the low-tanP fixed point so-
lutions is that [p,

~

)) M2 and consequently the lightest
neutralino (which is the LSP) is predominantly gaugino;
indeed the LSP is predominantly 5ino The-neu. tralino
mass matrix is

0 I, -, .s.. .s., aI,] e

a) V»

0 50 100 150 200 250 300

2[GeV]
1/2

0.8

:a'C

~ 0.60
pYQ

U~ 0.4
g
O

CQ

0.2

0
0 50

b) p, &0

I I

100 150 200 250 300

m QGev]

F1G. ]0. The b-ino and gaugino purities for the low-tan p
fixed-point solution with me(me) = 160 GeV, tan p = 1.47 in

the no-scale model with (a) p & 0 and (b) p ( 0. Shaded

regions are forbidden by experimental and fine-tuning consid-

erations.

( Mi
0

MZ cos P slI1 8IV

( Mz sin P sin 8iv

0
Mg

MZ cos P cos 8]S,
—Mz slI1P cos 8]v

—Mz cos psin8w
Mz cos P cos 8~

0

MzsinPsin8~
Mz S1I1p COS 8]v

P
0

(44)

For [p[ » M2 the lightest two neutralinos are predom-
inantly b-ino and S'-ino, and hence the b-ino and gaug-
ino purities are high. In this case any mass limit on
the lightest neutralino &om Z decays at LEP disappears
since the Z couples only to the Higgsino component of
the neutralino. Figure 10 gives the b-ino and gaugino pu-
rities for the low-tan P fixed point solution in the no-scale
model, corresponding to Fig. 7.

Given that the solutions are comfortably in the high
6-ino purity region we apply the semiquantitative con-
straint of Drees and Nojiri [50] (valid roughly for [p~ &
mi, Mxo & 60 GeV),

(m'+ 1.83M' )'
Xg

Xy j &1 /

( 1 x 10 GeV, (45)

to obtain the line corresponding to Oh2 = 1 in Fig. 6.
This formula is based on the observation that for the
6-ino-like LSP the annihilation rate is dominated by the
sleptons, and it neglects a possible enhanced annihilation
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rate that may occur if there are significant 8-channel pole
contributions. The b-ino and gaugino purities for nonzero
mo (in particular the dilaton model) are similar to the
above figures.

X. CONCLUSION
The motivation of this work has been to distill the

interesting supersymmetric phenomenology of the low-
tan P fixed-point region that can explain the origin of a
large top quark mass. The RGE's are solved with some
boundary conditions taken from both GUT and low en-

ergy scales. The minimization conditions on the efFective
potential are obtained with the tadpole method.

Our principle findings can be summarized as follows.
Solutions with a Aq fixed point, mq & 170 GeV and

radiative breaking of the electroweak symmetry breaking
are allowed. These solutions are characterized by rel-
atively large values of the supersymmetric Higgs boson
mass parameter i@i, which implies that the supersym-
metric particle spectrum displays a simple asymptotic
behavior. The solutions also meet the naturalness crite-
rion ip(Mz)i ( 500 GeV for both signs of p.

Representative sparticle mass spectra are presented for
the Aq fixed point solutions.

Over most of the GUT parameter space for the low-
tan P fixed-point, the gaugino masses exhibit simple cor-
relations due to the relatively large value i@i compared to
M2. The heaviest chargino and the two heaviest neutrali-
nos have masses approximately i@i; the lightest chargino
and the second lightest neutralino have masses approxi-
mately M2, the lightest neutralino (LSP) has a mass ap-
proximately Mi Mz/2. The lightest Higgs obtains its
mass almost entirely &om radiative corrections, and the
states H, H+, A are relatively heavy and approximately
degenerate.

In the early Universe the LSP will annihilate sufB-
ciently neglecting 8-channel pole annihilation for most
of the parameter space (mo ( 300 GeV) so as not to
overclose the Universe.

The values of p, and B derived from the one-loop Higgs
potential analyses are very similar to the tree-level results
in the low-tanP fixed-point region when the parameters
Mz and tan P are taken as input. However, the one-loop

I

corrections to the Higgs potential somewhat ameliorate
the fine-t»ning problem.

The tadpole method is a convenient way to calculate
the one-loop minimization conditions. We have obtained
these conditions in an analytic form including all contri-
butions &om the gauge-Higgs sector and matter multi-
plets.
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APPENDIX: RENORMALIZATION-GROUP
EQUATIONS

The renormalization equations for the gauge couplings
and the Yukawa couplings to two-loop order can be found
in Ref. [16]. In the most general case the evolution equa-
tions involve matrices. For example, the Yukawa cou-

plings form three-by-three Yukawa matrices: U for the
up-type quarks, D for the down-type quarks, and E for
the charged leptons. Similarly the soft-supersymmetry
breaking parameters form the matrices MqE, M~„,
M~„,MJ.„andM@„.Finally there are in general ma-
trices for the trilinear soft-supersymmetry breaking "A-
terms": Au, A.~, and AE. It turns out to be useful to
define the combinations U~;~ = A~;~U;z, etc., in the
matrix version of the RGE's. Then the evolution of the
soft-supersymmetry parameters (with our convention for
signs) is given by the renormalization-group equations

dM; 2
b;g;M, ,

dU~ 1 (13 2 2 16 13 16
dt 16m2 (15 3gr + 36r + rr U~ + 21 \ + rr r + rr r)15 3

(Al.a)

+ 4(UrUIU) + 6Tr(UrU )U + 6(UU U&) +3Tr(UUI)U+ +2(D&D U) + (DD U~)}

dD~ 1

dt 16@2

7 2 2 16 7 2 16—g +-3g + —g D~+ 2 —giMi + 3g2M2+ —g3M3 D1 2 3 3 15 3

(Al.b)

+ 4(D~DtD) + 6Tr(D~Dt)D + 5(DDtD~) + 3Tr(DDt)D

+2(UrUID) + (UUIDr) + 2Tr(ErEI)D+ Tr(EEI)D~) (Alc)
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dE~
dt

Bg) yBg~ K~+2 Bgi™&+Bgi™
16vr2 )

+ 4 E~EtE +2Tr E~Et E p 5 EEtE~ p Tr EEt E~ y6 D~DtE p3 DDtE

dB 2 2

dt 16+2
—giMi + SgiMi+ Tc(SUU» +SDDK + ERA))

giiSgii+ Tc(SUUt ~ SDDt t- EEt))16~2
dM~ ——g~M~ —Bg~M~ y BTr[D(Mq ~ ML)„)D y M~ DD y D~D~]2 t

+Tr[E(ML„+Ma„)E+M~ EE yE~E~]
~ t

(Ald)

(Ale)

(Alf)

(Alg)

dMH2

dt
dMq2

dt

dM2~

dt
dM~~„

dt
dML,

dt
dM~@„

dt

(Ali)

(A11)

——g~M» —3g2M2 y3Tr U Mq EMU U yMH UU +U~U~ (Alh)

2 ( 1 2 2 2 2 162
16m2 E 15 3~

——g~M~ —Bg~M~ ——gsMs

y —[UUtMq y M~, UUt y 2(UMrT„Ut y m~, UUt + U~U~~)]

t- —[DDtMctt, + Mt»„DDt+2(DMttt„Dt + m», DDt + D&D&)]),
2

( ——2,'M,' ——gtitMi + [UtUMig„+ Mi»„UtU + 2(UtM~Q, U + mt», UtU + U»U»)]), {Al))

( ——giMii ——gctMtt + [DtDMttt„+Mitt„DtD + 2(DtMtg„D + mtt, DtD+ D&~D»)]), (Altt)

( ——giMi —3giMi t- —[EEtMS +Mc EEt t-2(EM»„Et+m» EEt+E&E»)]),

——g'M, +[K EM» +Mg E E+2(E Mc+E»m,E E+E»E»)]) (Alm)

For om pmposes 1t 1s smclent to consider these equations keeping oey the leading terms ln the mass h erarchy 1Q

the thre~ generation MSSM. The resulting renormalization-group equations [61] are given below to ieaping order:

dM,
dt

dA~

dt
dAg

dt
dA

dt
dB
dt
dp,

dt
dMH

dt
dMH

dt
dM~2

dt
dM,

„

dt

2 26;g;M;,

) c;g,. Sg; + 33, A,, + Sit At),16m'2

c,'g,'M;+ 6A,'A& y A,'A, + P.'A.

, { ) Cg.'M;+SltcAt+43tA. ),16m2 E

2 (3
]

—g, Mi + Sgc Sgc + SltAt + 33,A, + 3 A ),2 2 2 2

16m2 E5

—-g, —3g, +3A, g3A, gA16+2 52322222——g»M» —3g2M2 +3A~Xg g A X2

16m2 5

g»M» 3g2M2 + 3A, Xg
2 32 2 2 2 2

16' 2 5

——g»M» —3g2M2 ——g3M3 + A~Xg + A~Xg

2 16 2 2 16
16 2 15 » » 3 3 3 t( ——g M ——g M ~2AXg

(A2a)

(A2b)

(A2c)

(A2d)

(A2e)

(A2f)

(A2g)

(A2h)

(A2i)

(A2j)
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dM~„
dt 16m»

dMI» 2

dt 16m»

dM»„2
dt 16~»

4» 16,
~

——g, M, ——g3M3 + 2A5X5 ~,
E 15

~

——g, M, —gggM~ + & X )
»

5

(A24)

(A21)

(A2m)

and, for the two light generations,

(ASa)

(ASd)

dM»„
dt

dM~»„

dt
dM»

dt
dM,

„

dt

where

2 r 16 » 16 »
(

——g1M1 ——gsM3

2 4»» 16
16m» 15 3g~ M~ g3M3

——g, M1 —Sg3M3 ~,~

g~ M~

(ASe)

(A.3f)

(A3g)

(A3h)

b; = ( —", , 1,-3),
16c;=(—„,3, —),3

(15) ) 3))
c' = (s5, 3, 0),

(A4a)

(A4b)

(A4c)

(A4d)

, () c;g,'M;+A~gA, ),

dt 16m» gg () c'g; M; + A~Ar, + —A, A,), (Agb)

, () c!'g, M;+kg)A~+ —AgA, ), (Agc)

dM 2 1»»»» 16
15 3 j

——g M —Sg M — g3M—3 ~,

Xg ——M~ + M~„+MH, + A, ,

X =ML2 +M» +MH2 +A»

(A4e)

(A4f)

(A4g)

1. One-loop effective potential

We summarize here the tools needed to construct the
one-loop minimization conditions. The necessary ingre-
dients are the field dependent particle masses; since we
are calculating the tadpole diagrams, we need the parti-
cle masses at the potential minimum and the Higgs cou-
plings. The tadpoles are calculated in the DR renormal-
ization scheme [27].

We present here the contribution from the third gener-
ation (s)particles; the contributions from the other gen-
erations can be obtained with obvious substitutions. The
top and bottom squark and the tau slepton mass matrices
(at the potential minimum) are

Here the factors c;, c,', and c' are given by a sum
over the fields in the relevant Yukawa coupling, e.g. ,
c; = p& c;(f) = c;(II3)+c;(Q)+c;(U ). The coefficients
in front of the gauge coupling parts of Eqs. (41)—(43) can
be understood &om the quantum numbers. For the fun-
damental representations of SU(N) there is a factor of
(N —1)/N and for the hypercharge U(1) one has —Y2

(with hypercharge suitably normalized, e.g. , Y„=2).

(Mqz, + mtz+ s(4Mw2 —Mzz) cos2p mt(At + yctop),
m, (At+ p, cotP) Mtz„+mtz —33 (Mw2 —Mzz) cos 2P P

(A5a)

t'M&2 + m35—s(2Mw + Mz) cos 2p m5(A5+ p, tan p)
m5(A5+ ptanP) M5„+m5 + 3 (Mw —Mz) cos 2P)

ML3 + m —z(2Mwz —Mz) cos2P m (A + PtanP)
m (A + ptanP) M + m + (Mw —Mz) cos2P) (A5c)

which are diagonalized by orthogonal matrices with mixing angles 8~, 8&, and 8-. The mass eigenstate for the massive
third generation sneutrino is

m„-=Mr, + —Mzcos2P. (A6a)

The relevant Higgs couplings to the squark eigenstates are

sin 28t [At —y, cot P]
Q(J't1t1) igmtz igmt

igMz cos 8t (1 . 3 ~ sin 8t
2 I

——«»n 8w
l
+ ~ (et »n 8w)

cos8w 31n 8t (2 ) cos 8t
(A7a)
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(
V(J~t

ItI�
) igm12 igmtcot )9 p sin 281 [Aq + p tan p]R'

(A7b)

V(gbIbI)
sin 28b [Ab —

)M tan P]

zgMZ cos Hb ) 1 . 2 & 81n Hb+
8

~ 28 ~

+ebslI1 Hw
i
+ 28 (eb81I1 Hw)cos Hw 8In Hb ( 2 ) cos Hb

(A7c)

V(g b b1) igmb tan p p sin 28b [Ab tan p+ p],tgmb

w

sin 28 [A —p, tan P]
V(+7. 7. ) igm Igm
V v.2~2 Mw 2Mw

IgMz cos 8 ))'1 . 2 ) s1n 8+ . gH ~

—+e 8111 Hw
~

+ 28 (e~sln Hw)cos Hw s1n 8 cos 8 (A7e)

V (Jir17.1) igm
tanP p sin28 [A tan)9+ p],V

~

~

«

N

~~ ~ I~
w
2
1
2 I

~
~

1 1 t 1

zgmT

Mw W
(A7f)

where e1, eb, and e are the electromagnetic charges 2/3, —1/3, and —1, respectively. Notice that the D terms do not
contribute to the coupling of pi to the squarks. The mixed couplings [e.g. , V(ptIt2)] obviously do not contribute to
the tadpole. Calculating the tadpole and making use of the relations

sin 28'

cos 28'

sin 2'

cos 28b

sin 28

cos 28

2m2
&LR

m- —m-2 2
t2

2 2m- —m-
&L &R

m2 —m2

2
bLR

m2 -m2
b1 b2

m- —m«2 2
bL bR

m2 —m2
b2

2m-'-..
m.'- —m.'-T1 T2

m- —m-2 2
TL TR

mT- mT-
2 2
T1 T2

2m'(A1 + p, cot p)
m2 -m2

(Mq2 —M2„)+ 8 cos 2P(8Mw2 —5Mz2)

m2 —m2

2mb(Ab y ptanP)
mp -m2

b1 b2

(Mq2, —Mb2„)—8 cos 2/3(4Mw —Mz)
m'- —m.'-

1 T2

2m (A + p, tanp)
2m; m.'-Tl T2

(ML2, —M2„)—2 cos 2P(4Mw2 —3Mz2)

m.'- —m.'-T1 T2

(A8a)

(A8b)

(A8c)

(A8d)

(A8e)

(A8f)

one arrives at the top and bottom quark-squark contribution to the minimization conditions:

—(8Mw —5Mz) —(M& —M,'„)+ —«8 2P(8Mw —5Mz)
m2 -m2 3

+2m~ p cot —A~ —mb ln

—(4Mw —Mz)
1

m2 —m2 3
b1 b2

—1
~

—2mb+ ™z
) 2

—)M~ —Mc ) ——coc2p(4Mcc Mc) +2ccI((l4ccnp) Ac) )
(A9a)
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—m ~ln
4( m'1

4m2V

167I v ( )
—2m +-Mz2 1 2

2

3 4( m,
4m2v ' ( Q2

m2 ln "—1 cot p m~ 6 2 m, (A~+ pcotp)(Aq+ ptanp)
tl t2

+m2 ln "—1 tanp m& + 2 2 m&(As+ @cotp)(As+ ptanp)

Also the tau lepton-slepton and sneutrino contributions are

gT( )

(A9b)

(4M~ —3Mz) (MI, ——M ) ——cos 2P(4M~ —3Mz) + 2m (()((,tan P) —AT iT1 T2

1 4( m l 1 I 2 ( m-
BT2 ———

2
m

~

ln —1
~

tanp + m-, , ln "—1 tanp

x m 6 2 2 m (A +y, cotp)(A + ptanp)
m'; ™.'-

T1 T2

(A10a)

(Alob)

There are similar contributions from the first and second generations. Most of these terms in LTq and all of the terms
in LT2 are proportional to some powers of the quark or lepton mass, which is negligible in the light generations.
However, there exist contributions to AT& which are proportional to M& and M~, these are zero only in the limit in
which the squarks (or sleptons) are degenerate within each generation. This is not necessarily a good approximation;
we find that the light squark and/or slepton contribution can be larger than the gauge boson contribution (see
below), especially for moderate or large values of mo and ml . It is therefore important to include the light squarks
and sleptons in a full one-loop analysis. Explicitly, the light squark and slepton contribution is

()q) (2)3
1

2—m-

m„'
m„- ln ' —1 —Mz + — —(8M' —5Mz)

ln "—1 —Mz 6 — —(4M~ —Mz)
) .' '&' . J' (Alla)

(Allc)

AT& — m„-
~

ln " —1
~

Mz —m-, , ln "—1 —Mz A — (4M~ —SMz) I, (Allb)(n) (2)1 t 2 ( m~ l, , & m.'-„l1 2 ~ 1l
16~2v

I
"( Q2 ) "'

( Q2 ) 2 (2) J

LT( ) =O, AT( ) = 0,
where the factor of 2 includes both light generations.

If we neglect the contribution from the bottom quark and &om the D-term contributions to the squark masses and
couplings, the equations above reduce to

(A12a)

where

2f(m~) —f(m- ) —f(m- ) — '
2
™(Aq+ pcotP)(Aq+ ptanP)

t1
(A12b)

m2
f(m)=m ~ln —1~)

The neutralino mass matrix is

(A13)
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( Mi
0

—Mz cosPsin8w
~ ~MzsinPsin8w

0
M2

Mz cos P cos 8w
—Mz sin P cos 8w

—Mz cos P siI1 8w
Mz cos P cos 8w

0

Mz sinPsin8w

)

—Mz sin P cos 8w (A14)

This Inass matrix is symmetric and can be diagonalized by a single matrix Z as [62]

(A15)

We choose Z to be a real matrix; then the diagonalized neutrino mass matrix can have negative entries. We let the
entries be eiMxo where M„oare poaitiee masses and ei takes on a value of +1 or —1. The diagonalization can be done

numerically, or one can use the analytic expressions [63]

.,M .= -(-'a- -'C, )'/'
X1 2 6

1+ ——a
2

1-C2+
3 (8a

C3
SC )1/2

'/' 1
+ -(M, +M2), (A16a)

+(1 1C )1/2 1——a
2

esM o = —(-a ——C2) /
X3 2 6

1——a
2

where

1
e4M o =+(-a —-C2) ' + ——a1 1 1/2

X4 2 6 2

1 C3
3 (8a —-C2)'/'

3 (8a —-C2)'/'

C,
3 (8a —SC )'/'

1/2

+ -(M, +M,),
1/2

+ -(M, + M2),

1/2

+ —(Mi + M2),
4

(A16b)

(A16c)

(A16d)

C2 ——

C3 ——

C4 ——

(MIM2 —Mz —p ) —s(MI + M2)

s(M1 + M2) + ~2(M1 + M2)(M1M2 ™zP' ) + (Ml + M2)P

+(Mi cos 8w + M2 slII 8w )Mz + pMz s1112P,
(Mi, cos 8w + M2»n' 8w)Mzp»n 2p ™IM2V

+ 4 (Mi + M2) [(Mi + M2) p + (Mi cos 8w + M2 sin 8w) Mz + pMz»n 2pl

+,I (MIM2 —Mz —p ) (Mi + M2) —
2ss (Mi + M2)

1 - 1/3
Re —S+i(D/27) /

—4U —278 ) U 3 2 4) 3 2+ 3 2 4.

(A17a)

(A17b)

(A17c)

(A17d)

(A17e)

These masses given by the above expression are not necessarily such that Mxo & M„o ( M„o ( M„o,but the
eigenstates can be relabeled. We have corrected a typographical error in the definition of U given in Ref. [63]. The
contribution to the minimization conditions is

4

sr,'"' = --')
i=1

4
~T(x') 1 )-

i=1

gM3,

4@2

gM30
2

4m'2

Q'; cos P + S,", sin P

Q'; sin P —S,", cos P

t' Mo

l
Xi

t' M2o

l
ln

(A18a)

(A18b)

The factors Q'; and S,"; are defined as [64]

Q'; = [Z;2(Z;2 —Z;I tan8 )] o;, (A19a)

S,", = [Z;4(Z;2 —Z;, tan 8 )]e;, (A19b)

where ei is the sign of the ith eigenvalue of the neutralino mass matrix. The mixing matrix Z can ajso be given by
analytic expressions [63]

Z'2

Zi1

Zi =
Zi1

Zi4

Zi1

1 M1 —eiM 0

tan8~ M2 —eiM 0

p[M2 —tiM&o] [Mi——E M&o] —Mz SIIIp cos p[(MI —M2) cos 8w + M2 —
EiM&of]

Mz[M2 e'Mxo] sin 8w [
—P cos P + e;Mxo sin P]

—EiM&o [M2 —EiM&o][MI —6&M&o] —Mz2 cos p[(MI —M2) cos 8w + M2 —eiM&o]

Mz [M2 —e 'M&o ] sin 8w [
—/I cos p + ~;Mxo sin p]

(A20a)

(A20b)

(A20c)
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2- -1/2
f'Z21 t'Zs t (Z4&Ziz= 1+ +~ +
&Z'~) &Z'~) &Z'~)

In terms of the mixing matrix Z the 6-ino and gaugino purities are de6ned as
2BP Zg] )
2 2GP Zgg + Z$2 )

respectively.
The chargino mass matrix is

( M2 ~2M@ sin P't

g ~2Mgr cos P —p

This mass matrix is not symmetric and must be diagonalized by two matrices U and V as [62]

U'M~V

where

0+, detX ) 0 0 ~( cosP~ singy)
nsO+, detX ( 0 ' +

(—sing~ cosQ~)

Here cr3 is the Pauli matrix, and

tan 2$ = 2y 2M~
—p sin P + M2 cos P

Mz —p, —2M~ cos2
—p, cosP+ Mz sinPtan 2P~ ——2~2M~

M2 —p + 2M~ cos 2

The chargino masses are

(A21)

(A22a)

(A22b)

(A23)

(A24)

(A25)

(A26)

(A27)

Mxg ——— Mz + p +2M~ 6 (M2 —p ) + 4M~ cos 2P+4M~(M2 + p —2M2psin2P) (A28)

The contribution to the minimization conditions is

2

gz (x+) )- gMs~ ( M~~
Qi~ cos P —S~~ slI1P In z

—1
4mz (A29a)

AT'2" ———) ' Q;;sinP+ S;,cosP In
4m 2 (A29b)

The factors Q;; and S;; are de6ned as

(A30a)

(A30b)

he Higgs bosons and Goldstone bosons contribute the folio@ring contributions in the Landau gauge:

(A31a)

(A31b)

~

cos2P
i

In —1
~
+ "

(—2cos2a+ cos2P)
~

In
2

—1
~

gM2 Mz ) ( MH+ ~ gMzMf, ( M„
32m ( cos 8gr ) ( Q~ ) 64m 2 cos 8gr

z~' MH2 ) gMz M~2 M~2
+ H (2cos2a+cos2P)

~

In —1
i

— cos2P
~

In
2

—1
~

647l 2 cos 8~ Q2 ) 64m2 cos 8~ g Q2 )
2 2 2 MLT(H) gM~MH+ f MHp l gMzMq

sin2P
~

In —1
~
+ (sin2n+ sm2Pj

~

n
16m g Q ) 64m cos 8~ )

+ (—sin2o. + sin 2P)
~

In —1
~

gMzMH . . f' MH2

64mz cos 8~ ~ Q2
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The angle factor o; can be eliminated in the above equations using the tree-level relations for the Higgs boson masses:

(3Mlt + Mq~ —4M' &—2 cos 2n + cos 2P = cos 2P

(3M2 + M' —4M2 l
2 cos 2u + cos 2P = cos 2P [ M„—M~ )

( 2M„'
sin2a+ sin2P = sin2P

~

&Ma ™tl)'
2M~2—sin 2a + sin 2P = sin 2P

[

H ™b)
The gauge boson contribution is

(A32a)

(A32b)

(A32c)

(A321)

3 M3 M2~T(G~) g w 2P ~r I w

3 M3 M2
327c cos egr ( )

3 M3 Ms

(A33a)

(A33b)

Then the minimization conditions at one-loop are

(A34a)

(A34b)

where i = q, l, Lq, ll, y, g+, H, GB.
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