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Baryon and lepton number in the standard model are violated by anomalies, even though the fermions
are massive. This problem is studied in the context of a two-dimensional model. In a uniform back-
ground field, fermion production arises from nonadiabatic behavior that compensates for the absence of
massless modes. On the other hand, for localized instantonlike configurations, there is an adiabatic lim-

it. In this case, the anomaly is produced by bound states which travel across the mass gap. The sphale-
ron corresponds to a bound state at the halfway point.

PACS number(s): 12.15.Ji, 11.10.—z, 11.30.Rd

I. INTRODUCTION B„J„"=2iAgysy+2imgy f, (1.4)

The divergence of lepton and baryon currents in the
standard model is independent of the fermion masses.
For a single family, the baryon and lepton number anom-
aly is

2

B„Jg=8„Jg= e„,~Tr( Wt'"W ~)

~2
g g pvgap

64 2 P~~

where W"" is the SU(2) field strength and B""is the U(1)
field strength. This differs greatly from the axial vector
current equations of QED because in QED the produc-
tion of axial charge depends critically on whether or not
the electron is massive. I will begin by reviewing the
reasons for this sensitivity. Then I will show why these
reasons are not applicable to a spontaneously broken
theory with a vector current anomaly, such as the stan-
dard model. The results give some insight into the pro-
duction of baryon number in the standard model by
sphalerons, which has been of much recent interest.

The divergence of the axial current in QED [1]is
2

t)„t/iy"y g= e„„pF"'F~+2irn Py f . (1.2)

In a background gauge field the matrix element of the last
term is

2

A {0out~2imfy $~0 in) = — e Ft'"F'++

(1.3)

The remaining terms are higher dimension functions of
the gauge fields and vanish in an adiabatic approxima-
tion. If the electron is massive then there is no axial
charge violation in an adiabatic approximation because
the first and last terms in Eq. (1.2) cancel. This cancella-
tion is obvious from the start if one calculates the anoma-
ly using a Pauli-Villars regulator Seld. Then the regulat-
ed axial vector current satisfies

where y is the regulator field and A is its mass. y is bo-
sonic, so y loops have the opposite sign from f loops.
Therefore there can be no mass-independent terms in the
matrix element of t)„J„"in a background gauge field.

This cancellation also has a simple spectral interpreta-
tion. An explanation of the QED axial anomaly based
upon the spectrum of a massless electron in a background
magnetic field has been given by Nielson and Ninomiya
[2]. Their arguments are briefiy summarized below.
Consider a uniform background magnetic Seld in the z
direction. In the massless case, positive and negative
chirality fermions decouple, so there are two sets of Lan-
dau levels. The positive and negative chirality Landau
levels contain zero modes with E = —p, and E= +p„re-
spectively. Suppose one turns on a positive uniform elec-
tric field 8 in the z direction. In an adiabatic approxima-
tion, solutions fiow along spectral lines according to the
I.orentz force law dp/dt=eC. Thus right chiral zero
modes slide out of the Dirac sea while left chiral zero
modes slide deeper into the Dirac sea (Fig. 1). This
motion produces a net axial charge but no electric
charge. By a careful counting of states one reproduces
the global form of the anomaly

dQs 2
=V (1.5)

dt

where V is the volume of space. Now consider the same
background fields but suppose the electron is massive. In
this case, there are no zero modes among the Landau lev-
els. In the absence of zero modes adiabatic evolution just
maps the Dirac sea into itself, so axial charge cannot be
adiabatically generated.

The discussion above is not applicable to the standard
model because standard model fermions can be given
masses without changing the baryon or lepton number
violation in a Sxed gauge Seld background. Dirac mass
terms do not carry vector charge, so they do not effect
the divergence of a vector current. Yet in an adiabatic
limit it seems that presence or absence of mass terms
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P(x, t)= f c;(t)u;e't'",dp

where u; are free massive spinors normalized to 1, and
the index i distinguishes between positive and negative
frequency solutions when the backgrounds vanish. All
the background dependence is contained in the time evo-
lution of cz,.(t). When the backgrounds vanish,

FIG. 1. Illustration of the positive and negative chirality
spectral flows of massless 3+1 QED which produce the axial
anomaly. The solid lines indicate occupied states, while the
dashed lines indicate empty states.

c,(t) =exp(its;t)c~, (0),
where

co~ +=++p +m

(1.10)

must effect the divergence of a current. In the following,
this paradox will be resolved by solving the equations of
motion for certain background fields which, according to
the anomaly equation, should generate charge. I will
demonstrate that spatially uniform backgrounds which
generate vector charge have no adiabatic limit. Such
backgrounds produce the anomaly by causing hopping
between energy levels. On the other hand, localized in-
stantonlike backgrounds do possess an adiabatic limit.
Backgrounds of this type will be shown to produce the
anomaly via fermionic bound states whose energies
traverse the gap between E=—m and E =m. This gives
a better understanding of the mechanism of baryon num-
ber production in the standard model by sphalerons. The
sphaleron conflguration corresponds to the halfway point
with a zero energy bound state.

Because of the chiral couplings, the standard model
Landau levels are quite complicated. To avoid calculat-
ing Landau levels in 3+1 dimensions, I will instead can-
sider a spontaneously broken U(l) axial gauge theory in
1+1 dimensions. While the details of the computation
are di.fFerent, many of the results obtained in 1+1 dimen-
sions are expected to hold in 3+1 dimensions. The La-
grangian of this theory is

F""F„,+p(i 8+ A y Ap'PL A,pP—„)g—1

4g 2

+ D"O'D 0 —U(0'4) . —
2

This simplified model possesses the two traits whose con-
sistency I wish to demonstrate: a massive spectrum and a
mass-independent vector current divergence,

(1.7)

For the moment I will not consider the full dynamical
theory, but only that given by

X=/[i 8+g A (x)y Ap(x)e'@—"'r ]p,

Given a knowledge of which states are occupied at an ini-
tial time, one can determine which states are occupied at
a final time by looking at the evolution of the coefBcients
c;. At this point, however, the use of this expansion to
determine the vector charge or the particle number is
very ambiguous. One can make transformations of f,
corresponding to certain transformations of the back-
ground fields, which change the c~;. For example, trans-
formations exist which map something that looks like the
Dirac sea into something that looks like an excited state
with nonzero vector charge. An invariant definition of
charge is needed. Such a definition must depend on the
background fields as well as the Fourier coefBcients. In
order to make the computation of the charge simple, I
will only consider processes in which local gauge invari-
ant functions of the background fields vanish at asymp-
totic times. This means that the initial and flnal 8 and
A" are gauge equivalent to 8=0 and A &=0. In this case
the proper definition of charge at asymptotic times is sim-
ple. In Dirac sea language, one subtracts the number of
vacant negative frequency states from the number of oc-
cupied positive frequency states. The occupation number
of a positive or negative frequency state of momentum p
is proportional to ~cz +~ in the gauge in which the back-
grounds vanish. Equivalently, in second quantized
language one can adopt a normal ordered definition of
charge at asymptotic times. The change in the charge
can then be written in terms of Bogoliubov coeEcients re-

lating the operators c; in the asymptotic past to those in

the asymptotic future, where these operators are defined

in the gauge in which the backgrounds vanish. Note that
at intermediate times the gauge invariant backgrounds do
not vanish, so a well-defined Bogoliubov transformation
between asymptotic past and intermediate times does not
exist. Normal ordering is no longer sensible at intermedi-

ate times because solutions cannot be classified as positive
or negative frequency. However, I will never explicitly
calculate the charge at intermediate times. '

where p(x)=v asymptotically. It should be possible to
demonstrate the anomaly by considering the momentum
space equations of motion, as was done for massless QED
by Nielsen and Ninomiya using the Lorentz force law. A
few remarks are in order about how to do this. Let the
Dirac field in a background be expanded as

At intermediate times the charge is defined by axial gauge in-

variance and charge conjunction symmetry. For example one
can use an axially gauge invariant point split charge which is

odd under charge conjugation. When the gauge fields vanish

this is equivalent to the usual normal ordered definition of
charge.
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II. UNIFORM BACKGROUNDS

In the spirit of the anomaly calculations done by Niel-
sen and Ninomiya, I will first consider a process in which
a spatially uniform axial electric field is turned on and
then off. I will also choose a uniform (spatially parallel
transported) Higgs field background. The particular
background to be considered is

A = C—(t)x, A'=0, 8=0, (2.1)

where 8(t)=8 for 0 & t & T and 0 at all other times. In
this gauge, with the initial and final backgrounds vanish-
ing, the coeScients c~; have an immediate interpretation
in terms of particle and charge production. Because of
the axial electric field, vector charge generation is expect-
ed, and should be evident in the time evolution of these
coeflicients. The equations of motion for cz, (t) are com-
plicated at small ~p~, but simplify greatly at large ~p~.

The simplification occurs because, as one would expect,
the fermion mass can be neglected at large ~p~. A
straightforward calculation gives the equation describing
behavior deep in the Dirac sea:

cz (t)= u~ y u~ cz (t) icoz—c~ (t)
d gC t s d

c~ (t) i co& cz
—(t) .p gt" d

p 17 dp
(2.2)

This equation is not complete, but the neglected terms
are all suppressed by factors of m /~p~. The solution is

c (t)=c (0)exp( it0~ t—), (2.3)

where

Ipl
(2.4}

which is easily recognized as an axial version of the
Lorentz force law. Therefore, states along the negative
frequency spectral lines at large ~p~ flow inward towards
small ~p~. Because of unitarity and Fermi statistics, solu-
tions cannot pile up at small ~p~. Therefore there must be
level hopping at small ~p~. Positive frequency states must
appear at a rate matching the inward flow of negative fre-
quency states across some large ~p~ cutoff (Fig. 2). I thus
arrive at the result that the backgrounds of (2.1) have no
adiabatic limit. Therefore the absence of zero modes has
no efFect on charge production. Putting the system on a
line of length L with periodic boundary conditions on the
Fermi field, one Snds that the number of states crossing
the cutoff per unit time is (L/n)gC This yi.elds the ex-
pected anomaly (1/L )(dg/dt} =g @/m

There is actually no reason to expect adiabatic
behavior with uniform backgrounds. The backgrounds of
(2.1) have singular time dependence when the electric
field is turned on or ofF. One can make the time depen-
dence of these backgrounds nonsingular either by
smoothly switching the electric field on and ofF, or by go-
ing to A =0 gauge. If one does the former, one can try
to make the backgrounds vary slowly in time by having
the electric field 8(t) vary slowly in time. . However, no
matter how slowly the electric field varies, A will vary
rapidly at large distances since A 0= 8(t)x In —A =0.

FIG. 2. Illustration of the spectral Bows which produce the
vector current anomaly in a spontaneously broken two-
dimensional axial gauge theory.

gauge, the backgrounds of (2.1) become

A '=0, 8=0 for t &0,
A'=It, 8= Cxt—for 0& t&T,
A ' =CT, 8= 2@xT —for T & t .

(2.5)

One only has to transform back from c' to c to get c,.(t}
as a function of the initial coeflicients c, &(0). The result
is that

c;(t)=g T, .„ic„t(0),8F

1

(2.7)

where

T -.
27K

z,. „t=
@ Qz, Z, dq exp i q ice~ ttt u.—

. J

2 2.P TXu, I exp —i (2.8)

This method of solving the Dirac equation brings up a trou-
bling question. If an axial gauge field background can generate
vector charge, then apparently a vector gauge field background
can also generate vector charge. I discuss why this last state-
ment is not true in Appendix A.

One can try to make these backgrounds vary slowly in
time by making 8 small. Yet, no matter how small 8 is,
the Higgs phase 8 winds wildly with time at large dis-
tances. Therefore the nonadiabatic nature of uniform
charge producing backgrounds is an infinite volume
efFect.

It is actua11y easy to see the low momentum level hop-
ping explicitly without invoking Fermi statistics. In 1+ 1

dimensions y"y =@~"y„.One can use this fortuitous fact
to solve the equations of motion at a11 momenta. For
0 & t & T the background fields of (2.1) are equivalent to a
background vector gauge field with V =0 and
V'= —Cx. The vector field strength vanishes, so the
time evolution of g at intermediate times is trivial.

e'@" ~ f evo—lves as a free field:

(2.6)
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The quantity within the brackets can be written

(2.9)

where i}) is a massive free scalar field in 1+1 dimensions,
and (z,z')=(t, (p —r)l@). The "light cone" singularity
in (2.9) gives the leading term of (2.8):

2 —r2
Tr, „,=. —

up, [iy+5(z+)+iy 5(z )]u„,exp i — + (2.10)

Let us rewrite this in a form which is easier to interpret:
r

2 —2

exp —i
2CTp, .„i

=
up | u„ i5 t+ +up, u~ i5

2m. t 1 —y p r —t 1+y p r—
(2.11)

g(x)~P'(x)=exp( i8txy )i'(—x) (2.12}

is equivalent to

dr
p r p, r ~ p, r;r, l r, l

l

where

(2.13)

p r
Tp i.„ i

—Tp i piexp l. (2.14)

where I have used the fact that y y*=1+y in 1+1 di-
mensions. The axial Lorentz force law is clearly visible in
the 5 functions and the associated left or right chiral pro-
jectors. The low momentum level hopping is also mani-
fest. The hopping of negative frequency to positive fre-
quency states is described by T +.„.At large p and r of
the same sign, the spinors up + and u, have opposite
chirality so that u + ( I +y'/2)u„vanishes. Thus in the
limit of large momenta at fixed time, T +.„vanishes.
However, at small lpl the spinors have mixed chirality so
that (2.11) does not vanish when p r=k8t—, and the
predicted level hopping occurs. It is interesting to note
that the factor (2.11}is almost the transformation func-
tion associated with an axial transformation of 1i~:

Therefore an axial transformation of the type (2.12) above
produces a net vector charge.

IB. LOCALIZED BACKGROUNDS

The uniform backgrounds of (2.1) are interesting but
perverse because the gauge invariant objects built from
the Higgs and gauge fields do not fall off at large spatial
distances. Furthermore these configurations can exist
only in an infinite volume because they are inconsistent
with periodic boundary conditions. Therefore let us in-
stead consider localized, charge producing backgrounds.
By localized, I mean that the energy density carried by
the backgrounds is at its minimum outside a spacetime
disk of finite radius. At fixed EQ one can always make
such backgrounds vary arbitrarily slowly in time, so that
there is no argument against the existence of an adiabatic
limit, We are again confronted with the puzzle of how
vector charge can be produced by a weak electric field in
a theory with a gap.

The clue to the puzzle is that one cannot go to unitary
(8=0) gauge from localized background which produce
charge. For such backgrounds D„p=o asymptotically.
Therefore

gdx"B„e=—2g fdx" 2& = —2irbQ . (3.1)

p 1 1J =~— B,y —
~—A' (2.15)

where y is the bosonic counterpart to g. An axial trans-
formation

This is not to be confused with an axial gauge transfor-
mation because the initial and final background fields are
the same; A"=0 and 8=0. An axial gauge transforma-
tion does nothing, but an axial transformation which
leaves the Higgs and gauge potentials unchanged can
produce particles and vector charge. This should be no
surprise given the bosonization rules [3] for an axial
gauge theory in 1+1 dimensions. The vector charge den-

sity in bosonized form is

If EQ is not zero, then i})'(() must vanish somewhere due
to the nonvanishing Higgs winding number. In the pres-
ence of such a defect there may be a bound state as well
as the continuum of "scattering" solutions with
E=k'}lp +m . In an adiabatic limit the only way
charge can appear is if a bound state traverses the mass

gap. As the defect is created and destroyed in a process
with b Q = 1, the bound state energy should change con-
tinuously from —m to m. I will show that this is indeed
the case. The sphaleron corresponds to a bound state at
the halfway point and has charge one half [4].

An example of a localized configuration giving EQ = 1

1S

iPx)y
@ (2.16}

X
i})=U exp ia(t)

corresponds to

X X+ ~—f(x} .1
(2.17) A'=0

1 x da
2g lxl dt

(3.2)
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FIG. 3. A winding Higgs field background for EQ=1. The
time axis is vertical and the space axis is horizontal.

2; E+i+m E—
e

E i +m ' —E'— (3.3)

This yields a bound state with energy E= —m cosa. As
a varies adiabatically from 0 to —~, a single bound
charge is carried across the gap. Note that this alone
does not guarantee the net production of charge. A
bound state could travel across the gap and leave a nega-
tive energy hole. The axial Lorentz force law causes neg-
ative frequency states to slide inwards towards zero
momentum, which prevents the appearance of a hole. In
an adiabatic approximation, the gauge fields are negligi-
ble perturbations on the spectrum, but drive the spectral
flows needed to produce the anomaly.

For more general localized backgrounds, an index
theorem enables one to count the number of time depen-
dent energy eigenvalues which travel across the gap.
Consider spinor functions f(x, r) annihilated by the
operator

where the phase a(t) rotates by a total angle of —n. from
a( —00)=0 to a(~)= —m. In an adiabatic limit a(t}
varies slowly and the gauge fields can be neglected. The
defect at x =0 is spatially pointlike for convenience; for a
fixed a, finding the spectrum is a trivial matching prob-
lem. (A less singular version of this background is drawn
in Fig. 3.) One finds a set of scattering solutions with
E=+V p +m, but there is also a bound state solution
with E &m . Continuity of the solution across x =0 re-
quires

value at ~= —00 and a positive value at v =+ 00. Now
consider the adjoint operator

(3.7)

1+y+y iy'(8, +igA, y ) —AP(x, r)
I~

AP'(—x, r)
1 —y

2
(3.&)

where asymptotically

y=ve" . (3.9)

A o is absent from 8 because it is negligible in an adiabat-
ic approximation. One can take the adiabatic limit of a
process with fixed EQ by making the following gauge in-
variant rescaling of the fields:

P'(x, t)=P x, —

1 p tA' (x, t)= —A x, — (3.10)

A'(x, t)=A' x, —

In the large l(, limit A vanishes. A ' is a nonvanishing
adiabatic parameter, but one can gau e it to zero. Doing
so effects only the eigenfunctions of (r) but not the ei-
genvalues. A straightforward method to calculate the in-
dex of Dirac operators on R„has been constructed by
Weinberg [6]. Using these methods, the index of 8 with
A '=0 is found to be

A function a„(r)y„(x,r) annihilated by 8 is only nor-
malizable if E„(7.) has a positive value at r= —ao and a
negative value at ~=+ 00. Hence the total charge gen-
erated by bound states crossing the gap is equal to the
diff'erence in the number of normalizable modes annihi-
lated by D and the number of normalizable modes annihi-
lated by 8 . This quantity is known as the index of 8.
The operator whose index I wish to calculate is

+N(r),
Bx

(3.4) g dx "B„e, (3.11)

where by varying the parameter ~ from —ao to ao one
goes slowly through the same cycle of Dirac Hamiltoni-
ans 8 that occur in real time. I will write the energy ei-
genvalues as E (v) and the energy eigenfunctions as

y„(x,r}. Since k(r) is a slowly varying function of r, the
solutions of Eq. (3.4) can be written as

f(x,r}=a„(r}y„(x,~),
where there is no sum on n and

(3.5)

(3.6)a„(r)=a„(0)exp —f dr'E„(~')

This solution is only normalizable if E„(~)has a negative

which is gauge invariant. This is just as one expects
given Eq. (3.1).

3Witten has applied similar methods to a diff'erent problem [5].
4Weinberg applied his methods to count the number of zero

energy modes of a vortex-fermion system in 2 spatial dimen-

sions. Thi.s system was previously considered by Jackiw and
Rossi [7] who suggested the existence of an index theorem

equating the number of fermion zero energy modes to the vor-
tex number. The index theorem for their model is very similar
to the one considered in this paper.
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f 2)$2)/exp —f d xgEg (3.12)

where

E=y (Bo—8) . (3.13)

Let f and P be expanded as

g(x) =g a„f„(x),

g(x) =g brgrt(x),
I

(3.14)

where

k Ef„(x}=A,„f„(x),
kE gi(x) =a&gI(x),

(3.15)

The relation of this index theorem to charge produc-
tion can also be understood in terms of the Euclidean
path integral using methods due to Fujikawa [8] and
't Hooft [9]. The fermionic portion of the partition func-
tion is

An interesting feature of the index theorem for a spon-
taneously broken axial theory is that it permits Higgs and
gauge field backgrounds to create single fermions and not
just pairs. The Euclidean equations of motion possess a
symmetry g~y P'. In the absence of the Higgs cou-
pling to fermions, E anticommutes with y, so zero
modes can be chosen to be chiral. Therefore in the mass-
less axial theory zero modes occur in pairs of opposite
chirality which are related by the above symmetry. This
pairing is a reffection of Q5 conservation. However, in
the spontaneously broken axial theory, Q5 has a Higgs
component as well as a fermionic component, and only
the sum is conserved. It is no longer true that
[E,y I =0. Therefore, zero modes can no longer be
chosen to be chiral. In fact, in an adiabatic approxima-
tion one can prove that the mapping g~y P" does not
yield independent solutions. This is done in Appendix B.
The production of single fermions by a background is not
a violation of gauge or I.orentz invariance. For example,
a single fermion cannot get a vacuum expectation value
because the path integral over gauge and Higgs fields in
the one instanton sector vanishes, even if the fermionic
integral does not.

and f„(x) and g&(x) are normalized to one. There is a
one to one mapping between eigenfunctions of k E and

provided that the eigenvalues are not zero. E maps
eigenfunctions of E k into eigenfunctions of kE with
the same nonzero eigenvalue, while E does the inverse
mapping. However, if E kf (x)=0 or X'E g (x)=0, then
there is no mappin because k kf(x}=0 implies that
Ef(x}=0, and E g(x)=0 implies that Etg(x)=0.
The difFerence between the number of zero modes of k E
and Ek is given by the index of k A zero mode of ei-
ther E k or Ek contributes nothing to the Euclidean
action. Therefore the integral over the Grassman
coefficient of a zero mode will vanish unless the
coef6cient appears in the expansion of an operator in a
Green's function. It is easy to see from this that the con-
tributions of a given Higgs and gauge field background to
a Green's function vanishes except when the number of
f's in the Green's function diff'ers from the number P's by
the index of k For example, if E E has one zero mode
fo(x) and Ek has no zero mode, then

IV. DYNAMICS

and

B„J~q =B"(t7tyqy 5/+ i/'D„P) =0,

B„J"=B„l(y"y= E„g"".1

(4.1)

(4.2)

A simple path integral manipulation relates the current
equations to Ward identities for (OIT'(J"(x)J5(y))IO&.
One finds that

So far it has only been demonstrated how charge viola-
tion proceeds independently of the fermion masses in the
case of background Higgs and gauge fields. I will now
show how this works in the dynamical case. This will be
done by demonstrating the consistency of the Ward iden-
tities with a massive spectrum. Similar results should
hold for three current correlation functions in 3+1 di-
mensions.

The current equations are

f 2)$2)gg(x)exp —f d yfkf =+detkE fo(x} .
a

(Ol T'(J"(x)J5 (y) ) IO & =o,
By

(4.3)

(3 16}

In general the net vector charge produced is given by the
index of k, which in an adiabatic limit is the same as the
index of D because the two operators difFer only by a fac-
tor of y . The connection between the spectral and path
integral approaches to the anomaly is now clear.

(OI T'(J"(x)J5 (y))IO&
a~~

=—e" 5(x —y ). a
Bx"

+—«IT*(e„.B"~"(x)J (x))IO& .1 (4.4)

5This connection is not novel. The relation between modes an-

nihilated by the Euclidean Dirac operator and spectral 6ows
which take states in and out of the Dirac sea was discussed by
Nielsen and Ninomiya in the context of massless fermions [2].

If it were not for the last term in (44), the two Ward
identities (4.3) and (4.4) would ensure the existence of a
massless pole in the current correlator [10]. Naively one
might expect the last term in (4.4} to give at most 8(g)
perturbative corrections to this pole or its residue.
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We are thus confronted with the same dilemma as be-
fore. The massive spectrum of a spontaneously broken
U(1) axial gauge theory appears to be inconsistent with
its vector current anomaly. The resolution of the puzzle
lies in the fact that the gauge boson mass is proportional
to g. It turns out that the last term in (4.4) contains an
order zero piece which exactly cancels the first term at
small p . The last term in (4.4) can be rewritten as

1 (O~T'(e,BI'A "(x)2u [8 8(y}+2A (y}])~0),

(4.5}

14 2 „2 g" +[(1 —g}p"p ]/((p —4g v )

p2 4g2~2

1 4Ug
Z Z2''—4''

At small p this is just —(1/n. )d' p„, giving the stated
cancellation.

An almost identical cancellation occurs in the
Schwinger model [11]with no fermion mass term. This
model also has a massive spectrum. Furthermore the
Ward identities are like those of the axial Higgs model,
except that axial and vector labels are swapped:

where P=p exp(i8), (O~p~0) =u, and terms which do not
give a zeroth order contribution have been dropped. In
the 't Hooft g gauge there is no mixing between 8 and
A ~, so in momentum space the leading term of (4.5) is and

a
(Ol T'(Jg(x)~ (y)) IO& =o,

3'
(4.7}

&(x —y}——&OlT'(e .~"A "(x» (y))IO& .1 1

Bx" Bx" 7T
(4.8)

In bosonized form [12] the last term of the latter Ward
identity can be written as

2

(OiT' P(x) e "B„giO), (4.9)

where P is a scalar field with mass e/~n At mom. entum
small compared to the coupling e, this becomes
(1/n)e 'p which cancels against the first (anomalous
commutator} term of (4.8). Thus the anomaly equation
does not imply a massless pole.

V. CONCLUSION
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The apparent paradox of an anomaly equation which is
insensitive to particle masses has been resolved in 1+1
dimensions. The Higgs mechanism creates a gap, but
also provides a means to cross the gap. In the presence of
a localized background with a Pontryagin number one,
there is a bound fermion due to the winding Higgs back-
ground. This bound fermion acts as an "elevator" which
carries charge across the gap. For uniform charge gen-
erating backgrounds, the Higgs degree of freedom
prevents the existence of an adiabatic limit. In the
dynamical case, the gauge boson becomes massive due to
the Higgs boson. The gauge boson mass alters the anom-
alous Ward identities in such a way that they do not im-

ply the existence of massless state. I believe the mecha-
nisms described here should extend readily to 3+1 di-
mensions and the standard model.

bQ=+hfdx'A& . (A1)

Therefore the gauge can be chosen so that A" vanishes in
either the asymptotic past or the asymptotic future, but
not both. I will call the Fermi field p'" or f'"' depending
on whether A" vanishes in the past or future. g'" can be
expanded in terms of spinors which have definite momen-
tum and frequency in the asymptotic past. Similarly P'"'
can be expanded in terms of spinors which have definite
momentum and frequency in the asymptotic future. Par-
ticle production is then determined from the Bogoliubov
transformation relating the two sets of expansion
coefBcients.

Now suppose we were to consider the vector gauge
theory with the backgrounds V"=O'"A„. Suppose also
that both the axial and vector field strengths vanish at
past and future times. If both field strengths vanish then

APPENDIX A: BOGOLIUBOV TRANSFORMATIONS
FOR GAUGE THEORIES, A PARADOX

WITH d'"y„=y"y'

In 1+1 dimensions y"y =e„,y". Therefore the
(1+1)-dimensional Dirac equation with an axial gauge
field A~ is equivalent to the Dirac equation with a vector
gauge field V", where V"=O'"A„. Thus, it naively ap-
pears that if an axial gauge theory does not conserve vec-
tor charge, then neither does a vector gauge theory. Con-
versely if a vector theory does not conserve axial charge,
it seems that an axial theory does not conserve axial
charge either. Fortunatelv both these statements are not
true.

The reason they are not true in a finite volume is that
there is an ambiguity in doing Bogoliubov transforma-
tions. This ambiguity is removed by choosing either axial
or vector gauge invariance. Consider the massless axial
gauge theory in an S&R& space-time, and suppose
charge is produced by a field strength which vanishes at
asymptotic times. The change in vector charge is equal
to minus the change in the Chem-Simons number:
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e" B„A„and B&A" vanish and A" must be a constant.
Consider a configuration with 3"=0 in that past and
A"=a" in the future. The difference between an axial
gauge theory and a vector gauge theory lies in the rela-
tion between g'" and P'"'. For the axial theory

r/i'"'=exp(iga„x "y )g'",

while for the vector theory

it)'"'= exp(ige„~ "x")f'" .

(A2)

(A3)

In light-cone coordinates, the two ((i)'"' fields are related
by the transformation

/~exp(iga+x+P~+iga x P„)f . (A4)

APPENDIX 8: A NO PAIRING THEOREM

The Euclidean equations of motion for the fermions of
a spontaneously broken axial gauge theory possess the
symmetry g —+y 1(". In this Appendix I show that, in an
adiabatic limit, this symmetry does not yield independent
solutions. To be precise, a solution of Efo(x, r)=0 has
the property that y fo(x, r) =exp(ia}fo(x, r), where
the phase e is a constant. The same is true for spinors

6In a finite volume one is prevented from doing this by the

gauge invariance of exp(ig g dx ' A, ).

This transformation changes the vector charge by an
amount g(a+ —a )L/2ir and the axial charge by an
amount g(a++a )L/2', where L is the circumference
of S&. Thus in a finite volume one finds the desired result
that the axial theory produces only vector charge and the
vector theory produces only axial charge.

The arguments above are not suScient to show this re-
sult in an infinite volume. This is because in an infinite
volume one can always find a gauge in which the vector
potential vanishes in both the asymptotic past and
asymptotic future. For these gauges there is no
difference between the out fields in the axial theory and
the out fields in the vector theory: both are equal to the
in field. However, there is no equivalence between local-
ized gauge invariant backgrounds in the axial theory and
localized gauge invariant backgrounds in the vector
theory provided that either vector charge or axial charge,
respectively, are produced. If the axial and vector field
strengths are both localized, then e"'(i„A "and (i„A"van-

ish outside some finite region of space-time. This means
that A" must be a constant outside this region. The Pon-
tryagin index for both the axial and the vector theory
therefore vanishes. Note also that for the massive axial
theory, a winding Higgs background has no QED coun-
terpart.

annihilated by the adjoint operator k . Recall that the
solution of ufo(x, r) =0 in an adiabatic limit is

fo(x, r) =exp I d r'Eo(r') exp[i13(r) ]go(x, r), (81)
0

where yo(x, r) is an eigenfunction of the time dependent
Hamiltonian for which the energy Eo(r} crosses the gap.
The geometric phase P(r) will turn out to be important to
prevent pairing of zero modes. At asymptotic positive x
the magnitude of the Higgs field is u, and one can always
choose the gauge so that the phase of the Higgs field is in-
dependent of x. With this choice the bound state eigen-
functions of H(r) at large x are of the form

iC(, 7)

( )—&C(7)

A, U

yo(x, r}=

where

K(r)=+A, v —Eo(r), (B3)

c(r) is the phase of Higgs, and a (r) is an arbitrary phase.
Therefore at large positive x,

Eo(r) i K(r)—
yO~»( )

—e 2ia(v—)

Eo(r)+i K(r)
yo(x, r) .

It is easy to show that the above relation holds at all x
without knowing the exact form of the solution. If y is a
solution of

(8 E)y=0, —

then so is y y*, because

yOA" y'=8 .

(B5)

(B6)

of »
( )

— 2iP(r) 2ia(r—) E(r} ) K(r)
E(r)+i K(r)

' 1/2

fo(x 'r) .

(B7}

It appears that there is a time-dependent phase relation,
but in fact the product of all the phases above is indepen-
dent of ~. The Euclidean equations of motion are linear
and first order in r, and possess the symmetry ((t)~y g".
Therefore if, at some fixed ~,

y f(')(x, r)=e' f()(x,r), I',Bl)

then this relation must hold at all ~. The symmetry
which gives pairs of zero modes in the massless theory
fails to give pairs in the spontaneously broken theory.

Furthermore the eigenvalue equation (B5) is linear and
first order in x. Therefore, if the relation (B4) is true at
any x, then it must be true at all x. We thus arrive at the
result that
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