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Partially quenched gauge theories and an application to staggered fermions
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We extend our Lagrangian technique for chiral perturbation theory for quenched QCD to include

theories in which only some of the quarks are quenched. We discuss the relationship between the par-

tially quenched theory and a theory in which only the unquenched quarks are present. We also investi-

gate the peculiar infrared divergences associated with the g in the quenched approximation, and find the

conditions under which such divergences can appear in a partially quenched theory. We then apply our
results to staggered fermion QCD in which the square root of the fermion determinant is taken, using

the observation that this should correspond to a theory with four quarks, two of which are quenched.

PACS number(s): 12.38.Gc, 11.30.Rd

I. INTRODUCTION

There has been a growing interest in chiral perturba-
tion theory (ChPT) for the quenched approximation of
QCD [1—5]. The motivation for this is the fact that at
present the quenched approximation is indispensable for
the numerical study of QCD. Since ChPT is used in or-
der to analyze and extrapolate numerical data, it is neces-
sary to adapt it to the quenched approximation. To this
end, we have developed a systematic, Lagrangian tech-
nique that can be used straightforwardly to calculate
quenched correlation functions within ChPT [3].
Quenched ChPT has been applied to calculate several im-

portant quantities, such as masses and decay constants
[1—5].

However, aside from these practical results, it turns
out that the special role of the g' in the quenched approx-
imation leads to a very singular infrared behavior of
quenched ChPT, which suggests that quenched QCD
does not have a chiral limit [3—5]. Unlike the case in the
full theory, the mass of the g' cannot be taken to infinity
so as to leave us with an effective action which describes
only the pseudo Goldstone mesons. Instead, a double
pole term proportional to the singlet part of the q' mass
squared shows up in the g' two point function and causes
the peculiar infrared behavior.

In this paper, we wish to extend our investigations to
the case of partially quenched theories. Partially
quenched theories are theories in which not all fermions
are quenched; only for some of the fermions present in
the theory will the determinant in the functional integral
be replaced by l. (We assume throughout a bilinear fer-
mion action with only flavor diagonal terms). The same
method that we developed for studying ChPT for a corn-
pletely quenched theory can also be applied in this case.
Our motivation for considering partially quenched
theories is threefold:
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First, one may learn more about the peculiar infrared
behavior by considering what happens when only part of
the fermion content of a theory is quenched. In particu-
lar, if different fermion mass scales are present, one might
ask how the infrared behavior depends on whether all or
only some of the fermions with a common mass are
quenched. Also, it is interesting to know what happens
in the unquenched sector of the theory: is a theory with
n fermions, out of which k are quenched, the same as an
unquenched theory with just n —k fermions? In the first
three sections of this paper we address these questions.

Second, partially quenched theories arise naturally in
the description of simulations in which the valence quark
masses are not chosen equal to the sea-quark masses.
This is a not uncommon numerical technique which, for
example, allows one to use Wilson valence quarks and
staggered sea quarks. On would like to have a chiral
theory for such simulations.

A third motivation comes from staggered fermions
themselves. It is well known that lattice QCD with stag-
gered fermions describes QCD with four Ilavors of quarks
in the continuum limit. In order to use these fermions for
simulations of QCD with only two flavors, a trick which
has been used is to take the square root of the fermion
determinant, thereby effectively reducing the number of
flavors which appear in virtual quark loops from four to
two.

This approach seems justified in weak coupling pertur-
bation theory, but of course the question is whether it is
really a legitimate technique. Certainly, taking the
square root is not equivalent to formulating a two flavor
theory through a functional integral with a local La-
grangian. In the continuum limit, however, taking the
square root of a four Aavor fermion determinant (with at
least pairwise degenerate quark masses) is exactly
equivalent to quenching two out of four flavors, and our
results about partially quenched ChPT with n =4 and
k =2 should apply. This then allows us to test the idea of
taking the square root within the context of ChPT: if this
trick is legitimate, and does indeed lead to a two flavor
theory, that should be reflected in ChPT. It means that
partially quenched ChPT should reproduce the results of
unquenched ChPT as long as we allow only unquenched
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quarks on the external lines of correlation functions (in-
cluding operators which excite bound states of un-
quenched quarks).

Using results obtained in the first part of the paper, we
show that this is indeed the case. This is a nontrivial test
of the trick of taking the square root and complements
the argument based on weak coupling perturbation
theory, since ChPT addresses a different regime of QCD.
As a corollary, we present a simple way in which gsU~2]
correlation functions can be computed in numerical
simulations.

II. THEOREM S

In this section we state three theorems about partially
quenched gauge theories and then give the physical argu-
ments which underlie these results. We leave to Secs. III
and IV the detailed calculations in quenched chiral per-
turbation theory [3] which illustrate the theorems and
various corollaries. For the first two theorems, the physi-
cal arguments actually constitute proofs, and the calcula-
tions of Sec. IV serve as explicit examples. For the third
theorem, however, we give only an argument here for a
special case; the full proof will have to wait until Sec. III.

We first need to establish our notation. Consider a
QCD-like theory with n flavors of quarks, q, . The quark
masses m; (i=1, . . . , n) are completely arbitrary. We
then partially quench this theory by adding k Qavors
(0~k ~n) of pseudoquarks (bosonic quarks), q~, as in
Ref. [3]. Note that the limiting cases of complete
quenching or no quenching are allowed. The masses of
the pseudoquarks are fixed to be equal to the masses of
the first k real quarks, i.e., m (j=1, . . . , k). In other
words the first k quarks are "quenched, " and the remain-
ing n —k quarks are "unquenched. " We call this theory
the "SU(n~k) theory. " [The group SU(n~k), which acts
on n quarks and k pseudoquarks, is the graded version of
SU(n+k). ] We do not consider the more general case
where the masses of the pseudoquarks are arbitrary —in
that case there can be virtual pseudoquark loops that do
not cancel completely against real quark loops. Note
that, if there are degeneracies between some unquenched
and some quenched quarks, i.e., the quarks of some mass
scale are only partially quenched, one is free to choose
which of the quarks shall be considered the "un-
quenched" ones. In other words, if among a degenerate
quarks, b (b (a) are quenched, one may arbitrarily
choose which b quarks are to have indices j, with
l j k, and which b —a quarks are to have indices r,
with k+1 r ~n —k.

A normal, completely unquenched theory with n

quarks will be denoted as an "SU(n) theory;" it is obvi-
ously the same as the SU(n~0) theory.

At the classical level, the full chiral symmetry of the
SU(n

~
k) theory is [U(n ~ k)L SU(n

~ k)z ]. The anomaly
breaks the axial U(1) that transforms quarks and
pseudoquarks with opposite phases [3], reducing the
symmetry group to the semidirect product [SU(n~k)L
@SU(n~k)z ](XU(1). Here the U(1) factor is the vector-
like U(1) that transforms quarks and pseudoquarks with
opposite phases. The product is semidirect because this

U(1) does not commute with transformations which mix
quarks and pseudoquarks. '

The special case where all the m; (i =1, . . . , n} masses
are equal is called the "degenerate SU(n~k) theory. " In
Sec. IV, we also examine another special case where the
number of quark s and pseudoquarks are even
(n ~2n, k~2k) and the masses just take on two values:
mi=m3=ms= ' =m2 -i=, and m2=m4=m

=m 2„—=md. We call this the "doublet
SU(2n ~2k)" theory.

We define the "super-ri'" of the SU(n ~k) theory by the
interpolating field

n k

@0= &q;ysq;+ gq, y5q, (2.1)

The product is obviously direct when k =0.

The normalization factor c was taken to be I /&n +k
(i.e., I /v'6 for n =k =3) in Ref. [3],but has been left ar-
bitrary here, since different normalizations will often be
useful. The reader may be confused by the fact the
super-rt' does not appear explicitly as the difference of the
quark g' and the pseudoquark g', as it does in the corre-
sponding chiral theory, but rather as their sum. The
reason is that the mesonic fields of a chiral theory direct-
ly correspond not to qy, q, but to tr(qqy5}, since it is the
jirst index of the meson matrix X which is the quark in-
dex. Taking into account the opposite statistics of quarks
and pseudoquarks, the relative minus sign between quark
and pseudoquark g' would reappear in Eq. (2.1} when
written in the latter form.

We can now state the three theorems about partially
quenched theories.

Theorem I. In the subsector where all valence quarks
are unquenched (i.e., where all valence quarks are of type
r, where k+1~ r ~n), the SU(n~k) theory is completely
equivalent to a normal, completely unquenched
SU(n —k) theory.

Theorem II. The super-g' [with normalization
c= I/&n —k in Eq. (2.1)] is equivalent to the ri' con-
structed in the unquenched sector of the SU(n~k) theory,
and is therefore, by I, equivalent to the SU(n —k) ri'.
"Equivalent" here means that Green's functions con-
structed from an arbitrary number of super-g' fields and
unquenched quarks, will be equal to the corresponding
Green's functions with the super-g' replaced by the g' of
the unquenched sector of the SU(n~k) theory [or, what is
the same, by the SU(n —k) q']. Green's functions which
involve the super-g' and arbitrary combinations of
quenched quarks or pseudoquarks are not allowed—
there is nothing for them to correspond to in the
SU(n —k) theory.

Theorem III. Quenched infrared divergences [3—5],
coming from a double pole in the g' propagator and asso-
ciated with some quark of mass m -, will arise if and only
if the scale mj is fully quenched, i.e., if there is a pesudo-
quark of mass m. for every quark of mass m . In other
words, these unphysical divergences arise if and only if



488 CLAUDE W. BERNARD AND MAARTEN F. L. GOLTERMAN 49

1 ~j~ k (so that this quark is quenched) and m. Am„,for
all r with k+1 ~ r ~ n (so that there are no unquenched
quarks of the same mass).

Theorem I is easily established by a simple argument.
Since by supposition all the valence quarks are un-

quenched, the only way the amplitudes could "know"
about the quenched quarks and pseudoquarks is through
virtual loops. But the pseudoquarks have been chosen to
cancel the quenched quarks exactly in virtual loops, so
only the unquenched quarks can appear anywhere in a di-
agram.

Theorem II also relies on the cancellation between
quenched quarks and the pseudoquarks, but this time in
valence lines. There are two quark flow diagrams that
contribute to the g' propagator: the "straight-through"
diagram [Fig. 1(a)] and the "two-hairpin" diagram [Fig.
1(b)]. Note that we only specify the valence quark lines
in these diagrams; in general (for n Wk) there will be ad-
ditional virtual quark loops. By the definition of the
super-g' and the opposite statistics of quarks and pseudo-
quarks, the pseudoquarks will cancel the quenched
quarks both in the straight-through and the two-hairpin
diagrams (in the latter case, the cancellation takes place
separately in each hairpin). Only the unquenched quarks
survive in each diagram, and they of course will also be
the only survivors in any virtual quark loops. Thus the
contraction of any two super-g' fields is the same as the
contraction of two SU(n —k) g' fields. (The choice
c=1/&'n —k reproduces the canonical normalization. )

Similarly, the contraction of a super-g' with some com-
bination of unquenched quark fields is the same as the
contraction of an SU(n —k) g' with the same combina-
tion, since only the unquenched quarks in the super-g'
will contribute. Theorem III relies on the fact that the
infrared divergences that have been found [3—5] in the
quenched theory arise from the two-hairpin diagram
[Fig. 1(b)], which gives a double pole in the g' propaga-
tor. In Sec. III, we calculate the propagator in the neu-
tral meson sector in partially quenched chiral perturba-
tion theory, and show that the offending double poles can
only arise when a mass scale is fully quenched. Here, we
make this result plausible by examining the degenerate
SU(n~k) theory. It is not difficult to argue that, when
there is only one quark mass scale, double poles arise
only when the theory is completely quenched, i.e., when
k =n.

Consider the propagator of the g' of the degenerate
SU(n

~
k) theory (constructed from the n quarks only, with

no pseudoquarks). In a normal unquenched theory, the

(a)

FIG. 1. Quark IIow diagrams for the g' propagator; (a) is the
"straight-through" diagram, and (b) is the "two-hairpin" dia-

gram. Arbitrary numbers of gluon corrections and virtual

quark loops (if the theory is not fully quenched) are implicit.

1
)SfUn) ~ g 'Vi Y5'Vi

(2.2)

The straight-through diagram of Fig. 1(a) is then clear-

ly identical for the g'sU(») and the gsU(» k), since the fac-
tor of n or n —k from flavor counting in the loop cancels
against the field normalization factors. The two-hairpin
diagram [Fig. 1(b)] is, however, normalized differently for
the gsU(») and the gsU(» I, ), since there are now two
flavor loops. To get the gsU(„&, two-hairpin from the

two-hairpin, one must multiply the latter by
(n —k)ln. This holds irrespective of the number of vir-

tual loops in the two-hairpin diagram. Note that each
virtual bubble is norma1ized the same in both cases, since
we are always working in a SU(n

~
k) theory with a net to-

tal of n —k flavors in virtual loops. The difference in nor-
malization arises only from the valence (hairpin) loops.

We may thus obtain the correct ps&(„ I, ) propagator in

an SU(n~k) theory from the gsUi„i propagator in that
same theory by making a simple readjustment of the rela-
tive weights of the diagrams. This will prove useful when
we discuss staggered fermions.

two-hairpin contribution to the propagator would include
diagrams with arbitrary numbers of virtual quark bubbles
between the two hairpins. A subset of these diagrams,
where gluons connect only neighboring bubbles, forms a
geometric series which, together with the straight-
through diagram, can be summed to a simple pole. The
g' mass is then shifted away from the common meson
multiplet mass by the usual singlet contribution. In a
partially quenched theory, the sum over bubbles is still

present, and differs only by an overall normalization
(coming from the counting of the ualence loops in the
hairpin) relative to the case where only the unquenched
quarks are allowed. Therefore, the two-hairpin diagram
has an "incorrect" normalization relative to the straight-
through diagram, so the full propagator will not just be a
simple pole with a singlet mass term added. We can
correct for this mismatch by adding and subtracting the
proper amount of straight-through diagram. The corn-

plete q' propagator will then be a sum of two simple
poles, one with mass equal to the common meson multi-

plet mass (from the subtracted piece of the straight-
through diagram) and one with a shifted mass which in-

cludes the singlet contribution. Since there are no double
poles, there will be no unusual infrared divergences. The
only exception occurs for k = n, when there are no bub-
bles to sum. Then the complete g' propagator is just the
sum of two terms: a double pole from two-hairpin dia-

gram and a single pole from the straight-through diagram
[3 41

An example which illustrates several of the ideas dis-
cussed above is the construction, in a degenerate SU(n~k)
theory, of an SU(n —k) rl' out of the diagrams for the
SU(n) g'. Let both of these particles be described by
canonically normalized fields:



49 PARTIALLY QUENCHED GAUGE THEORIES AND AN. . . 489

III. PROOF OF THEOREM III 2

(3.6)

We begin by writing down the Lagrangian for the
SU(n~k) theory. Define the (n+k)X(n+k) Hermitian
field N by

(3.1)

where P is the n X n matrix of ordinary mesons made
from the n ordinary quarks and their antiquarks, P is the
corresponding k X k matrix for pseudoquark rnesons, and

y is a k X n matrix of mesons made from a pseudoquark
and an ordinary antiquark. The unitary field X is then
defined as

2 =—exp(2i4/f ), (3.2)

with f the tree-level pion decay constant. The
( n +k ) X ( n +k ) quark mass matrix is given by

JR; =m;5; (3.3)

V, (0)=
8

where, as discussed in the previous section, the masses m;
for i=1, . . . , n are arbitrary, and we take the pseudo-
quark masses equal to the first k quark masses:

m„+J——m& for j=1, . . . , k.
The Euclidean Lagrangian is then

X=V&(40)str(B„XB"X)
—V2(40)str(JklX+JNX )

+ v, (e,)+ v, (e,)(a„e,)', (3.4)

where the functions V, can be chosen to be real and even

by making use of the freedom allowed by field
redefinitions [3]. We choose 40=str(4) which corre-
sponds to c = 1 in Eq (2.1). Since the two-hairpin-like in-
teractions between neutral mesons must have no depen-
dence on n or k at the tree level, this choice of c guaran-
tees that the parameters in the expansion of the V; are n

and k independent at tree level.
For the purposes of this section we just need the quad-

ratic terms in (3.4). We define

where M; —=8vm;/f, we have taken a=0 (it is easy to
reinstate later on by the substitution p ~p +up ), and

e,. is defined by

+1 for 1~i ~n,
—1 for n+1~i +n+k . (3.7)

It is straightforward to invert (3.6), either by expanding
in powers of p or by guessing the form of the inverse and
fixing the coefficients by GG '=1. We have

5;e; ~2/36"=
p +M (p +M )(p +M )F(p )

(3.8)

where

2 n+k g. 2 n
1

F(p )=1+ g =1+3;= P2+M' 3,=k+1 ~'+M,'

(3.9)

The last equality in (3.9) follows from the fact that the
pseudoquark masses have been chosen equal to the first k
quark masses.

Theorem III now follows by examination of Eq. (3.8).
We show in the Appendix that F(p ) has no double
zeros, so no double poles in G can arise from F. There-
fore, the only way there can be a double pole in 6 is for
M~ =MJ, for some i,j (this is of course trivially satisfied
for i =j ), and MJ AM„, for all j between k + 1 and n

Since M„,k + 1 ~ r ~ n, are just the masses of the neutral
mesons composed of unquenched quarks, the latter con-
dition implies that double poles occur at mass M if and
only if quarks of the corresponding mass are completely
quenched. This is just the content of Theorem III.

It is instructive to examine Eq. (3.8) in the degenerate
limit (M;—:M for all i ). For kWn, we have

5,,e, —1/(n k) —1/(„—k)

p +M p +M +(n —k)p /3

(3.10)

V2 (0)—:v

2

v,"(0)=—",
3

V5(0)—:—.CX

6

f m

4(m„+md )

(3.5)

This clearly illustrates a result of Sec. II: that the degen-
erate propagator (for kAn) is the sum of two simple
poles, one with mass equal to the common meson multi-
plet mass and one with a shifted mass which includes the
singlet contribution. Note that for k=n one sees im-
mediately from Eqs. (3.8) and (3.9) that there are always
double poles in 6 for i =j.

Note that V~(0) nd Vo (0) are not the same as in Ref. [3]
because of the different choice of normalization for +o.

We are now in the position to prove Theorem III. In
the case of arbitrary quark mass the simplest approach is
just to calculate the neutral-meson propagator explicitly
in tree approximation. We work in the basis of the states
U, , i =1, . . . , n+k corresponding to uu, dd, ss, . . . , and
their pesudoquark counterparts. From Eqs. (3.4) and
(3.5), the neutral inverse propagator in momentum space
1S

IV. EXAMPLES

We would like to demonstrate the theorems in some
explicit examples. First, we will consider the case of
completely degenerate quark masses, with n normal
quarks and k pseudoquarks. We have calculated the
self-energies of the pion and the super-g' to one loop.
The Euclidean-space pion self-energy is
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I 2
)

X (p)= — (n——k)(p +m )I(m )+ m I(m )—
3 (n —k) 1+—,

' a(n —k)

f V2 (0) I(m„)
+4(n —k) V", (0)p + m

8v 1+—,
' a(n —k)

(4.1)

where m =8vm/f, and

(4.2)

2

1, =„(p)=—2 ~~ dq p+aq
3 f (2+) (q +m )

(4.4)

For the purpose of this paper we do not need to specify
how we regulate such integrals. m„.is the mass of the g'
in the SU(n —k) theory, and is given by

—,'(n —k)p'+m'
m ~

=
1+ ,'a(n ——k)

(4.3)

Theorem I is clearly obeyed by this result: the self-
energy is a function of n —k only, and therefore is equal
to the pion self-energy computed in a theory with n —k
normal quarks and no pseudoquarks.

For k & n the above results only have chiral logarithms
of the standard type, arising from integrals over single
pole propagators. On the other hand, for k =n the result
1S

This contributes a term to the pion mass which goes like

p m 1nm, unlike the usual m 1nm . It is an example
of the "pathological terms" previously seen in quenched
calculations. This is a special case of Theorem III: there
is a pathology as m ~0 which comes from a double pole
and arises only for k =n, in which case the mass scale I
is fully quenched.

For a less trivial example of Theorems I and III, we
consider the "doublet SU(2n~2k)" theory, in which we
have n quarks and k pseudoquarks with mass m„,and n

quarks and k pseudoquarks with mass md. We will only
present that part of the one-loop pion self-energy which
comes from the 4-meson vertex proportional to V, (0),
since the full expression is quite cumbersome. All our
conclusions hold separately for the contribution from
each vertex to the self-energy, since the parameters multi-

plying these vertices are free. The result is (here we set
a=0 for simplicity)

d4

3f (2m. ) q +mU q +mD q +m
1 1 1

n —k q +mU q +mD

2 2 1 . 2 1
cos 8 +sin 0

q2+m 2 q2+m 2
(4.5)

[The quartic divergence present in Eq. (4.5) is canceled in the total self-energy by a term coming from the measure of
the path integral. ] In this expression,

Plu V

mU 2

8md V

ma= (4.6)

4(m, +md )v

and

m+ =[m + —,'(n —k)p ]++—,'(n —k) p + —,'(mU —mD)

. 2 n —k p (mv mD)
sin 0=

(m —mU)(m —mD)Q —,'(n —k) p + ,'(mU —mD)—
(4.7)

2In other quantities such as (gP) or f~/f such pathologies can lead to actual infrared divergences as a quark mass is taken to
zero, see Refs. [3-5].
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Again, as expected from Theorem I, this is a function of n —k only. Furthermore, the five different masses which ap-
pear in Eq. (4.5) are precisely the meson masses which appear in the SU(2(n —k)) theory. In the flavor off-diagonal
sector, mU and mn correspond to mesons of types u;uj and d;d with i', and m to du or ud I. n the flavor diagonal
sector, there are 2(n —k —1) n. -like mesons with masses mU and mD, and two other neutral mesons with masses m+
due to the singlet-nonsinglet mixing which occurs for m„%md. 0 is the mixing angle between these two latter neutral
mesons. In the case that n —k =1, the coefficients of the mU and mD poles in Eq. (4.5) vanish, consistent with the
meson spectrum of the SU(2) theory.

For k =n, we have

v [o) d 1

1T, k =n 9f p (2 )4 q2+m
1

q +m (4.8)

which is independent of n since results in a fully quenched theory must depend only on the valence quarks. Equation
(4.8) agrees for u ~s with the result we obtained in computing the one-loop corrections to the kaon mass (cf. Ref. [3]).
The double poles which appear in the integrand are predicted by Theorem III.

To demonstrate Theorem II, we compute the self-energy for the super-ri', 40 in the degenerate SU(n~k) theory. On

the external lines, we choose c =1/&n —k in Eq. (2.1), so that for k =0 we are just calculating the conventionally nor-
malized g self-energy in an ordinary unquenched theory. [Recall, however, that 40 in the potentials V;(40) is normal-

ized with c = l. ] For the degenerate case, the result is

—2m I(m„,)
Xz, (p) = [(n —k) —1]I(m )+

f V2'(0) 6I(m „,)+ (n —k)m [(n —k) —1]I(m )+
2U 1+—,'a(n —k)

I(m „)—4V&'(0)(n k) [(n ——k) —1]m P(m 2 )+(m 2. —p2)
1+ ,

' a(n ——k)

+f —Vo"'(0)+ V,"(0)(p —m ~ ) (n —k)
I(m„)

1+—,'a(n —k)
(4.9)

As before, for k & n we see that this is only a function of
n —k, and therefore equal to the self-energy of the g' in
the SU(n —k) theory. For k =n the normalization
c =1/&n —k is clearly inappropriate, and we should
multiply (4.9) through by (n —k). The expression then
vanishes when n =k (note that in that case m =m„),
consistent with our expectation that the 4o propagator
(with finite c) vanishes in the fully quenched theory [3].

V. APPLICATION TO STAGGERED FERMIONS

In this section we will apply some of the results ob-
tained in the previous sections to lattice QCD with stag-
gered fermions. In the scaling region, this theory de-
scribes QCD with four quark fiavors, which can be given
nondegenerate masses by using nonlocal mass terms [6,7].
If one would like to consider QCD with two flavors, one
can use the so-called reduced staggered ferrnion formal-
ism [8,9], which, however, leads to a complex fermion
determinant [9]. Also the reduced staggered fermion ac-
tion does not possess any continuous chiral invariance,
unlike "normal" staggered fermions. An alternative is to

consider normal staggered fermions and define a two-
flavor theory by taking the square root of the deter-
minant [10]. This corresponds to quenching two of the
four flavors. We therefore expect that the low energy
meson effective theory will be described by SU(4~2) chiral
perturbation theory. For this to work, the masses need to
be at least pairwise degenerate.

If only a single site mass term is used, the staggered
fermion determinant with degenerate quark masses is
positive [11]. Since the continuum limit is a degenerate
four-flavor theory with a determinant which is the fourth
power of a one-flavor determinant, one expects that tak-
ing the positive square root of the staggered ferrnion
determinant leads to the desired determinant for the con-
tinuum two-flavor theory.

If nonlocal mass terms are used, the determinant is not
positive in general. However, the continuum deter-
minant for each flavor is (formally) positive, so one might
expect that with staggered fermions close enough to the
continuum limit, no problem arises in taking the square
root.

In this section, we will consider the definition of two-
flavor meson operators in the mass degenerate two-flavor
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theory obtained from the degenerate four-favor theory in
which the square root of the determinant is taken.
Theorem I tells us that we can obtain the two-flavor un-
quenched theory in this way, and that no problems are to
be expected from taking the square root. For nonsinglet
mesons no tuning of the operators is required because one
may use the same operators as in the four-flavor theory.

However, one expects that the definition of an operator
for the gsU[2] in the four-flavor theory will require tuning,
even with degenerate quark masses. %"hat we wish to

show here is that nevertheless two ways exist for choos-
ing a mass matrix and a meson operator which do not re-
quire tuning of the operator in order to define a pure

gsU~2] in the four-flavor theory. The first method consists
of applying Theorem II, whereas the second method
makes use of a peculiarity of nonlocal staggered fermion
mass terms.

We will start by reviewing some facts about renormal-
ization for staggered fermions. A general mass term for
staggered fermions is given by [6]

S „,= gmg(x)g(x)+ gm„g(x)E„(x,y)y(y) ,'i —g—m„,g(x)E„(x,y)E„(y,z)y(z)
X Xy XyZ

,'i—g—m„e„&rf'(w)E(w, x)E&(x,y)E (y, z)y(z) —,', g—m e &rsvp(u)E (u, w)E&(w, x)E (x,y)Es(y, z)y(z) .
Wxyz

The operator E is defined through

Uwxyz

(5.1)

gm„g(x)E„(xy)y(y)= ,' g m„g„—(z)[g(z)U„(z)y(z+p)+j(z+P)U„(z)y(z)],
xy

where the g„arecertain site-dependent sign factors (cf. Ref. [6]). m„„is taken to be antisymmetric.
This mass term leads to the following mass matrix M for the four flavors that emerge in the continuum limit:

M =m +m „g„+—,
' m„,( i g„(,) +m—„ij„gq+m (q .

(5.2)

(5.3)

The 4X4 g-matrices form a representation of the Clifford algebra g„g„+g,(„=25„„,and are identified with SU(4) flavor
generators in the continuum limit. We will denote the terms in Eq. (5.3) with scalar (S), vector ( V), tensor (T), axial
vector ( A), and pseudoscalar (P), respectively. This expression for M can be derived from the fact that each shift in the
p, direction of the field y, accompanied by a multiplication with g„,corresponds to a multiplication of the continuum
four-flavor Dirac field g by the matrix g„:

g„(x)g(x+p) —+g„P(x). (5.4)

It can be shown that this form of the mass matrix is stable under renormalization, in the sense that the coeScients
m, m, . . . will only receive multiplicative renormalizations, one for each tensor structure in Eq. (5.3). This was explic-pl '

itly demonstrated to one loop, and supplemented with more general symmetry arguments, in Ref. [6]. Because of the

presence, in the massless theory, of shift symmetries and a continuous chiral symmetry [the so-called U(1), symmetry]

there are no additive counterterms. Note that the mass matrix M needs to be diagonalized in order to determine what
the mass eigenstates are.

Let us first consider the simplest possible mass matrix, by choosing only the single-site mass m in Eq. (5.1) to be

nonzero, corresponding to four degenerate flavors. In this case, the simplest operator for an gsU[4j will be

i)'(x) ~ j(x)e(x)gi(x)(2(x+1)(3(x+ I+2)gq(x+1+2+3)y(x+1+2+3+4)
+sum over all permutations on the directions 1, 2, 3, and 4, (5.5)

which in the continuum limit corresponds to the operator
gy~f [6], where i)'j is a continuum Dirac field with four
flavor components. In Eq. (5.5), the lattice gauge fields
are implicit.

In this basis, an gsU[2] would be created by the continu-
urn operator

1 0 0 0
0 1 0 0

i)s'U(~i=f
O O O O

1'sit'.

0 0 0 0

(5.6)

Clearly, in order to construct a staggered operator with
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this continuum limit, we need an operator with flavor
matrix of type S to get a nonzero trace because the gsU[2~
flavor matrix in Eq. (5.6) has a nonvanishing trace, and V,

T, A, and P are all traceless. In addition, we need an
operator of the type, V, T, A, and P, since the matrix
contains two zero eigenvalues. The fact that these opera-
tors renormalize differently from S leads to the need to
tune their relative coefficient. We conclude that with a
single-site mass term no explicit gsU[2] operator can be
constructed in the four-flavor staggered theory without
tuning. The only way to avoid tuning in this case, is to
compute the diagrams for the risU(41 [Eq. (5.5)], and ad-

just the relative coefficients of the straight-through and
the two-hairpin diagrams as discussed at the end of Sec.
II.

Actually, the special properties of the tensor operator
make it possible to construct an gsU~2] without tuning in
a different way. To discuss this, we will choose an expli-
cit representation of the g matrices:

i Pirl ) g4 72 ) (5 73 (5.7)

In this case, it is necessary to choose a mass term of the
tensor type. For definiteness we choose

Mo=m( i(,(2—)=

m 0 0 0
0 —m 0 0
0 0 m 0
0 0 0 —m

(5.8)

which corresponds again to four flavors with a degen-
erate mass m. The minus signs can be removed by a
nonanomalous chiral transformation. The gsU[4] with
this mass matrix is

1 0 0 0
0 —1 0 0

lSU(41 1 ( 4102)rA =0 p

0 0 0 —1

(5.9)

Projecting to SU(2), we get, for the risU(21,

0
)SU(21 1 ()

0 0 0
—1 0 0
P P P r54 '}('( Cl(2 43(4)3 54

0 0 0

(5.10)

Unlike the previous case, this gsU~2] flavor matrix is now
traceless, which allows us to write it as a sum of two ten-
sor terms. The minus sign which appears in this equation
is removed by the same chiral transformation that re-
rnoves the sign in the mass matrix, Eq. (5.8). Note that
one can have a traceless gsU~2] flavor matrix because it is
the mass matrix which defines what the flavor symmetries
are (in the continuum limit). Indeed the flavor sym-
metries are those transformations for which

where Pl ~VI PL and P~ ~V~/I( under chiral transfor-
mations. With a degenerate mass matrix as in Eq. (5.8),
the symmetry group is SU(4} (in the continuum limit}.
The gsU(21 flavor matrix in Eq. (5.10) is not traceless with
respect to the mass matrix, i.e, tr[Mo( —ig, (2

—i(3(4)]
%0. If a chiral transformation is performed to remove
the minus signs in Eq. (5.8), Eq. (5.11) and the trace con-
dition take on their usual form.

As mentioned above, the risU(21 of Eq. (5.9) is now con-
structed from two tensor operators rather than one scalar
and one of some other type. Since all tensor operators
get renormalized in the same way, no tuning is needed
here. The price, however, is the use of a tensor mass
term, which would make this approach awkward for
standard simulations. Also, in the case of a tensor mass,
in general the staggered fermion determinant is not posi-
tive (cf. the introduction to this section). Using the risU(41
and readjusting the relative weight of the diagrams by
hand, as explained in Sec. II, will be preferable in most
cases. We note that such readjustment is standard prac-
tice in weak matrix element calculations with staggered
ferrnions [12].

VI. CONCLUSION

In this paper our investigations of ChPT in the
quenched approximation of QCD are extended to
theories in which only some of the quarks are quenched.

The results are formulated in three theorems. Two of
them state that in the subsector with unquenched valence
quarks the theory is equivalent to an unquenched theory
with the number of flavors equal to the number of un-
quenched quarks in the partially quenched theory. The
super-g' of the partially quenched theory is equivalent to
the g' of this unquenched theory.

The third theorem deals with the existence of infrared
divergences due to the double pole in the quenched g'
twopoint function [3—5]. Such divergences only arise if a
particular quark mass scale is completely quenched.
They do not show up in correlation functions with only
partially quenched or unquenched quarks on the external
lines.

Some one-loop calculations serve as explicit examples
of these results. Moreover, we apply the n =4, k =2 case
to staggered fermion QCD with a single-site mass term,
in which the square root of the fermion determinant is
taken in order to yield two-flavor QCD. Our analysis
shows that this technique is valid within ChPT, and that
the super-r)' of the SU(4~2) theory (or equivalently the
SU(4) q' with by-hand reweighting of diagrams) can be
used to measure SU(2) q' correlation functions without
any of the fine tuning which is often necessary for stag-
gered fermions.

Finally, we have shown that another two-flavor g'
operator, not based on the super-g', exists for which no
fine-tuning is needed if one employs staggered fermions
with a so-called tensor mass.
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APPENDIX

Pk(z)

where Pk(z) is a polynomial in z of degree k:

k k
1P(z)=z"+ . + g( —a, ) —Q + g

i=1 i =1 i i' & J

(A3)

(A4)

In this appendix we present a proof of the lemma that
we used in Sec. III. The lemma states that the function

k

f(z)=1+ g
)Z CX;

(A 1)

3This proof is due to C. Bender.

has no double zeros if all the n; are real. The proof will
be by contradiction. So let us assume that f(z) has a
double zero at z =p. First, f (z) diverges when z is equal
to any of the a;, so we can assume that pea; for all i

Now define z'=z —P. Then f(z'), which is given by

k

f(z')=1+ g (A2)
i=1 Z (Xi

with a,
' =ct; —p, now has a double zero at z'=0, with all

a;%0. Note that the cr,
' are not necessarily real, but can

have a common imaginary part. From now on we will
drop the primes on z and a; and assume that f(z) has a
double zero at z =0. f can be written as

If f (z) has a double zero at z =0, the constant term
and the coefficient of the linear term in P(z) have to van-
ish, i.e.,

(A5)

k

=0, (A6)

which has no solution for real a;. This completes the
proof that the function f (z) has no double zeros any-
where in the complex plane.

From the first of these equations one concludes that the
common imaginary part of the a; has to vanish. There-
fore the a; have to be real (in other words, the original
double zero would have to be on the real axis). Substitut-
ing the first equation into the second, we then conclude
that
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