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We use the t-expansion method to calculate the gg expectation value in the framework of Hamiltoni-

an lattice @CD with two massless dynamical quarks within the Kogut-Susskind formulation. Using the
mass of the co meson as input, we obtain a value of the order of (625 MeV)3, consistent with one recent
Monte Carlo simulation.

PACS number(s): 12.38.6c

I. IhraODUCxxON

In this paper we employ the r expansion to evaluate the

fg expectation value on the lattice, using a Hamiltonian
of two massless dynamical quarks within the Kogut-
Susskind formulation. This work follows some recent
publications [1-3]where we have investigated the spec-
trum of this model.

Our lattice QCD calculation difFers from the
widespread Monte Carlo (MC} simulations in two
features. First, our calculations are analytical rather
than numerical. Second, we work with two Savors, in
contrast with the standard Lagrangian approach that
deals with four Savors. The four-Savor model has an ex-
tra U(1) continuous chiral symmetry which, when spon-
taneously broken, yields a massless pion. In order to
avoid finite size eS'ects connected with the massless pion
[4], one has to work with nonzero quark masses. In con-
trast, the two-Savor formulation has only a discrete
chiral symmetry, and hence lacks a Goldstone boson.
Nonetheless note that it allows working with massless
quarks in a con5ning theory.

In Ref. [1) we have calculated the masses of the scalar
state 0++, the nucleon, and the lowest-lying mesons, i.e.,
p, co, and m. On the basis of an H expansion, we found
the mesons to be completely degenerate. The high mass
of the pion was connected to the lack of continuous
chiral symmetry in our model. The ratio of N to co

turned out to be of the right magnitude, i.e., 1.2-1.5.
One important feature of the model which was not in-
cluded in Ref. [1] is the Pg expectation value, and we
present it here.

Current algebra and PCAC (partial conservation of ax-
ial vector current} imply the following relation between
the pion mass and the expectation value of gg:

m„+md
(0luu+ddl0& .

This formula is correct to order O(m ), which is small
for the physical pion. %e note that the expression for
( tTIQ) which appears in Eq. (1.1) refers to the expectation
value in the chiral limit. Since the physical ground state
of QCD is not chirally symmetric, there is no reason for

the expectation values ( uu ) and (dd ) to vanish. More-
over, the symmetry of the vacuum under SU(3)L+z im-

plies that the expectation values of uu and dd coincide in
the chiral limit. If both f and ( gP) tend to Snite limits
as m ~0, then the pion mass must tend to zero in pro-
portion to (m„+md )'~ .

On the lattice, there is an analogous relation to Eq.
(1.1}[5]:

(1.2)

where y and g are the fermion independent variable of
the standard Lagrangian approach, and where on a finite
lattice (gy(m„d =0) ) is supposed to be found by extra-
polation from nonzero m„d. Therefore, in MC simula-
tions, one evaluates the quantity (gy) with nonzero
quark masses and then extrapolates to the chiral limit, as-
suming a linear dependence on ms [6]. Quoting the re-
sults of Ref. [6] and using the experimental value for the

p mass, we find there an estimate for (gy(me =0) ) to be
of order (740 MeV) for two Savors per lattice site.

We note that since there is no Goldstone boson in the
two-flavor model, there is no reason why an equation
similar to (1.2} should be obeyed. Nonetheless it is in-
teresting to compute the gP expectation value directly in
the chiral limit.

2

HG = gE&+xg(6 —tr Us
—tr Ut)

l p

(2.1)

where g is the coupling constant and x =2/g . The link
operators EI and U& which appear in Eq. (2.1) are conju-
gate quantum variables satisfying the commutation rela-
tions

(2.2)

where A,
' are the eight Gell-Mann matrices of SU(3). EP

is the color electric fiux operator associated with the link

II. THE t-EXPANSION CALCULATION OF (ff &

The SU(3) pure gauge theory as defined by the Kogut-
Susskind Hamiltonian is [7]
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[X~(r),X (r')
J =5, , 5, (2.3)

where i,j are color indices. The fermionic part of the
Hamiltonian is

HF =—farl„(r) [X (r) U(r, p, )X(r+p, )
r, p

l, and tr U is the color magnetic Aux operator associated
with the plaquette p.

For dynamical fermions we employ the Kogut-
Susskind scheme [8—10] in which the fermions are
represented by a single degree of freedom per site:

t~ Oo limit. Moreover, it can be expanded in the form

o(t) = y ', & oH")',
pg I

(2.9)

(2.10}

wherein all the coefficients ( OH" )' have the same
volume dependence as 0, and are defined recursively by

~'

m m
(OH")'= (OH") —g (OH )'& v IH lu &

—X «+V)U'(r p)X(r)] (2 4) where the (OH ) are defined to be

where

g„(r)=( —1)', rl (r) =( —1)", rt, (r) =( —1)» . (2.5)

r varies over the lattice sites and p over the three direc-
tions of space. H~ describes QCD with two massless
dynamical quarks (u and d}.

Starting with the strong coupling vacuum ~0), which is
the state annihilated by the color electric field,

E, io&=0, (2.6)

the full vacuum is chosen in a staggered form which
divides the lattice into two sublattices, that of even r (i.e.,
even x +y +z) and that of odd r:

(u&=11 „)+&11,„,„,( —&(0), (2.7)

where
~

—) ( ~
+ ) ) is a color singlet annihilated by X;

(X,')
The t-expansion method has been reviewed extensively

in the context of pure gauge theories [11-13].Its appli-
cation to lattice theories with dynamical quarks was de-
scribed in [14,1]. Its main idea is that expressions such as

( v ~e tH/20e tH—/2~v )—

& u~e 'H~u )
(2.8)

should tend to the ground-state expectation value in the
I

m

(OH ) =—g (v ~H»OH»~u ) . (2.11)
2, =o .P

Now we should translate the operator fg=gu+dd to
its lattice analogue:

1t g~g( —1)"+»+'X,(r}X,(r), (2.12)

0=—+[X;(0)X;(0)—X;(z)X;(z)] .1
(2.13)

Using the symmetr~ of odd shifts combined with an inter-
change of X with X [2] and the anticommutation relation
of Eq. (2.3},we obtain the following expression for 0:

O =
2

—yX;(0)Xt(O) .3

1

(2.14)

The operator 0 represents the lattice Pf expectation
value for two fiavors per one lattice site. Expanding 0 we
have obtained the following series for 0 (t) to order t:

where summation over the color indices is included. This
operator has difFerent values for even and odd sites;
hence, we take its mean value over one even and one odd
site:

(v~0~v)= —+ y t y t + —( ——49—5y +112y )t + (15y +312y —16y )t
2 8 4 384 192

+ (6066ys+331893y6 —231336y +3968y )t + ( —21857ys —217768y6+37824y —256yz)t
207 360 69 120

+ (
—67237128y' —2641044798y +5708820357y —267546240y +130048y )t +0(t ) .

1 254 113280
(2.15)

III. DISCUSSION

As usual, we are interested in the scaling behavior of
dimensionless quantities. Such are the ratios between
(Qg)'/ and any mass series which we have previously
calculated [1,2]. In the strong-coupling limit, all these
masses, with the exception of the nucleon, which has a
vanishing energy, tend to infinity. On the other hand,

(gg) tends to a constant in the same limit. Therefore, it
is favorable to consider ratios of the form (gPtP)

' /M.
First, we examine the N/( gf) '/ ratio, as displayed in

Fig. 1. Since both the nucleon and the (~) series were
expanded to order t, we have more 8-Pade approxi-
mants in our disposal than usua1. In Fig. 1 we have plot-
ted all the approximants which are stable and which
more or less coincide with one another. The curves
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and the (gg)'~3. The approximants shown
are the 0/5 (full line), 0/6 (dotted line), 0/7
(dot-dashed line), 1/5 (dashed line), and 1/6
(highest dotted line in the high y region).
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FIG. 2. Ratio between (t/rQ)'~3 and ~-
meson mass. The full, dotted, and dot-dashed
lines are the 0/3, 0/4, and 0/5 approximants,
respectively.
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FIG. 3. Ratio between the N/co and the
N/(fg)'~' ratios Shown a. re the 0/4 (full
line) and 1/4 (dotted line) approximants.
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FIG. 4. 0/2 (full line), 0/3 (dotted line), and
1/3 (dot-dashed line) D-Pade approximants for
the ratio between (~) '~' and scalar mass.
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displayed exhibit instability in the crossover region, and
continue to rise beyond y -2, where we read the physical
results. Therefore it would be fair to say that near y-2
we read the ratio to be in the range 1.6-2.0. This ratio
corresponds to a ( PP) '~3 value in the range of 470—590
MeV. It is clear from Fig. 1 that we have obtained a
value for the (gg) '~, which is too low due to the insta-
bility of the approximants.

Next, we study the (f1()'~ /co ratio, shown in Fig. 2.
Again, we have a large dispersion of the approximants,
and near y -2 we have a ratio in the rangle 0.64-0.82, in-

dicating a value for the (gg) '~3 in the rangle 500-640
MeV. The approximants shown do not exhibit a clear
asymptotic behavior and therefore we try, in Fig. 3, to ex-
tract a better estimate by plotting the ratio between the
N/to mass ratio and the N/(tttf) '~3 ratio. The only two
approximants, namely 0/5 and 1/4, which are stable,
coincide with one another onto a clear asymptotic value
of 0.8. This yields a (gg)'~3 value of 625 MeV. We
trust this result due to its clear asymptotic trend.

In Fig. 4 we display the ratio of (ff) '~ to M(0++ ).
As explained in [1,2], ratios which involve the 0++ state
break down right after y-2. However, we can estimate
from the peak in the crossover region a value in the range
0.37-0.46. This value gives an estimate for the (gg) '~

value in the range 480-600 MeV.
Finally, we have also examined the ratio between the

(/tlat)'~ and the heavier baryons, the b and the X»,

which were calculated in Ref. [2]. As we expected, the
ratio that involves these baryons do not show any scaling
tendency, and trying to ready the ratios near y -2 we ob-
tain lower values for the ( Pg) '~ . These values are con-
sistent with the results of Ref. [2] where we found these
baryons to be about 25 percent heavier than their ob-
served values.

Thus we conclude that the most trustworthy result is
that of Fig. 3, which indicates a value of (625 MeV) for
the (pit ). This is in accordance with our working hy-

pothesis [1-3],which is to plot all possible ratios, but to
regard as reliable only those which show scaling
behavior. The existence of scaling, for us, is an indication
for the correctness of the results. We note, however, that
we see no physical reason why the ratio which involves
the to mass should yield a better result. Moreover, the ex-

istence of scaling and the consistency of our result with
the result reported by MC sitnulations [6] both indicate
that our model, indeed, should give a good physical pic-
ture of all hadrons made out of u and d quarks, but for
the pion.
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