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Viscosities of quark-gluon plasmas
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The quark and gluon viscosities are calculated in quark-gluon plasmas to leading orders in the

coupling constant by including screening. For weakly interacting +CD and +ED plasmas, dynam-

ical screening of transverse interactions and Debye screening of longitudinal interactions controls

the infrared divergences. For strongly interacting plasmas other screening mechanisms taken from

lattice calculations are employed. By solving the Boltzmann equation for quarks and gluons includ-

ing screening, the viscosity is calculated to leading orders in the coupling constant. The leading

logarithmic order is calculated exactly by a full variational treatment. The next to leading orders

are found to be important for the transport properties of quark-gluon plasmas created in relativistic

heavy-ion collisions and the early universe, where the coupling constant is large.

PACS uumber(s): 12.38.Mh, 12.38.Bx, 21.65.+f, 95.30.Cq

I. INTRODUCTION

Transport and relaxation properties of quark and gluon

(/CD) plasmas are important in a number of a different
contexts. They determine the time that it takes a quark-
gluon plasma formed in a heavy-ion collision to approach
equilibrium, and they are of interest in astrophysical sit-
uations such as the early Universe, and possibly neutron
stars.

The basic difficulty in calculating transport properties
of such plasmas, as well as of relativistic electron-photon
(/ED) plasmas, is the singular nature of the long-range
interactions between constituents, which leads to diver-
gences in scattering cross sections similar to those found
in Rutherford scattering. This makes the problem of fun-
damental methodological interest, in addition to its pos-
sible applications. The first approaches to describe the
transport properties of quark-gluon plasmas employed
the relaxation-time approximation [1—3] for the collision
term. This approximation simplifies the collision integral
enormously and transport coefficients are related directly
to the relaxation time. The latter is typically estimated
&om a characteristic cross section times the density of
scatterers. In Refs. [2, 3] the divergent part of the to-
tal cross section at small momentum transfers was as-
sumed to be screened at momentum transfers less than
the Debye momentum. However, Debye screening influ-

ences only the longitudinal (electric) part of the /ED and
/CD interactions, and the transverse (magnetic) part is
unscreened in the static limit at order gT. It may be
screened at order g2T.

Recently it has been shown that the physics responsible
for cutting oE transverse interactions at small momenta
is dynamical screening [4]. This effect is due to Landau
damping of the exchanged gluons or photons. Within
perturbative /CD and /ED rigorous analytical calcula-
tions of transport coefficients to leading order have been
made for high teinperatures [4, 5] as well as low temper-
atures [6] as compared to the chemical potentials of the
constituents.

Transport processes depend on a characteristic relax-

ation time, 7q„,of the particular transport process con-
sidered. For example, in high-temperature plasma the
viscosities, ri; = w;7„;/5, of particle type i are propor-
tional to the characteristic times for viscous relaxation,

rt„,which were first calculated in [4] to leading
order in the coupling constant. More generally one finds
that the typical transport relaxation rates that determine
momentum stopping and thermal and viscous relaxation
are in a weakly interacting /CD plasma:

oc a21n(1/a, )T + O(a, ),
7tr

where the expansion is in terms of the fine-structure con-
stant a, = g /4m. The coefficients of proportionality to
the leading order in a, (in the following called the leading
logarithmic order) has been calculated analytically for a
number of transport processes in high-temperature plas-
mas [4, 5]. Likewise in a /ED plasma the typical trans-
port relaxation rates for viscous processes, momentum
stopping, and thermal and electrical conduction have the
same dependence as (1) on the /ED fine-structure con-
stant a [5].

The dependence of the transport rates on the coupling
constants is very sensitive to the screening. In addition
to the factor o.2 &om the matrix element squared of the
quark and gluon interactions, the very singular /CD in-
teractions for small momentum transfers lead to a loga-
rithm, ln(q /q;„),of the maximum and minimum mo-
mentum transfers. The typical particle momenta limits
the maximum momentum transfer, q T, and De-
bye and dynamical screening leads to effective screening
for small momentum transfers of order q; qD gT.
This gives the leading logarithmic order in the coupling
constant, ln(T/qD) ln(1/a, ), to the transport rates
(1)

The calculations in [4, 5] were brief and dealt only with
the leading logarithmic order in the coupling constant
with a given ansatz for the distribution function. Here,
more detailed calculations of the quark and gluon vis-
cosities in the high-temperature quark-gluon plasmas are
presented. The leading logarithmic order is calculated ex-
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actly by a variational method and the next to leading or-
der, the a, term in (1), is calculated as well. Because n,
is not exponentially small, the next to leading order is im-
portant in many realistic physical situations such as rela-
tivistic heavy-ion collisions and the early Universe. Fur-
thermore when the Debye screening length is larger than
the interparticle screening, which occurs when o.,+0.1 as
we shall see below, Debye and dynamical screening breaks
down. Instead lattice gauge calculations have found that
quark-gluon plasmas seem to develop a constant screen-
ing mass, m~~ 1.1T, for temperatures T 2 —3T„andit
is important to see what effects this alternative screening
mechanism has in strongly interacting plasmas.

We shall first describe in Sec. II the transport theory
we use, namely, the Boltzmann equation, and the screen-
ing of long range /CD and /ED interactions. In Sec.
III, we describe the process of shear flow and the varia-
tional calculation necessary in order to find the viscosity.
In Sec. IV we then evaluate the collision term to leading
logarithmic order with a simplifying ansatz for the trial
function and refer to Appendix A for a full and exact
variational calculation. In Sec. V we calculate the viscos-
ity to higher orders in the coupling constant and discuss
strongly interacting plasmas. Finally, in Sec. VI we give
a summary and discuss generalizations of the methods
developed here to other transport coefBcients.

II. TRANSPORT THEORY

Transport processes are most easily described by the
Boltzmann equation

(g—+ vi &. + F &p, ni = 27ri 3 ).~M~'

) 234

x [nin3 (1 + n3) (1 6 n4) —(1 6 ni) (1 + n2) nsn4]

X b(ei + e2 —e3 E4)6p& +p& pa+p4 (2)

where e; is the energy and p; the momentum of the quasi-
particles, F some force acting on the quasiparticles, and
the right-hand side of (2) is the collision term. n;(p;) are
the Fermi and Bose quasiparticle distribution functions
for quarks and gluons, and the signs 6 include stimu-
lated emission and Pauli blocking. The spin and color
statistical factor v2 is 16 for gluons and 12' for quarks
and antiquarks with Ny flavors. [M~3 is the squared ma-
trix element for the scattering process 12 + 34, summed
over final states and averaged over initial states. It is
related to the Lorentz-invariant matrix element ~M~ by
IMI' = I~I'/(16EiE'3E3c4). For gluon-gluon scattering
[7] (see Fig. 1),

2 9 4( us st ut)
l~ssl' = -a'

I
3 ——————

I
(3)

4 ( t2 u2 s2)

where s, t, and u are the usual Mandelstam variables.
In Eq. (3) the double counting of final states has been
corrected for by inserting a factor 1/2. For quark-gluon
scattering,

=g(u +s)/ ——
(t' 9us) '

(&)
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FIG. 1. Feynman diagram for gluon-gluon scattering in
the t channel. The lines in the loops can be either quark or
gluon propagators.

and for scattering of two different quark flavors,

2 2

1~m" I' = 9&'

The matrix element for scattering of the same quark fa-
vors or quark-antiquark scattering is different at large
momentum transfer, but the same as (5) at small mo-

rnentum transfers.
The t 3 and u 2 singularities in Eqs. (3)—(5) lead to

diverging transport cross sections and therefore vanishing
transport coefBcients. Including screening, it was shown
in [4—6] that finite transport coeKcients are obtained.
In fact, the leading contribution to transport coefficient
comes from these singularities. In the t = urz —q2 channel
the singularity occurs for small momentum q and energy
~ transfers (see Fig. 1).

For small momentum transfer, q (( eq, e2 T, energy
conservation implies that 4) = 6] —63 vz q = —V2 ~

q, where v, = p;. Therefore the velocity projections
transverse to q have lengths ]vi T] = ~v3 z ]

= gl —p,
where p = &u/q. Consequently, vi T v3 T ——(1—p ) cos P,
where P is the angle between vi T and v2, T. For q « T
we thus have

s —u 2pi pz (1 —cos 812)

2pip2(1 —p) (1 —cos P), (6)

and the interactions split into longitudinal and transverse
ones [8]:

9 4 1 (1 —p')cosP
q2—

The interactions are modified by inclusion of the gluon,
or photon, self-energies III, and IIT [8] (see also Fig. 1).
In the random-phase approximation (RPA) the polariza-
tions are given in the long-wavelength limit (q « T) by

r'v+»
III (q id) = qD 1 —lil

2 (p —1)

11 (q, ~) =q' —+»I l (9)
p' p(1 —p, ') ry+1)',
2 4 E& —1)

where p = ur/q and qL1 = 1/AD is the Debye wave

number. In a weakly interacting high-temperature /CD
plasma [8, 9],
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q~ = 4~(1+ N&/6)a. T', (io)

where a, = g2/4z is the fine-structure constant for
strong interactions, the factor (1+Ny/6) is the sum of
contributions kom gluon screening, the "1," and &om
light-xnass quarks, of number of Bavors, Ny. In a high-
temperature /ED plasma, q&~

——4zaT2/3, where a is
the /ED fine-structure constant.

One should keep in mind that the self energies of (8)
and (9) are only valid in the long-wavelength limit, i.e. ,
for q && T. When q T other contributions of order
a, qT enter (see, e.g. , [8]) which may be gauge dependent
[10]. However, as long as a, is small all contributions
&om the self-energies can be ignored in the gluon prop-
agator when q T because the matrix element squared
already carries the order n~.

In the above derivations we have consistently assumed
that the screening was provided in the RPA by the gluon
self-energies, which give the Debye and dynamical screen-
ing of longitudinal and transverse interactions, respec-
tively. Both effects provide a natural effective cutoff of
momentum transfer less than q;„qD.These pertur-
bative ideas must, however, break down when the screen-
ing length becomes as short as the interparticle spacing,
i.e., when q~ T. In terms of the coupling constant this
breakdown happens when a, + [4z'(1 + Nf/6)] 0.1,
according to Eq. (10). In lattice gauge calculations

of quark-gluon plasma above twice the temperature of
the phase transition, T, 180 MeV, one Gnds strong
nonperturbative effects in the plasma so that the typical
screening mass is my~ 1.1T [11]. One may argue [12]
that perturbation theory still applies for large xnoxnen-

tum transfers so that the matrix elexnents are given by
the simple Feynman tree diagrams, but that perturbation
theory does not apply for small momentum transfers of
order q q~, and that one should rather insert the effec-
tive cutoff found by lattice gauge calculations

III, IIg m ), a, 0.1.
As will be shown below, the transport rates depend only
logarithmically on the cutoff. The phenomenological
screening mass of (11) provides us with a method to ex-
tend our calculations of transport coefficients to larger
values for o.„andit can be combined to the Debye and
dynamical screening in weakly interacting quark-gluon
plasmas.

III. THE VISCOSITY

With screening included in the interaction we can now
proceed to calculate transport properties as the viscos-
ity. In the presence of a small shear fiow, u(y), in the z
direction we obtain &om the Boltzmann equation

Oni Bv~
piN:viy ~

= 2z v2 ) lMl [nin2(1 6 n3) (1 + n4) —(1 6 ni) (1 + n2)nsn4]
234

xb(ei + e2 —es —e4)6p~+p~&p&+p4 (i2)

For small u we can furthermore linearize the quasiparticle
distribution function

It is very convenient to define a scalar product of two real
functions by

LE Bn Ou~n;=n; + 4; )
E'p g

(13)
BA

(ail%) = —v2) 4i(p)A(p)&
P

where the local equilibrium distribution function is

n, = (exp[(e, —u p;)/T] p I) (14)

@ = p*pyf(p/T)

where now the function f must be determined &om the
Boltzmann equation. Inserting (13) in the Boltzmann
equation we find

8Ay 2
plmvly 2z v2 ) IMI [nin2(1 + ns) (1 + n4)

234
—(1 + ni) (1 6 n2) nsn4]

xb(ei + E2 —es —e4)hp&+p& p&+p4

x(@i+42 O3 @4) . (i6)

and 4; is an unknown function that represents the devi-
ations &om local equilibriuxn. By symmetry 4 has to be
on the forxn

(xlc)'
(c'III C')

(i9)

Since (.l.) defines an inner product, the quantity
(Xl@)2/(4'lIl4') is minimal for @ = 4 with the minimal
value ri. Equation (19) is therefore convenient for varia-
tional treatxnent, which will be carried out in Appendix
A.

To find the viscosity we must solve the integral equa-

Thus Eq. (16) may be written on the form lX) = Il@),
where lX) = p v„and I is the integral operator acting
on O'. The viscosity is given in terms of 4 [13] and can
now be written as

OA
iI = —v2) p vy @p ——(Xll).

BEp
P

Equivalently, the viscosity is given from (16) as



4742 H. HEISELBERG

tion (16) for which we have to evaluate

(4] I ]4) = 2)rV2 ) ~M] nin2(1 +n3)(1 6 n4)
P1)P2)q,

(4'1 + 42 —43 —44) 2

X
4

b(ei + e2 —e3 —E4)'. (20)

Momentum conservation requires that p3 ——pz + q and

p4 ——p2 —q where g is the momentum transfer. Intro-
ducing an auxiliary integral over energy transfers, u, the
b function in energy can be written

I'
b(el+ e2 —es —e4) = d~ b

~

cos81 —p-
pi q ( 2pi q )

x b
i

cos82 —p+ i, (21)p4

p2q 2p2q)
'

where Hq is the polar angle between g and pq and 82 is
the corresponding one between q and p2 (see Fig. 2).
Consequently, we find

(O~1~O) = f dq f d~

X
(~—~)/2

X f(~+~)/2
2 ql' —~M~'(C'1+ C2 ~3 O4)

0 27K

dpi pi&1 (pl ) [1 + )11(pl + ~L )]

dp2 p&n2(p2) [1 + n2(p2 —~)]

(22)

Pi~@%

FIG. 2. The collision geometry. For small momentum
transfer, q « p~, pq, energy and momentum conservation re-
quires cos8& = cos8& ——ujq.

This integral equation for 4 has been solved in a few
cases under simplifying circumstances. For example, in
Fermi liquids the sharp Fermi surface restricts all particle
momenta near the Fermi surface, and with a simplified
form for the scattering matrix element techniques have
been developed to calculate a number of transport co-
efficients exactly [13]. For the /CD and /ED plasmas
the very singular interaction can, once screened, be ex-
ploited since it allows an expansion at small momentum
transfers. Thus an analytical calculation of the trans-
port coefficients can be carried out at least to leading
logarithmic order in the coupling constant [4—6].

IV. VISCOSITY TO LEADING LOGARITHMIC
ORDER

In Ref. [4], through solution of the Boltzmann kinetic
equation, the first viscosity of a quark-gluon plasma was
derived to leading logarithmic order in the /CD coupling
strength. We will in the following give a more thorough
and exact derivation of the quark and gluon viscosity.
The total viscosity, to leading order, is an additive sum
of the gluon and quark viscosities, q = gz + gq.

The leading logarithmic order comes &om small mo-
mentum transfers because the very singular matrix ele-
ment (7) dominates. For small q the kinematics simplify
enormously and, as we will now show, the integrals sep-
arate allowing almost analytical calculations. First, we
can set the lower limits on the p~ and p2 integrals to
zero, however, then replacing the upper limit on q by the
natural cutofF &om the distribution functions, which is

q „T.Thus we find, from (22),
OO

(~]lie') =,T dpi p', ~.(1+ni)2' p

X F2 P2A2 1 6 A2

f: "f,"-f.'-
X]M~ (41+ Cq2 —Cqs —Cq4) (23)

to leading logarithmic order
The solution to the integral equation or equivalently

the variational calculation of (19) is quite technical and
is for that reason given in Appendix A. A much simpler
calculation is to make the standard assumption in viscous
processes, i.e., to take the trial function as

f(p/T) = (p/T)'. (24)

As will be shown in Appendix A this turns out to be a
very good approximation. It is accurate to more than
99'%%uo for reasons also explained in the appendix. f can
be defined up to any constant which cancels in (19) and
therefore never enters in the viscosity.

The quantity (41+ 42 —C'3 —C)4) can be averaged
over z and y directions while keeping y, and P fixed. This
corresponds to keeping the relative positions of the three
vectors g, p, and p' fixed relative to each other and ro-
tating this system over the three Euler angles (see also
Appendix A). Consequently, we obtain

2

((@1+ @2 C 3 ~ 4) ) T4 (3(P2 Pl)

+[q (» —»)]')
2

= »Z, ((3+p')(pi+ p2)

—2pip2[4p + 3(l —& ) cos Q]).
(25)

The integrals over pl and p2 in (23) are elementary. Next
we perform the integrations or averages over p and P
required in (23). We note in passing that the term in (25)
proportional to pqp2 vanishes and that p electively can
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(27)

Since (@IX) = [64((5)/m ]T, we find, from (19) and
(27)

2s15((5)2 T3
a' ln(T/qg))
T3

a2 ln(l/n, )
' (2s)

to leading logarithmic order in a, = g /4x.
To obtain the full gluon viscosity we must add scatter-

ing on quarks and antiquarks, which is calculated analo-
gously and only has a few factors different. Firstly, from

(3) and (4) we see that the matrix element squared is
a factor 4/9 smaller. Secondly, the statistical factor is
v2 = 12' instead of 16. Thirdly, in integrating over
the factor (p2i + p22) in Eq. (25) we note that the distri-
bution function, n2, in Eq. (23) is now a fermion one.
Consequently, the p~ and p2 integrations give a factor
(1/2+ 7/8)/2 less for gluon-quark collisions as compared
to gluon-gluon collisions and we find

-1 + —lq-1 ~gg

1+ 11N~/48
(29)

In [4] the slightly different result il~ = i)~s/(1 + Ny/6)
was obtained.

The quark viscosity can be obtained analogously to
the gluon one. The quark viscosity due to collisions on
quarks only, iv~q, deviates from ps' by a factor (4/9) in
the matrix elements. In addition another factor appears
because Fermi integrals are involved instead of Bose in-
tegrals. By comparing to (19,18,20) we find

be replaced by 1/3 (see Appendix A). Let us first consider
the case of gluon-gluon scattering inserting IM&~l from

(3). We thus find

28 3 qmax

(@III@)= a'.T q dq dy,
45 0

X ++ 11,(~)I' lq'+ IIT () )/(1 —~') I'

(26)

This integral is discussed in detail in Appendix B. For
the longitudinal interactions IIL, q& due to Debye
screening and the leading term is a logarithm of the
ratio of maximum to minimum momentum transfer,
ln(q /q; ) 1n(T/q~). Likewise for the transverse
interactions IIT i(m/4)pq& due to Landau damp-
ing and the dependence on p = ~/q provides sufficient
screening to render the integral finite, and the leading
term is the same logarithm as for the longitudinal inter-
actions. Whereas the details of the screening are unim-
portant for the leading logarithmic order, they are im-
portant for the higher orders and they are calculated in
detail in Appendix B. The final result is thus, to leading
logarithmic order,

(15/16) 5 3

(4/9) 2(7/8) (1/2) 2s7 (3o)

V. VISCOSITY TO HIGHER ORDERS IN as

The leading logarithmic order dominates at extremely
high temperatures, where the running coupling constant
is small, but at lower temperatures higher orders be-
come important. The next to leading order correction
to the viscous rate in the coupling constant is of order
a, . It may be significant because the leading logarithm
is a slowly increasing function. In the derivation of the
leading logarithmic order, Eq. (27), we have been very
cavalier with any factors entering in the logarithm, which
are of order a2. It was only argued that the leading log-
arithmic order ln(q /q; ) ln(T/q~) because q
and q; were of order T and qD, respectively. Fi-
nally, if thermal quark-gluon plasmas are created in rela-
tivistic heavy-ion collisions at energies reached at CERN
and the BNL relativisitic Heavy Ion Collider (RHIC),
the temperatures achieved will probably be below a GeV.
We can thus estimate the interaction strength f'rom the
running coupling constant o., 6x/(33 —2') ln(T/A)
which, with A 150 MeV and T 1 GeV, gives a, 0.4.
For such large coupling constants, Debye and dynamical
screening is replaced by an effective screening mass m&~
as discussed above, which will affect the viscosity consid-
erably.

To calculate the viscosity to order a2 exactly, the 5-
dimensional integral of (22) must be evaluated niimeri-
cally and at the same time a variational calculation of 4
must be performed. This is a very difficult task and we
shall instead use the information obtained in the previ-
ous section, that the trial function f oc p2 is expected to
be an extremely good approximation. With that ansatz
for the trial function, it is then straightforward to calcu-
late the integral of (21) numerically and find the viscosity
to order o., for the given screening mechanism. The 5-
dimensional numerical evaluation of the collision integral
of (21) is a complicated function of the coupling constant.
It is convenient to write it in terms of the function Q:

27 s (gg) )
(@III@)sg—— a,q T

( qmin )
(32)

where the index gg refers to gluon-gluon scattering,
but the analogous definitions apply to gluon-quark and

Note that the statistical factors v cancel in egg and gqq.
Including quark scatterings on gluons lead to similar fac-
tors in in (4 III@),namely a factor (9/4) from the matrix
element, a factor 16/12' from statistics, and a factor
(8/7+ 2)/2 from Bose instead of Fermi integrals. Thus

qqq 1 + 11Ny/48
1 + 33/7' 1 + 7'/33

which for Nq ——2 results in gq ——4.4', a quark viscos-
ity that is larger than the gluon one partly because the
gluons generally interact stronger than the quarks and
partly because of difFerences between Bose and Fermi dis-
tribution functions.
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quark-quark scattering. The function Q and the eKec-
tive maximum and minimum momentum transfers q
and qm;„are given in Appendix B. In weakly interact-
ing plasmas, where the screening is provided by Debye
and dynamical screening, the function Q is basically just
a logarithm of the ratio of the maximum and minimum
momentum transfer, i.e.,

Ql I
=»I ™~

Ii 'dmin ) i /min )
By numerical integration we 6nd that the distribution
functions lead to an effective cutofF of q 3T. This
is because the distribution functions are weighted with
several powers of particle momenta and thus contribute
the most for p 3T. The effective cutofF is slightly larger
for quark-gluon and quark-quark scattering because the
Fermi distribution functions emphasize larger mornenta
than the Bose ones. Debye and dynamical screening leads
to q; 1.26q~, as described in Eq. (B6) and so, &om

(B8),

'. «)

11' ( 0.72

48 in, (1 +Nf/6))
A/~0 1

y

to leading orders in e, . In strongly interacting plasmas
we obtain, by inserting (B10) in (32),

g, -0.55, 1+1.31
T 11' a, )0.1.

which extends Eq. (37) to higher orders. In weakly in-
teracting plasmas (36) reduces to

T' r 0.44
i' 0.342 —ln

In2 in, 1+%A 6 )

Q(q(ss) /q;„)= 0.626, o.,)0.1, (35)

and similarly for quark-gluon and gluon-gluon scatter-

ing Q(q
s /q;„) = 0.819 and Q(q

~ /q;„) = 1.024,
respectively.

Adding gluon-gluon and gluon-quark scatterings we
obtain the gluon viscosities

04.
Q

" = ln
I I, n, ~0.1. (34)

I q;„~ ia, (1+Nf/6) )
The numerical factor inside the logarithm, which gives
the order 0;„is discussed in more detail in Appendix B.

In the other limit, qD T, or equivalently a, )0.1,
perturbative ideas break down a,nd we assume an ef-
fective screening mass taken from lattice calculations,q;„1.1T, as described by Eq. (11). Thus we find
[see (B10)]

In Fig. 3 we show the gluon viscosity with the various
assumptions for screening. With a dash-dotted curve the
result of Eq. (38) assuming a constant screening mass,
mp~ ——1.1T, is shown. With a dashed curve the numerical
result assuming Debye and dynamical screening of Eqs.
(8) and (9) is shown. For n, (0.05 it is given by Eq.
(37) to a good approximation, whereas for n, )0.05 the
result of Eq. (B4) is better. The final viscosity shown
by a full curve is obtained by combining the two limits,
i.e., applying Debye and dynamical screening in weakly
interacting plasmas when qD T, or equivalently 0,, 0.1,
but an efFective screening mass m~~

——1.1T as given by
Eq. (11)when n, )0.1. This corresponds to choosing the
smallest value of the viscosities as seen in Fig. 3, i.e., the
two limits of Eqs. (37) and (38).

Similarly, adding quark-quark and quark-gluon scat-
terings we End the quark viscosity

10000

1000 .-

--—q, , a, )0.1 limit

a g0. 1 limit

100
FIG. 3. The gluon viscosity for Nf

3 assuming Debye and dynamical screening
(dashed curve), a constant screening mass
m~i ——1.1T (dashed-dotted curve), and the
minimal one (full curve).

0.01 0.10
(X,

1.00
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5336((5)2 T3
7lq= 2311~7 f A2

N

( (se) (ee) )
X

q 7Nf qm~+

which in weakly interacting plasmas gives

0.72
gq 0.752' ln

in~ (cx, I+Ny 6 )

(39)

'gi = ~i&ni/5~ (42)

order is p„=3o., ln(l/a, ) as explained in [16]. For the
viscosity vertex corrections can also be ignored since the
extra vertices add a factor o,~. Even though integration
over soft momenta may cancel a factor a„asis the case
for p„,the result is still of higher order in the coupling
constant.

Writing each of the viscosities g; (i = q, g) in terms of
the viscous relaxation time w„;as

7' t' 1.15
33 ia, (1 + Ny/6) y

a, ~0.1, (4o)

where ms = (32m /45)T and m~ = (Ny7vr2/15)T are
the gluon and quark enthalpies, respectively, we obtain
the viscous relaxation rate for gluons,

and, in the strongly interacting plasmas,

T3 7Nf
gq 0 92Nf 1 + 1 25

Ck 33
a, +0.1. (41)

The quark viscosity increases with the number of quark
Bavors, Nf, whereas the gluon viscosity decreases as can
be seen in Figs. 4 and 5, where the viscosities are shown
for two and three flavors, respectively. The total viscosity
of a quark-gluon plasma, g = gg + gq, is dominated by
the quark viscosity.

From the definition of the viscosity in terms of the col-
lision integral (18) and (20), which only contains positive
quantities, it follows trivially that the viscosity is positive
as is a physical necessity. The resulting viscosities of Eqs.
(36) and (39) are positive quantities, whereas the a, +0.1
expansions of Eqs. (37) and (40) are not when extended
to the region n, ~0.5. This explains the results found in

[14], where it was claimed that estimates of the next to
leading order o.~ could lead to a negative viscosity.

Contributions from vertex corrections should also be
considered. In fact for the calculation of the quasiparticle
damping rate p„,Braaten and Pisarski [15] found that

vertex corrections contributed to leading order p„o(a)

6.6a, for zero gluon momenta, p. Vertex corrections also
contribute to order o., for large quasiparticle momenta,

p » gT, but they can here be ignored since the leading

T
3s5s((5)2 a~

( (ss) (su) )
X +qmax 11Ny qmax

(qmin j
and quarks and antiquarks,

a,T, (43)

(a.(1+Ny/6) )

11' ( 0.72 ) ( (45)

1 lie' 237 T
3 5'L, (5)' n

( (ae) ) 7N (q(m) )
~qmin j 33 (qmin j

The viscous relaxation times, vz z, wz q, and
1/(7„+7.„)are thus very similar to the corresponding
viscosities when divided by a factor of T . The curves
on Figs. 4 and 5 therefore applies to the viscous relax-
ation times (times temperature) as well when divided by
a factor of 1.4 and 0.92Nf for gluons and quarks,
respectively, according to Eq. (42).

In weakly interacting plasma the viscous rates can be
approximated by
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FIC. 4. The quark, gluon, and total vis-

cosities for Nf ——3.
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10000

1000

100 FIG. 5. The quark, gluon, and total vis-
cosities for Ny ——2.
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0.01 0.10
0,,

1.00

and

7' f 1 15 ) (
33 ~,(1+N, /6)

(46)

to leading orders in a, .

VI. 5UMMARV

By solving the Boltzmann equation for quarks and glu-
ons the viscosities in quark-gluon plasmas were calcu-
lated to leading orders in the coupling constant. Inclusion
of dynamical screening of transverse interactions, which
controls the infrared divergences in QED and QCD, is
essential for obtaining finite transport coefficients in the
weakly interacting plasmas. The solution of the trans-
port process was extended to strongly interacting plas-
mas by assuming an eff'ective screening mass of order
m~~ = 1.1T, as found in lattice calculations, when the
Debye screening length became larger than the interpar-
ticle distance or when n, +0.1. The Boltzmann equation
was solved exactly to leading logarithmic order numeri-
cally, but the result only differed by less than a percent
&om an analytical result obtained by a simple ansatz for
the deviation kom local equilibrium, 4 oc p p„. The
next to leading orders were also calculated and found to
be very important for the transport properties relevant
for quark-gluon plasmas created in relativistic heavy-ion
collisions and the early Universe. For o,,+0.1 we 6nd
g; = C; iT /n, ln(C;2/n, ), whereas for n, 0.1 we find
g' —C' 3T /n, with coefficients C; z given above.

The viscosity in degenerate plasmas of quarks, i.e., for
T « p& was calculated in [6]. Several difFerences were
found. In the high-temperature quark-gluon plasma the
chemical potential can be ignored and the transport pro-
cesses depend on two momentum scales only, namely T
and qD gT. In degenerate quark matter three mo-

mentum scales enter, namely p&, T, and qD gp, ~, and
the transport process depends considerably on which of
qD and T is the larger. In fact for T (& qD transverse
interactions turn out to be dominant in contrast to the
high-temperature quark-gluon plasma where transverse
and longitudinal interactions contribute by similar mag-
nitude. Furthermore, the existence of a relative sharp
Fermi surface allows an almost analytical calculation of
both the leading (logarithmic) order as well as the next
order o.2.

The techniques for calculating the viscosities to leading
orders in the coupling constants can be applied to other
transport coeFicients as well. The leading logarithmic
orders to momentum stopping, electrical conductivities,
and thermal dissipation in QCD and QED plasmas have
been estimated. with simple An86tze for the distribution
functions in [5]. Based on the experience with the vis-
cosity studied here, we do not expect the leading loga-
rithmic order for these transport coefficients to decrease
by much when a full variational calculation is performed.
The next to leading logarithmic order to these transport
coeKcients can also be estimated in the following way.
As for the viscosity, Eq. (B5), one should in the lead-

ing logarithm, ln(q /q;„), replace q by the aver-

age particle momenta which enter the collision integral
for the relevant transport process, and replace q;„by

A few transport coeKcients are, however, difFerent.
The second viscosity ( is zero for a gas of massless rela-
tivistic particles [1] and one cannot define a thermal con-
ductivity in a plasma of zero baryon number. One can,
however, consider thermal dissipation processes [5] where
the leading orders also can be calculated with the above
methods. The effective soft cutofF will, however, be dif-
ferent for thermal dissipation processes as described in [6]
because the transport of energy introduces dependences
on ~, which also is present in the transverse screening,
IIT ((u jq).

All the transport processes discussed above depend
only on momentum scales &om the typical particle mo-
mentum, q „Tdown to the Debye screening wave
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number q . qD gT, which also is the momen-
tum scale for dynamical screening. There is, however, a
shorter momentnm scale of order of the magnetic mass,

mme g T, at which perturbative ideas of the quark-
gluon plasma fails [17]. As shown in [16] the quark and
gluon quasiparticle decay rates depend on this in&ared
cutoff m ~s. Furthermore, recent studies [18] find that
the color dMusion and conductivity also depend on this
cutofF and therefore the rate of color relaxation is a factor
I/o. , larger than Eq. (1).
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APPENDIX A:
EXACT VARIATIONAL CALCULATION
TO LEADING LOGARITHMIC ORDER
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In this appendix we solve the Boltzmann equation and
find the deviation from local equilibrium, 4', by a varia-
tional treatment of Eq. (18).

For a general function 4 = p p&f (p/T) we have

c 1 + @2 @3 @4 Pl, apl, ,f(pi) + P2,ep2, yf (p2) Ps, aps, yf (Ps) P4,aP4, yf (P4)
= —(q P&+ q&P )f(I ) —PP i»fi(P) + (q P'„+q,p'. )f(I') + PP'.P„'fi(S')

2

(q Pv+ qyP ) = (q Py+ qwp ) (A3)

where we have changed the notation to p = pi + q/2 =
ps —q/2 and p' = p2 —q/2 = p4+q/2. We have seen that
the energy-conserving b functions of (21) implies pq
p'q = p, . Furthermore, we have defined the function

fi(p) = p d(f/p )/dp = yf' —2f, (A2)

that vanishes when f oc p2, which was the case for the
ansatz used in Sec. V.

For small momentnm transfer the matrix element (3)
depends only on energy and momentum transfer and the
azimuthal angle P. The b functions of (21) taking care of
energy conservation fixes the polar angles Hi and 82 with
respect to q. Thus all the angular integrals for fixed p,
and P reduces to rotating the three vectors q, p, and p'
over all Euler angles keeping them fixed relatively to each
other. Only (4i + 42 —4s —44) depends on the Euler
angles and the integration or averaging over the three
Eulerian angles, while keeping the relative positions of
the vectors q, p, and p' fixed, i.e., keeping p and P fixed,
gives

2

(q.p-)(p. p'.p') = —(3(pp )' —1) (A9)

where p = p/ez and p' = p'/e„'. Since we assume that
the plasma temperature is much larger than any of the
particle masses, the particles are relativistic and p, p',
and q are unit vectors. The vector product of p and p is
most useful in terms of p, and 4 (see Fig. 2)

PP"' = p + (1 —p ) cos p. (A10)

2

((4 i + @2 @3 @4)')= ——(10f' + fi + 4ffi)
p2 15

2

(f +-—p -f ).q 2 2 1 2 I2

p25 6
(A11)

Let us first consider the pure gluon plasma for which
(23) gives

Next we integrate over p, and P. The p, integration av-
erages p2 to 1/3, whereas the P integration is weighted by
a factor (1 —cos P)z from the matrix elements. Thus we
find that (A7)—(A9) vanishes whereby all combinations
mixing pq and p2 very conveniently disappear. After av-
eraging over both Euler angles and p and P we obtain

(P-P.)' = (P'.P'„)'

(q*p. + q.p*)(i.p.p)

(q*i„'+q&p'. )(i'.i'„p)

(q i&+q&p )(q i„+q&p )

1

15 '

2 2
15~ '

15" '

—,5(3ii'+ p')

(A5)

(A6)

(A7)

(~III@') = g'»(T/~~)T'—

f + pf I

— —
I

dp (A12)
Bn1

6 ( Be)

where n = [exp(p/T) —1] i is the gluon distribution
function. Since

(q-p, + q,p*)(q'„p'.) = (q'.p'„+q'„i'.)(q,p*)
2

(3pp' —1),15 (A8)
we find, from (18),

(A13)
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(A15)

fn'x dz
I

t'

8 g 1 (T/q ) (, 1, „),
„

o 6

where z = p/T. As mentioned above, the function f(x)
is determined by minimizing (A14). A functional varia-
tion with respect to f results in a second-order inhomo-
geneous difFerential equation for f:

(2 nl, 6f"+
I

-+ —,If'- ,f—=-c*
Iz n') z'

where n" /n' = —(1+2n). C is an arbitrary constant that,
by rescaling f, can be chosen as C = 2 for convenience.

For x && 1 we can approximate n 0, and so we 6nd
the solution to (A15), that does not increase exponen-
tially for z -+ oo, to be

f(z) = z', x && 1. (A16)

For z « 1 we can approximate n 1/z, and the solution
to (A15) that is finite at the origin is

f(z) = z'
I

C ——ln z I, 0 & x « 1, (A17)
5

where C 0.7 is a constant that can only be determined
by finding the full solution to (A15) and matching it to
(A17). This is done by a numerical Runge-Kutta inte-
gration and the result is shown in Fig. 6. The viscosity is
now found by inserting f in (A14). The exact value for g
thus obtained is only 0.523% less than the approximate
value qadi of Eq. (38). Since the exact value is a varia-
tional minimum, it has to be smaller than that of (28).
It is only slightly less because f x for large z as the
ansatz of (24), and f is mainly sampled over values of
x = p/T )) 1 because the integrals over pi and p2 in (23)
have powers p4 to ps times nz(1+ nz). In Ref. [4j
a variational calculation with trial functions f (p) oc p"
lead to a minimal viscosity for v = 2.104. This result is
close to the quadratic power of (A16), but tends slightly

towards the asymptotic form of (A17) (see also Fig. 6).
It has almost the same slope and curvature as the exact
solution around p = 5T. (Note that the absolute value is
unimportant since it cancels in the viscosity. ) The corre-
sponding viscosity was 0.364%%uo sinaller than that of (28),
i.e. , in between the exact result and the ansatz f oc z2.

The above analysis was restricted to a pure glue
plasma. As mentioned above the distribution functions
are weighted with several powers of momentum, and we
do not Gnd much difference between fermions and bosons.
Therefore the deviation &om local equilibrium for quarks
will not be much different &om gluons, and we can be
confident that the ansatz, 4 oc p p„,of Eq. (24) will
be a good approximation for quarks as well as accurate
within less than a percent.

APPENDIX B:
SOFT AND HARD CONTRIBUTIONS

The essential contribution to (O'III@) is the integral

1 @max

E q ) 3 —i 0 lq' + &z, (~)l'

1 2
+

Iq2 + Ilz (p)/(1 —p2) I2

For dimensional reasons the function Q can only depend
on the ratio of q to the momentum scale, q;, which
is provided by the screening. For Debye and dynami-
cal screening q;„qadi, whereas lattice calculations of
strongly interacting plasmas give q;„mp] 1.1T.

As described in connection with screening, nonpertur-
bative effects become important when qD +T, which cor-
responds to n, &0.1. We shall treat the two limits sep-
arately starting with the weakly interacting plasmas for
which the gluon self-energies III„T(p) are given by Eqs.
(8) and (9). It is straightforward to calculate Q numer-

ically and the result will be given below, but let us first
make a simple analytical estimate. The main contribu-
tion to this integral can be obtained by including the
leading terms in the self-energies (8,9):

/
/

/
/

1.0 ----------F------

0.8

06

0.4

0.2

-0.2 Inx)

x/5)

III, (q, ~) = qD,
2IIT (q, (u) z —pqD .

4

Thus we find for (81)
2 2

Q I

"
I

=- I
I
1+

mqi)n3 E ql) ) qD+qm~

+-lnl1+ 4 (—)'
I

1 ( q4 4 2l
4 l q

t'z q2

(»)
(B3)

(B4)

0.0
0.0 2.0 4.0

I

6.0
I

8.0

FIG. 6. The function f/z as determined by (A15). Also

shown are the limits of (A16), (A17), and the simple Anaatz
2

Expanding in the limit q „&)qa or equivalently for
small o., we obtain the leading orders up to n, in the
coupling constant

q „(q
( qmin ) ( qmin J
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where

4&
=qL exp —

I
I —» —

I

=1.13qD.
6 (

(86)

The two terms in (85) corresponding to lnq and
1nq;„are often referred to as "hard" and "soft" con-
tributions in the literature [14].

A numerical evaluation of (Bl) with III, T given by Eqs.
(8) and (9) instead of (82) and (83) gives a slightly larger
value for the effective minimum momentum transfer,

qmin = 1.26qD, (87)

because the additional terms in III, T lead to some addi-
tional screening in addition to the Debye screening and
Landau damping of (82) and (83). This effective cut-
ofF is determined by the screening only and is therefore
the same for gluon-gluon, quark-gluon, and quark-quark
scattering. Whereas q;„may serve as an effective "cut-
ofF' of small momentum transfer interactions, it is not a
parameter put in by hand as discussed in [19]. Contrar-
ily, it is caused and determined by Debye and dynamical
screening.

If the transverse interactions are assumed to be Debye
screened like the longitudinal ones, i.e., IIT = qD, then
the result would have been qm;„=q~ exp(0. 5) = 1.65q~.
This is because dynamical screening of Eq. (83) is less ef-
fective than the Debye screening of (82) and thus results
in a smaller q;„.

It is convenient to express the results in terms of o,
In weakly interacting plasrnas we find

III, = IIT /(I —p') = mp,

in (Bl) which leads to

1 2

QI
™~

I

=- ln~ I+
(qmia) 2 ( mb) ) pi+ qm~

(89)

The upper effective cutoff q „
is provided by the

quark and gluon distribution functions as discussed in
connection with Eq. (22) and it therefore varies some-
what with particle type. Because Bose distribution func-
tions emphasize smaller momenta than Fermi ones, q

is larger for quarks. We find q~ = 3.0T, q
~ = 3.8T,

and q = 4.8T for gluon-gluon, quark-gluon, and
quark-quark scattering, respectively. The lower effective
cutofF q; is, however, the same for the three cases be-
cause it only depends on the screening in the gluon prop-
agator. Furthermore, we find that the extra terms in the
matrix elements of (3), (4), and (5) in addition to the
t 2 part do not contribute much since they have varying
signs and turn out to be partially canceling. Thus the
constants within the logarithms of (37) and (40) just re-
Hect the difFerent q for gluon-gluon, gluon-quark, and
quark-quark scattering.

Lacking screening of transverse interactions in the
static limit, it has often been assumed that some mech-
anism like Debye screening might lead to screening of
transverse interactions as well, i.e., m&~

——qD. Recently,
lattice gauge calculations of /CD plasmas have found
effective screening masses of order m~i 1.1T near the
phase transition point, T, 180 MeV. In both cases it is
thus assumed that

|'qmax ~I I
( qmax

(qmin J &I 26qD)

1, ( (q -/T)
g4~n, (I+ N, /6) &

' o.,~0.1.

(810)

1.1T we find Q(qmax/qm;a) = 0.626, Q(qm(s~~x)/qmm)

0.819, and Q(q /qm; ) = 1.024. These values enter
the n, +0.1 expressions of Eqs. (38) and (41).
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