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A systematic expansion in 1/N, is constructed for baryons in QCD. Predictions of the 1/N, expan-
sion at leading and subleading order for baryon axial vector current coupling constant ratios such as
F /D, baryon masses, and magnetic moments are derived. The baryon sector of QCD has a light quark
spin-flavor symmetry at leading order in 1/N,. The formalism of induced representations for contracted
Lie algebras is introduced to explain the consequences of this symmetry. Relations are first derived for
the case of two quark flavors. The generalization of the large N, expansion to three flavors is subtle and
is treated using several complementary methods. The 1/N, expansion severely restricts the form of
SU(3) breaking in the baryon sector. Extrapolation of the large N, results to N. =3 permits a quantita-
tive comparison with experimental data. Deviations of the measured quantities from exact spin-flavor
symmetry predictions are accurately described by the subleading 1/N, corrections. Implications of the
1/N, expansion for baryon chiral perturbation theory are discussed.

PACS number(s): 11.15.Pg, 11.30.—j, 12.38.Lg, 14.20.—c

1. INTRODUCTION

The theory of the strong interactions is a strongly cou-
pled theory at low energies, with no small expansion pa-
rameter. The absence of a small expansion parameter has
frustrated attempts to compute low-energy properties of
hadrons directly in QCD. ’t Hooft realized that QCD
has a hidden parameter N,, the number of colors, and
that the theory simplifies in the N, — oo limit [1]. In the
large N, limit, the meson sector of QCD consists of a
spectrum of narrow resonances, and meson-meson
scattering amplitudes are suppressed by powers of
1V N_. The analysis of the baryon sector of QCD in
the large N, limit is more subtle because a baryon is a
confined state of N, quarks, and becomes a bound state of
an infinite number of quarks when N, — . Witten ana-
lyzed the interactions of baryons with mesons in large N,
[2], and showed that the N, dependence of the baryon-
meson amplitudes was the same as in a semiclassical soli-
ton model with coupling constant 1/1/N,. The Skyrme
model [3], in which the baryon is a soliton of the low-
energy chiral Lagrangian, is an explicit realization of
Witten’s idea that the baryon is a semiclassical soliton.

Although the large N, limit of QCD was originally
proposed as a quantitative calculational method, predic-
tions of this approach remained largely qualitative in na-
ture, with most results following primarily from large N,
power counting arguments. Recent work [4,5] on the
low-energy pion interactions of baryons in large N, shows
that the large N, expansion of QCD makes definite quan-
titative predictions for the static properties of baryons.
The N, — o predictions of QCD satisfy light quark spin-
flavor symmetry relations. These symmetry relations are
the same as those obtained in the large N, Skyrme [6,7]
and nonrelativistic quark models [8], which yield identi-
cal group theoretic results in the large N, limit [9]. The
leading deviations from spin-flavor symmetry relations at
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N_— o are parametrized by 1/N_-suppressed operators.
It is the inclusion of 1/N_-suppressed effects which en-
ables a quantitative comparison of the predictions of the
large N, expansion with the physical situation of N, =3.
Whether the 1/N, expansion proves useful depends on
the size of the 1/N, corrections. The 1/N, expansion is
particularly good for certain static quantities such as the
baryon-pion coupling constants and the isovector mag-
netic moments, because there are no 1/N, corrections in
QCD to the spin-flavor symmetry predictions [4]. Thus,
the large N, predictions for the ratios of the baryon-pion
couplings and the isovector magnetic moments are valid
up to corrections of order 1/NZ2. The phenomenological
success of light quark spin-flavor symmetry predictions
for these quantities is explained by the 1/N, expansion.

In this paper we give a detailed analysis of the predic-
tions of the 1/N, expansion for baryons, and provide de-
tails of some computations referred to in our previous
work [4,5]. The previous results were derived in a
straightforward (but tedious) manner using Clebsch-
Gordan coefficients. In this paper they are rederived us-
ing more elegant group theoretical methods from the
theory of induced representations. This formalism makes
the comparison of large N, QCD with the Skyrme model
more transparent. The results for two light flavors are
extended to baryons containing strange quarks. Some of
the results derived for baryons with strange quarks are
obtained using large N, but without using SU(3) symme-
try. These results hold irrespective of the mass of the s
quark, and provide strong constraints on the pattern of
SU(3) breaking in the baryon sector. The methods dis-
cussed in this work also apply to baryons containing
heavy quarks.

There are several assumptions implicit in the large N,
approach to QCD. The principal assumption is that cer-
tain properties of QCD, such as confinement and chiral
symmetry breaking [10], persist as N, is taken to infinity.
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The confined hadronic states of the large N, theory are
mesons and baryons, and the lowest-lying hadrons are the
pseudo Goldstone bosons of spontaneous chiral symme-
try breaking, and baryons with N, quarks. The results
derived in this paper do not require chiral symmetry to
be exact and are valid even for nonzero quark masses.
The only requirement on the quark masses is that they
remain finite as N, — . We will assume isospin symme-
try is exact, for simplicity. Given these assumptions, the
principal interactions of baryons at low energies are pion
interactions. Since the baryon is a coherent state of N,
quarks, and the pion couples to each of these quarks, the
pion-baryon axial vector coupling constant is of order N..
Each single pion-baryon vertex is suppressed by one fac-
tor of f,, which grows as V/N, in the large N, limit.
Thus, the pion-baryon vertex is of order 1/ N,. Baryon-
pion scattering amplitudes involve two baryon-pion ver-
tices and therefore grow like N,.. This large N, behavior
of the baryon-pion scattering amplitude violates unitarity
unless there is a cancellation among diagrams with
different intermediate baryon states. Thus, consistency of
the large N, limit results in cancellation conditions which
relate different pion-baryon coupling constants. These
constraint equations imply that the baryon sector of
QCD possesses a contracted light quark spin-flavor sym-
metry in the large N, limit [4,11,12]. The contracted
spin-flavor symmetry requires that the baryon sector of
large N, QCD contains an infinite tower of degenerate
states with I =J =1, 3, 2, ..., and with pion couplings
in the precise ratios as those given by the large N,
Skyrme and nonrelativistic quark models.

The N,— « constraint equations for the baryon-pion
couplings are identical to equations derived a long time
ago in the study of strong-coupling models. The logic of
the 1/N, expansion presented here is quite different from
these other lines of reasoning, however. Many of the old
derivations predate QCD or use arguments which are not
justified in QCD. The earliest work by Pauli and Dancoff
[13] showed that a static I =J =1 nucleon strongly cou-
pled to a p-wave pion produces an infinite tower of
baryon states with I =J =1, 3, 2, .. which is precisely
the spectrum of large N, QCD. The constraint equations
on the pion couplings found in large N, are the bootstrap
equations of Chew [14] derived using Chew-Low theory
[15]. The spectrum and properties of the strong coupling
model were studied extensively by Goebel [16], and by
Cook and Sakita [17] and the reader is referred to these
papers for additional references to the earlier literature.
Gervais and Sakita [11] were the first to point out that
contracted representations appear naturally in the large
N, limit. The constraint equations are also similar to
some results of Weinberg [18] derived by studying the
high-energy behavior of scattering amplitudes.

The organization of this paper is as follows. Section II
derives the contracted SU(4) spin-flavor algebra for
baryons of large N, QCD using unitarity constraints on
pion-baryon scattering. Section III explains the standard
mathematical technique of induced representations which
is used to construct irreducible representations of the
spin-flavor algebra for baryons. Section IV makes expli-
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cit the connection between the induced representations of
Sec. III and the standard collective coordinate quantiza-
tion of Skyrmions. Section V discusses the large N,
counting rules for baryons. The identification of the
QCD baryons with particular irreducible representations
is justified in this section. Section VI derives the pion-
baryon couplings in QCD, including 1/N, corrections.
The results are derived for baryons containing u, d, or s
quarks without assuming SU(3) symmetry. Section VII
derives the kaon-baryon couplings at leading order in
1/N., and Sec. VIII derives the 7 couplings. The
meson-baryon couplings in the SU(3) limit are discussed
in Sec. IX. It is shown that the F /D ratios for the axial
currents and baryon magnetic moments are 2/3, up to
corrections of order 1/N?. Section X discusses the
baryon masses, including 1/N, corrections, but without
assuming SU(3) symmetry. The extension of the theory
of induced representations to exact SU(3) flavor symme-
try is discussed in Sec. XI. The implications of the 1/N,
expansion for chiral perturbation theory are presented in
Sec. XII. The conclusions are given in Sec. XIII. Since
this paper is rather long, we summarize the main results
below.
A. Summary of main results

(1) The F/D ratio for the baryon axial vector currents
is determined to be 2/3+0(1/N?), in good agreement
with the experimental value of 0.58+0.04.

(2) The F/D ratio for the baryon magnetic moments is
determined to be 2/34+0(1/N?), in good agreement
with the experimental value of 0.72. The difference be-
tween the F /D ratios for the axial currents and magnetic
moments is an indication of the size of 1/N? corrections.

(3) The ratios of all pion-baryon couplings are deter-
mined up to corrections of order l/NCZ, and the ratios of
all kaon-baryon couplings are determined to leading or-
der. These results are independent of the mass of the s
quark.

(4) The SU(3) breaking in the pion couplings must be
linear in strangeness at order 1/N,. This leads to an
equal spacing rule for the pion couplings, which agrees
well with the data. The SU(3) breaking in the decuplet-
octet transition axial vector currents is related to the
SU(3) breaking in the octet axial vector currents.

(5) The baryon mass relations

S*—3=E*-E,
L=Z+23%)—A=%A—N),

JAHLIZS—LN+E)=—LQ—E*—3*+4),

FNE

HZ*—A)—(E*—3*)+ HQ—E*)=0,
3h—3,=E5—Z,,

are valid up to corrections of order 1/N? without assum-
ing SU(3) symmetry. Some of these relations are also val-
id using broken SU(3) with octet symmetry breaking. Re-
lations which can be proved using either large N, or (bro-
ken) SU(3) work extremely well, because effects which
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violate these relations must break both symmetries. The
implications of SU(3) breaking for the above relations are
discussed more quantitatively in Sec. X.

(6) The chiral loop correction to the baryon axial vec-
tor currents cancels to two orders in the 1/N, expansion,
and is of order 1/N, instead of order N,.

(7) The order N, nonanalytic correction to the baryon
masses is pure SU(3) singlet, and the order one contribu-
tion is pure SU(3) octet. Thus violations of the Gell-
Mann-Okubo formula are at most order 1/N,. The
baryon masses can be strongly nonlinear functions of the
strange quark mass, and still satisfy the Gell-
Mann-Okubo formula. This helps resolve the o-term
puzzle.

II. THE SPIN-FLAVOR ALGEBRA FOR BARYONS
INLARGE N, QCD

An effective light quark spin-flavor symmetry for
baryons emerges in the large N, limit of QCD. In this
section the spin-flavor algebra for baryons in the large N,
limit is derived for the case of N, =2 light quark flavors.
The generalization of this symmetry to three light flavors
is subtle, and is addressed in later sections. For N =2
light flavors, large N, baryon representations occur with
the same spin and isospin quantum numbers as QCD
N.=3 baryon representations. For N,=3 light flavors,
the SU(3) flavor representations of large N, baryons are
different from N,=3 baryons. Hence, the identification
of baryon states in the large N, limit with the physical
baryon states of N,=3 QCD is not unique. This ambi-
guity complicates the discussion for N,=3.

The derivation of the contracted spin-flavor symmetry
for baryons of this section assumes that the baryon mass
is of order N, the axial vector coupling constant g , is of
order N, and the pion decay constant f_ is of order
V'N, in the large N, limit. These assumptions are
justified in Sec. V.

The spin-flavor algebra of large N, baryons is derived
by studying the interactions of baryons with low-energy
pions. In the large N, limit, the baryon mass is order N,,
so a baryon is infinitely heavy compared to a pion. Thus,
the baryon can be treated as a static fermion, and the
pion-baryon coupling can be analyzed in the rest frame of
the baryon. Since pions are pseudo Goldstone bosons of
chiral symmetry breaking, they are derivatively coupled
to the axial vector baryon current. A general pion-
baryon coupling is written as the baryon axial current
matrix element

(B'|lgy'ysr°q|B)=N.g(X"®)pp , 2.1

times the derivatively coupled pion field 3'7°/f ., where
the index a represents the flavor index of the pion and the
index i is a spin index. The operator X has an expan-
sion in powers of 1/N,, X“=X¥+X%/N,+ -+ . The
p-wave pion carries spin one and isospin one. The labels
B and B’ include the spin and isospin quantum numbers
of the baryons. The axial vector matrix element (2.1) is
nonvanishing only for baryon states B and B’ with spin
and isospin quantum numbers combined to form a spin
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one and isospin one axial vector current. In Eq. (2.1), the
coupling constant g is chosen so that the matrix X has a
convenient normalization, which will be chosen later. An
explicit factor of N, is factored out of the matrix element
to keep all N, dependence manifest. Since f,~1'N_in
the large N, limit, the baryon-pion vertex grows as /' N,.
The growth of the baryon-pion vertex as /N, in the
large N, limit results in consistency conditions for the
baryon-pion matrix elements.

Consistency conditions for pion-baryon coupling con-
stants can be derived by looking at the large N, behavior
of pion-baryon scattering. Consider the scattering ampli-
tude for the process 7%(w,k)+B—m%w,k’')+B’ in the
N_,— oo limit at fixed pion energy ». The dominant dia-
grams in the large N, limit are shown in Fig. 1. The
scattering amplitude is given by

N2 kikd

o‘l-_—"l—f‘i—-*w—[Xt’)b,XB“ lp's »
where the matrix product of the X,,’s sums over all possi-
ble baryon intermediate states. The commutator
[X{,Xi2] arises from a relative minus sign between the
two graphs in Fig. 1 because the intermediate baryon in
Fig. 1(a) is off-shell by an energy o, whereas the inter-
mediate baryon in Fig. 1(b) is off-shell by an energy —w.
The incident and emitted pions have the same energy,
since no energy can be transferred to an infinitely heavy
baryon. Only intermediate states which are degenerate
with the initial and final baryons in the N, — o limit con-
tribute to the amplitude. The pion-baryon scattering am-
plitude, which is in a single partial wave, grows as N, in
violation of unitarity, unless the pion-baryon couplings
satisfy the consistency condition [4,11,14]

[(x{,x51=0.

(2.2)

2.3)

Since X is an irreducible tensor operator with spin one

and isospin one, it satisfies the commutation relations
(JoxP1=iepXE, [I%X{1=ieu XK, (2.4)

where J' and I° are generators of spin and isospin trans-
formations, respectively. These generators satisfy the
usual commutation relations for spin and isospin:

(T T =i ",
(1%, 1%)=ie,, I, (2.5)
[1°,J1=0.

Equations (2.3), (2.4), and (2.5) are the commutation rela-
tions of a contracted SU(4) algebra [4,11,12,16]. Consid-
er the embedding of the spin ® flavor group SU(2)® SU(2)
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FIG. 1. Graphs contributing to pion-baryon scattering at
leading order in the 1/N, expansion.
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in a larger SU(4) group such that the defining representa-
tion 4—(2,2) wunder the decomposition' SU4)
—SUQ2)®SU(2). If the generators of SU(2)® SU(2) in the
deﬁning representation are J' and I°, the SU(4) genera-
tors in the defining representation are proportional to
J'®1, 1®1° and J'®I°, which will be denoted by I°, J,
and G%, respectlv:gy [The prope\r/ly normalized SU(4)
generators are 1°/V'2, J'/V2, and 2G".] The commu-
tation relations of SU(4) are

Ui =iepd*, [I1°1%=ieuI¢,
[1°G”)=i€y,G", [J,G*l=i€;G*, (2.6)
[Ia’Ji]=0’ [Gia1 Gjb]=%Eijksab‘]k-{_ieabcaijlc .

The large N, spin-flavor algebra for baryons is obtained
by taking the limit

ia

X¥= lim

N, > N (2'7)

This limiting procedure is known as a contraction. The
only SU(4) commutation relation which is affected by the
contraction is [ G, G/®] which is not homogeneous in G,
and turns into the consistency condition for pion-baryon
scattering Eq. (2.3). The other commutation relations be-
come Eqgs. (2.4) and (2.5).

A better understanding of this contracted spin-flavor
Lie algebra is obtained by considering other examples of
group contractions. A simple example of group contrac-
tions is provided by the rotation group with commutation
relations

WV, ]1=id5,
aJ3]1=idy
[(J3,J, 1=,

One possible contraction is to define X;=J; /A, and take
the limit A— . This leads to the trivial Abelian algebra
[X;,X;]=0. A more interesting contraction is to define

(2.8)

P,=J,/A, Py=J, /A, and take the limit A— o, without
rescaling J;. This contraction gives the algebra
[PI,P2]=O ’
[J3,Py]=—iP,, (2.9)
[J3,P]=iP,

which is the Lie algebra of motions in the x; —x, plane
where J; generates rotations about the x; axis, and P,
and P, generate translations along the x; and x, axes.
This algebra is obtained from the rotation group which
describes the motion of a point on the two-sphere by con-
sidering a neighborhood of the north pole of the sphere,
of size 1/A, i.e., points (x,x,,x;) where x;=1 and x;
and x, are of order 1/A. Look at this region under a

1SU(2) representations will be labeled either by their J value,
or by their dimension 2J +1 in boldface.
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magnifying glass, so that it is enlarged back to finite size.
This magnification is equivalent to using coordinates near
the north pole of the form (x,,x,,x3)=(y,/A,y,/A,1),
and labeling the points by (y,y,). The generators of
motions on the sphere in the new coordinates are now J,
and J; /A and J,/A. In the limit that A— oo, the neigh-
borhood of the north pole becomes flat. The generator J
in this limit still generates rotations about the x; axis,
and the generators J, and J, generate translations in y,
and y,.

The physical interpretation of the contracted spin-
flavor algebra for baryons can be made in analogy to the
above example. In the large N, limit, the axial vector
matrix elements of the baryon fields become classical ob-
jects since the contributions of quarks in the baryon add
coherently, and the axial currents grow with N,. The
operators X which are the rescaled axial vector currents
have a well-defined large N, limit in which they become
classical commuting variables. The normal spin and iso-
spin symmetries of the baryon states are thus extended to
include the spin-flavor generators X. This extension is
possible because the baryon field is static in the large N,
limit.

The large N, consistency condition for the pion-baryon
couplings Eq. (2.3) determines the matrix elements up to
an overall scale. In Ref. [4] this solution was found by
writing X in terms of reduced matrix elements times
Clebsch-Gordan coefficients, and then solving the con-
sistency conditions for the reduced matrix elements. The
same results can also be obtained by classifying all the ir-
reducible representations of the contracted SU(4) algebra.
This method is pursued in the next section using the
theory of induced representations. The construction of
induced representations is closely related to the quantiza-
tion of Skyrmions. The connection between large N,
QCD and the Skyrme model is discussed in Sec. IV.

III. INDUCED REPRESENTATIONS

The theory of induced group representations gives a
complete classification of all irreducible representations
of a semidirect product $&A of a compact Lie group 9
and an Abelian group A. The contracted SU(4) spin-
flavor algebra for baryons in large N, QCD is the semi-
direct product of an SU(2)® SU(2) L1e algebra generated
by J' and I% and an Abelian algebra generated by Xg.
The 1rreduc1ble representations of the contracted spin-
flavor algebra contain the baryon representations of large
N, QCD. In this section, all possible irreducible repre-
sentations of the contracted spin-flavor algebra are con-
structed, and the representations which describe large N,
baryons are identified. Much of the discussion is well
known [17,19], but may not be familiar to most physi-
cists.

The irreducible representations of a semidirect product
§&A are induced by the irreducible representations of
the Abelian group A. For the contracted spin-flavor
algebra of large N, baryons, the Abelian group consists of
the generators X, which satisfy the large N, consistency
condition Eq. (2.3). Because the X commute, states can
be chosen in which X are treated as coordinates:
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(X8| XE, .. )=XE|XE,...), (3.1)

so that the state | X2, . ..) is labeled by the c-number ei-
genvalues X9 of the operator (X op- The ellipsis in the
state vector represents other quantum numbers which
will be necessary to completely specify the state. Since
the states have been chosen to diagonalize the generator
(X§ )op» the distinction between the operator and its ei-
genvalue X can be dropped. To further simplify the no-
tation, the numbers X will be treated as a 3 X3 matrix
X, whose rows are labeled by the spin index i and whose
columns are labeled by the isospin index a.

The generators of the Abelian group A do not com-
mute with the generators of §. The commutation rela-
tions

X 1=ieuX§t, I%XP1=iepXE , (3.2)
imply that X is an irreducible tensor which transforms
as (1,1) under the SU(2),;,® SU(2)g,,,, group. For a finite
spin ® flavor group transformation (g,4), X§ transforms
as

U,(e)' XU, (e)=DPg)xE ,

: _ (3.3)
U, (W) XU, (n) =D (h)XD ,

where Uj(g) is the unitary operator corresponding to a
finite spin rotation by the group element g, and D,‘,-”(g) is
the rotation matrix in the spin-one irreducible representa-
tion, since X, is an irreducible tensor operator with spin
one. The isospin transformation is defined analogously.
The spin-one rotation matrix D is the familiar rotation
matrix for vectors in three-dimensional space, and will be
denoted by R. Equations (3.1) and (3.3) give the action of
finite rotations in spin and isospin on the basis states
|X 02+ )Z

Uy@|Xg,...)=IR(gX,,..."),
' 3.4)
Ui(h)|Xg,...)=|XoR Y h),..."),

where the matrix notation for X is used. The prime on
the unspecified labels . . . is a reminder that the spin and
isospin transformations may affect these indices. The
infinitesimal form of these relations shows that J and I
can be represented in the |X,...) basis as differential
operators

J ——leiij6c—a—-§:+ s
5 (3.5)
—_ kb b
Ia_ leachO a ’0“‘ »

where the ellipsis denotes operators acting on the ---
part of | Xy, ...).

An irreducible representation of $&A can now be con-
structed. First pick a reference state |X,, ... ) in the ir-
reducible representation. All other states in the irreduc-
ible representation containing |X,,...) are obtained
from the reference state by applying group transforma-
tions (by the definition of an irreducible representation).
The reference state is an eigenvector of the generators
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X8, so group transformations generated by the X only
change the phase of |X,, . . . ), and do not produce addi-
tional states. Group transformations generated by J and
I change the value of X, and produce new states. Let
the state |X,,...) represent a point X, in the nine-
dimensional space of 3 X 3 matrices, with coordinates X .
The group transformation U,(g) on the state |X,,...)
gives a new point with coordinates given by R (g)X,, and
similarly for U;(h). The set of all such points as g and A
vary over all possible SU(2) matrices is called the orbit of
X,, and is the set of all points R (g)X,R ~!(h) obtained
by applying arbitrary spin and isospin transformations g
and h, respectively, to X,. Each transformation matrix is
parametrized by three Euler angles, so the orbit of X is
at most a six-dimensional subspace of the nine-
dimensional space of X;’s.

The nine-dimensional space of all possible 3X3 ma-
trices X@ can be divided up into different disjoint orbits.
Each orbit corresponds to a different irreducible repre-
sentation, since states are in the same orbit if and only if
they are connected by a group transformation. The
different orbits can be classified in a simple manner. Any
matrix X, can be brought to real diagonal form,

A 000
X,— |0 A, 0], (3.6)
0 0 A,

by a transformation X,— R (g)X,R ~'(h), with at most
one A; being negative’ and A, <A,<A,. The reference
point X,, on each orbit can be chosen to be a matrix in
the standard form Eq. (3.6). Any rescaling of the X;’s
can be reabsorbed into a redefinition of the coupling con-
stant g of Eq. (2.1), so a normalization convention for the
X,’s can be imposed:

SXeX§=TrX§=3. (3.7)
This normalization condition restricts the X,’s to have
A}+2A2+A3=3. Any X, other than the trivial representa-
tion with all A;=0 can be brought into this standard
form by a trivial rescaling. The trivial representation
which only contains X, =0 is not of interest for the prob-
lem under study, since it corresponds to vanishing pion-
baryon couplings. Hence, all nontrivial irreducible repre-
sentations are classified by X,’s of the form Eq. (3.6) with
TrX3=3.

The unspecified labels . . . of the irreducible represen-
tation transform under the little group of X,. The little
group 95 of a point X, on an orbit is the set of
SU(2)5in® SU(2)jgogpin transformations (g,4) which leave
the point X, unchanged, so that R (g)X,R ~!(h)=X,.
Since the different points on an orbit are connected to

2The sign of any two eigenvalues can be changed simultane-
ously, but the sign of a single eigenvalue cannot be changed
since detR =1.
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each other by group transformations, the little groups at
different points on the same orbit are isomorphic. For
example, suppose the point X is obtained from X,
by the group transformation (ggy,h,), ie., Xj
=R (g9)XoR ~!(hy). The transformation (g’,h’) leaves
X invariant if and only if (g,h) leaves X, invariant,
where g'g,=g.8 and h'hy=hh.

Any point X, on the orbit of X, can be obtained from
X, by a group transformation (g,h)E 9. If (g,h) trans-
forms X, into X,, then so does (g,h)(g’,h’');, where
(g’,h'); is an element of the little group ¢ %, of X,. Thus

elements on the orbit of X, are in one-to-one correspon-
dence with elements of the coset space /95 .
0

It is easy to work out the little group at the standard
configuration Eq. (3.6). If all the A; are different, the lit-
tle group consists of Z, X Z, where the Z,’s are generat-
ed by 27 rotations U;(27) and U;(27) in spin and iso-
spin, respectively. If two of the A;’s are equal and
nonzero, the little group is U(1) XZ,, where the U(1) is
the spin-isospin rotation in the two-plane of degenerate
eigenvalues with g =h, and the Z, is a 27 rotation in
space. If two of the A;’s are equal and zero, the little
group is U(1) XU(1), with independent U(1) rotations in
spin and isospin. If three of the eigenvalues are equal and
nonzero, the little group is SU(2) X Z,, where the SU(2) is
spin-isospin rotations with g =h and the Z, is a 27 rota-
tion in space. If all three eigenvalues are zero, the little
group is SU(2) X SU(2).

If the little group is nontrivial, the additional state la-
bels . . . correspond to irreducible representations of the
little group. The large N, baryon states which will be
considered extensively in this paper are irreducible repre-
sentations which belong to the orbit with standard
configuration

X,= (3.8)

o O -
O = O
- O O

and little group SU(2)X Z,. The generators of the SU(2)
little group of X, are

and the irreducible representations are |K,k) with
K =O,%,1, ... . The irreducible representations of Z,
are t, depending on whether the state is even or odd un-
der 27 rotations, i.e., whether it is bosonic or fermionic.
The state |X,,K,k,+ ) transforms as an irreducible repre-

sentation under the little group:
Ux ()1 Xo,K, k, £ ) =|Xo,K,k',£)DX)g) ,

© - (3.10)
UJ(Z#)IXo,K,k, + ) =i|X()yK,k,:t> ’

_J

U, () U (W) X0, K,k ) =U,(2)U(h) U (gx)| X, K, K )
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where DX are the SU(2) rotation matrices in the
(2K +1)-dimensional representation. Note that the value
of X, is unchanged by the action of the little group. The
irreducible representation of the little group Eq. (3.10) in-
duces an irreducible representation of the full symmetry
group when combined with the transformation of X, Eq.
(3.3). The discrete Z, label separates the baryon repre-
sentations into fermions and bosons. For N, odd, baryon
states are fermions and the Z, label is restricted to be
negative. The N, even case corresponds to baryon states
which are bosons, and Z, label positive. This case is not
of physical interest since N,=3 in QCD. For the
remainder of this paper, N, is understood to be odd, and
the Z, label of the states and the Z, factor of the little
group are omitted.

It is useful to specify a single group element in § con-
necting each point X, on the orbit of X, with the refer-
ence point X,. For the special case of interest, the group
transformations are of the form (g, /), and the little group
is the set of elements (g,g2). A convenient choice in this
case is to use the group element (1,hg ~!) to represent a
point on the orbit with X,=R (g)X,R ~'(h). (Another
possible choice is to use (gh !, 1) as a representative ele-
ment.) The states |X,,K,k ) are defined by

|Xo,K,k)=U,(hg "1H|Xo,K,k) , 3.11)
I

where X, =R (g)X,R ~!'(h). The connection Eq. (3.11)
relates the basis states |K,k ) at the reference point X, to
the basis states at point X, of the orbit. The connection
is convention dependent, but different conventions are
equivalent. A familiar example of such a problem is the
motion of a spin-1 particle on a sphere, with the spin of
the particle constrained to be tangential to the sphere.
Two tangential directions, say X and y, can be chosen at
the north pole of the sphere. The tangential directions at
other points are defined by parallel transport. Different
paths from the north pole to a given point P give different
definitions of the tangent vectors at P, and a standard
path must be chosen to define basis vectors. Although
the connection is convention dependent, the tangent
plane spanned by the basis vectors at P is well defined,
and independent of the choice of path. This example is
analogous to the definition (3.11). The state | Xo,K, k)
depends on the choice of group transformation to go
from X, to X,, but the space of linear superpositions
S ¢kl Xo, K, k) is well defined at each point X,. (A
more elegant formulation of this construction in terms of
fiber bundles is left to the reader.)

Equations (3.10) and (3.11) determine the transforma-
tion law for | X, K,k ) under a general group transforma-
tion (g,h). Let X, be obtained from X, by the transfor-
mation (1,gx). Then

= U[(hgxg_I)U[(g)UJ(g)Ifo,K,k > = UI(thg—l)UK(g)lio,K,k )
=U,(hgyg V)Xo, K,k')DKAg)=|X,R ~'(hgxg "), K,k')DiK(g)

=|R(g)X,R ~'(h),K,k')DX)g) .

(3.12)
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Equation (3.12) generalizes the transformation law (3.4)
to include the transformation of the |K,k) part of the
state. The generalization of Eq. (3.5) is obtained by tak-
ing the infinitesimal form of Eq. (3.12):

Ji= i€ Xl =+ TR,
3 (3.13)
—_ b
I°= lé'nbcak'kXO an‘ ,

where TX) are SU(2) generators in the (2K +1)-
dimensional representation. The asymmetry between J
and I in Eq. (3.13) occurs because group elements of the
form (1,gh ~!) were chosen to represent the coset. If the
convention (hg ~',1) had been adopted instead of
(1,gh 1), the T'X) matrices would have been added to I
instead of to J.

The basis states can be chosen to have a group-
invariant normalization. If (1,g) transforms X’o—>X8,
then the states are normalized so that

(X,,K,k'|X,, K,k ) =8, 8(gh ™), (3.14)
where 8(g) is a 6 function on the SU(2) group normalized
so that [dg 8(g)=1.

A similar construction works for the other orbits,
which have different little groups. The above recipe for

constructing the irreducible representations of the large
J

Uph)\I3m;Kk )= [ dg D). (2)* Uy (k)| X,, K,k )
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N, spin-flavor symmetry group can be summarized: (i)
pick an orbit, (ii) find the little group of the orbit and
choose an irreducible representation of the little group.
The irreducible representation of the little group induces
an irreducible representation of the full group. The im-
portance of this construction is due to a theorem of
Mackey, which states that the above procedure yields all
the irreducible representations of the semidirect product
group® 9xA [19].

The induced representations constructed above are the
different solutions to the consistency equations for pion-
baryon scattering. The solutions are given in terms of
basis states |X,,K,k) which diagonalize the axial
currents. It is more convenient to work with states of
definite spin and isospin, i.e., in a basis in which J and 1
are diagonal, since baryon states have definite spin and
isospin. Let X, denote the value of X, obtained by acting
on X, with the group transformation (1,g). States of
definite isospin are obtained by taking linear superposi-
tions of |X,,K,k ):

\II3m ;KK )= [ dg DI, (8)*1X,,K, k) . (3.15)

Since the representation matrices D}}Iﬁ,,(g) form a com-

plete set of basis functions on the group, the states
[II,m;Kk) are complete. Under an isospin rotation,
|IIym ;Kk ) transforms as

= [dg D}, (8)* | X, K,k )= [ dg DD, (h~'9)*|X,, K,k )

-~ (V4] -1 ) = Ao (I
=[dgD 7 (h )*ng(g)‘ng,K,k)—III3m,Kk)D1313(h),

I

(3.16)

where the second line follows from Eq. (3.12) and the invariance of the group measure. Equation (3.16) implies that
|[II;m ;Kk ) is a state which transforms under isospin as [IT;). A similar calculation can be done for a spin transforma-

tion:

Uy(m)IIym;Kk )= [ dg D{D),(8)* U,(h)|X,,K, k)

= fdg byl (g)* X, -, K,k")DR(h)= fdg Dy}, (gh)*|X,, K, k' ) D{K)(h)

= [dg D). (8)* Dyl (h)* |1 X,, K, k" YDR(h)=|IT;m"; Kk’ )DL, (h)*DK)(h) .

(3.17)

Equation (3.17) implies that |II;m ;Kk ) transforms under rotations like the product of state [Kk ) and the complex
conjugate of state [Im ). States which transform under spin rotations like |JJ 3) are obtained by combining the k and m

indices using Clebsch-Gordan coefficients:

172

| dimIdimJ J I )
|II3,JJ3,K)— W J3 ml k III3m,Kk)
172
_ | dimIdimJ J Ik
dim K Jy m|k

[ dg DD, (8)* X, K k)

(3.18)

3The proof of Mackey’s theorem depends on a technical assumption that one can find a Borel set which contains exactly one point
in each disjoint orbit. This assumption is valid for the large N, spin-flavor group.
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with an implied sum over m and k. The normalization
factor has been chosen so that the states (3.18) are nor-
malized to unity, using the normalization equation (3.14)
for the basis states |X;,K,k ).

Baryon representations can be identified with the irre-
ducible representations of definite spin, isospin and K
given in Eq. (3.18). The baryon states with a given K
contain all states of the form (J,I), provided J®I €K.
The induced representations with K =0 consist of an
infinite tower of states with (J,I)=(1/2,1/2),
(3/2,3/2),(5/2,5/2),...,(N./2,N./2). The induced
representations with K =1/2 correspond to an infinite
tower of states (1/2,0), (1/2,1), (3/2,1), (3/2,2),
(5/2,2), . . . ; the induced representations with K =1 con-
tain the states (1/2,1/2), (3/2,1/2), (1/2,3/2), (3/2,3/2),
(572, 3/2), (3/2,5/2), (5/2,5/2), . . . ; and the induced rep-
resentations with K =3/2 include the states (3/2,0),
(172,1), (3/2,1), (5/2,1),... . Pions with p-wave cou-
plings to baryons carry the (J,I) quantum numbers (1,1)
and K =0. Thus, pions only connect baryons within a
given K sector. The quantum numbers of the baryon
states in the K sectors can be identified with the known
baryon spin-1 octet and spin-3 decuplet states of QCD if
the quantum number K labels baryon sectors with
differing strangeness. The K =0 sector contains strange-
ness zero baryons such as the nucleon, which is identified
with the state (1/2,1/2), and the A, which corresponds to
the state (3/2,3/2). The K =1/2 sector contains the
strangeness —1 baryons: the A(1/2,0), 2(1/2,1), and
3*(3/2,1). The K =1 sector contains strangeness —2
baryons: the Z(1/2,1/2) and Z*(3/2,1/2); and the
K =3/2 sector contains strangeness —3 baryons such as
the Q(3/2,0). The other states in the towers correspond
to baryons which exist for N,— c«, but not for N,=3.
The identification of baryons with different irreducible
representations of the spin-flavor group is discussed in
more detail in Sec. V.

IV. SKYRMIONS

The SU(2) Skyrme model provides an explicit realiza-
tion of the contracted SU(4) spin-flavor algebra of Sec. II.
The induced representations of Sec. III are in one-to-one
correspondence with soliton solutions of the Skyrme
model. The SU(2) Skyrme model with the spherical
hedgehog solution X, corresponds to the induced repre-
sentation with little group SU(Q2)XZ, and K=0. The
SU(2) Skyrmion is a soliton of the chiral Lagrangian of
the form

zo(x)zeiril’(r) , (4.1)

where F(0)=—7 and* F(w)=0. The Skyrmion
configuration X, corresponds to the reference state
|X,,0,0), which is invariant under K=I+17:

(I+73)3,=0 . 4.2)

An isospin transformation of the soliton =, gives an

4There is a sign error in the choice of F in Ref. [6].
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equivalent soliton solution with == 43,4 ~!. Spin and
isospin transformations generate infinitesimal body and
space centered rotations on the soliton X, with

A—AUT', 4-U4, 4.3)
respectively. The axial vector current in the Skyrme
model is equal to

A“=1N_g, Tr(AT4 "' 4.4)

to leading order in N, where the coupling constant g , is
a function of the shape function F(r) of the soliton.
Thus, the K =0 soliton states 2= 42,4 -1 correspond
to the states | X,,0,0) with

X§=1Tr(A747'1%) . 4.5)

The reference point of the representation, X¢=§%, corre-
sponds to the standard soliton configuration X, with
A =1. The collective coordinate A of the soliton deter-
mines the coordinate X by Eq. (4.5). The commutation
relation (2.3) is satisfied in the Skyrme model because the
collective coordinate A is a ¢ number.

Spherical hedgehog solutions with K0 correspond to
the induced representations |X,,K,k ). Skyrme model
solutions with K0 are constructed below. The ap-
proach which is adopted is closely related to a method in-
troduced by Callan and Klebanov [20]. Callan and
Klebanov showed that Skyrmions containing a single
strange quark can be treated as bound states of an SU(2)
Skyrmion and a K meson. This method allows strange
baryons to be studied in the Skyrme model without as-
suming SU(3) symmetry. In the following, we represent
baryons containing strange quarks in the Skyrme model
as bound states of Skyrmions and s quarks.

First consider a baryon containing a single strange
quark as a bound state of an SU(2) soliton and a K meson.
The SU(2) soliton, which is a fermion, can be combined
with the 7 or d antiquark in the K meson to produce a
bosonic SU(2) soliton, which is a color 3. The strange
quark baryon is the colorless bound state of this bosonic
soliton and a strange quark. Because the color indices of
the bosonic soliton and s quark must be contracted, it is
possible to instead regard the strange quark as a colorless
bosonic object with spin-1 and the bosonic soliton as a
color singlet state. Baryons with N strange quarks arise
as bound states of a fermionic or bosonic soliton and N;
strange quarks:

[Zo)lsss -+ -s), (4.6)

where each strange quark carries spin 4. The soliton-
quark bound state is completely symmetric under the ex-
change of the s quarks, so |sss ---s) has the strange
quark spins combined into total spin N, /2. The induced
representation IXO,K,k) can be identified with a Skyr-
mion bound to 2K strange quarks:

|Xo, K,k )<>| AZgA ") sss -+ s) 4.7)

where X, is related to 4 by Eq. (4.4), and the spins of the
2K s quarks are combined into a state with spin K and
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spin eigenvalue k. The operators

P .3
J.';d—“leiﬂsk'kXK——an ) -
“=—ieabc8k,ng’—-a =

generate infinitesimal space and body centered rotations
of the soliton, and can be interpreted as the spin of the
light degrees of freedom (u and d quarks, gluons, orbital
angular momentum, etc.), and the isospin, respectively.
The operator

Ji=TH0 4.9)
is the strange quark spin, and acts only on the strange
quarks. The total angular momentum J =J,; +J; repro-
duces Eq. (3.13).

Quantization of nonspherical soliton solutions of the
chiral Lagrangian yields the induced representations of
Sec. III with general reference points Eq. (3.6). These
solutions are unimportant for the study of the lowest-
lying baryons because a nonspherical soliton differs in
mass from the spherical soliton by an amount of order
N..

V. LARGE N, COUNTING RULES

The 1/N, expansion for baryons relies heavily on large
N_ power counting rules for baryon scattering processes
and matrix elements. In this section, the large N,
behavior of f,, M, and g , are presented. In addition, the
identification of the lowest lying baryon states with the
induced representations of Sec. III is discussed from a
quark model approach. Some of the results in this sec-
tion are well known, and can be found in Refs. [1, 2, 21].

A, Meson Green functions

First consider the large N, dependence of meson Green
functions. The pion is created from the vacuum by a
color singlet axial vector quark bilinear:

NC
AM=F Y Y51, (5.1)
a=1
where 7° is a flavor matrix, and the sum on colors is
shown explicitly. The two-point function (0| 4#%4**|0)
is dominated in the large N, limit by planar graphs
bounded by a single quark line, as shown in Fig. 2, and is
order N,. The axial current two-point function is related
to the pion decay constant

N~ [ d*x e®*(0| 4#%(x) A *%(0)[0)

_faptp?
p2

+e, (5.2)

where the ellipsis denotes terms other than the single
pion pole. The omitted terms cannot cancel the pion
pole, so f2~N,. In other words, 4#°/V/ N, creates a
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s,

FIG. 2. The leading diagram for the two point function of
axial vector currents in large N,. Only the quark line is shown.
An arbitrary number of internal gluons can be exchanged be-
tween the quark lines without changing the N, dependence of
the diagram.

pion from the vacuum with an amplitude that is finite as
N,—o0.

The above argument does not depend on the special
form of the axial current; any two-point function of
quark bilinears is order N, so any quark bilinear creates
a meson with amplitude 1/ N,. This fact immediately im-
plies that multi-meson vertices are suppressed by powers
of \/N; For example, an n-meson amplitude is obtained
by studying the n-point function of quark bilinears. The
dominant graphs are of the form shown in Fig. 3, and are
proportional to N,. Each quark bilinear produces a
meson with amplitude 1/ N_, so that the n-meson ampli-
tude is of order N,/(1/N,)"~N!~"/2, Each additional
meson produces a suppression factor of 1/1/N, in a mul-
timeson amplitude.

B. Baryon Green functions

Large N, baryons are color singlet states containing N,
quarks with color indices contracted using the N -index €
symbol of SU(N,). The matrix element of a quark bilin-
ear such as the axial current 4#° between baryon states is
given by the graphs in Fig. 4, where the operator can be
inserted on any of the N, quark lines. Each of the inser-
tions gives a contribution of order one, so the net contri-
bution from the N, diagrams is at most of order N..
Note that the contribution is at most of order N, since
there may be cancellations among the N, diagrams.

We assume that the lowest-lying baryon states are
completely symmetric in the spatial coordinates of the
quarks, and therefore must be completely symmetric in
spin ® flavor, since they are totally antisymmetric in
color and the quarks are fermions. It is useful to replace
the quark fields by equivalent color singlet spin-1 boson
fields which carry the spin and flavor indices of the origi-
nal quarks. This convention is merely a notational con-
venience to obtain the correct spin-flavor quantum num-
bers of the baryons while avoiding color indices on the

FIG. 3. The dominant diagram for the n-point function in
the large N, limit. An arbitrary number of internal gluons can
be exchanged.
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FIG. 4. A diagram contributing to the matrix element of the
axial current between baryon states. The axial current can be
inserted on any of the N, quark lines.

quark fields. The baryon annihilation operator is

90 9una, " 9oy ay in this new notation, where ¢; and «;
< <

are the spin and flavor indices of the ith quark, respec-

tively.

The N, dependence of certain baryon Green functions
can be obtained by using a trick. Assume that the baryon
mass is nonzero in the large N, limit, so that one can go
to the baryon rest frame. In the baryon rest frame, one
can split the quark spinor field into its upper two and
lower two components denoted by superscripts (+), re-
spectively, using the projector (1+%°)/2. Consider ¢!}’
where the spinor index ¢ now takes on the values 1,2 cor-
responding to the two upper components of the spinor
field. (Note that there is no assumption that the quark g
is nonrelativistic.) Define the baryon annihilation opera-
tor

(

— (), (+) . (+) “e
Bﬂ_qualqtzaz Q Q Q ’

4y, a La ona, Ly @
NC NC 11 272 NC NC
(5.3)

where (), is an arbitrary 2 X2 matrix with one spin index
¢ in the spin-1 representation and one flavor index « in
the isospin-] representation. (Baryons containing strange
quarks will be discussed later in this section.) The baryon
state annihilated by this operator will be denoted by |Q).
In the rest frame of the baryon, one has SU(2) rotational
symmetry and SU(2) flavor symmetry. (The Lorentz
boost symmetry has been broken by the choice of a par-
ticular reference frame.) () transforms as

Q l—*D(l/Z)(g)D(l/Z)(h)Q

La Lty a,a, L0y 4

(5.4)

under arbitrary spin and isospin transformations g and A,
respectively. In the large N, limit, the state [Q) is or-
thogonal to |Q') if Q7%Q’. The overlap (Q|Q’) involves
the overlap of the quark g,,Q,, with the quark ¢,,Q,, to
the Ncth power. The quark overlap is less than one if the
two quarks are in different (not necessarily orthogonal)
states, and so the baryon overlap vanishes in the limit
N c > ®.

It is instructive to consider a simpler example which il-
lustrates the utility of the Q) states. Consider the case
of a single heavy quark flavor, so that the quark can be
treated as nonrelativistic. One can then define the N,-
quark state |fi) as the state annihilated by g,q; * * * 9,
where g, annihilates a quark with spin up along the @
direction. The overlap of a spin-{ state with spin up
along i and a spin-1 state with spin up along fi’ is cos6/2
(up to a phase), where 0 is the angle between fi and 7'.
Thus the overlap
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[(H]@')|=|cos6/2|" — 0 if 640 . (5.5)

—»
c

The state |2) is the state [11--- 1) with J=N,/2 and
J3=N_./2, and is the highest weight state. All other
states with J =N_ /2 can be obtained from |Z) by apply-
ing spin lowering operators. One could equally well have
started from the state |fi ), which corresponds to picking
the state with the largest value of J; along the @i axis, and
obtained all other states by applying lowering operators
along the i axis. Similarly, the state |Q) defined above
can be thought of as a spin-flavor highest weight state,
from which the other spin and flavor states are obtained
by applying spin and flavor lowering operators.

The matrix element of the Hamiltonian between
highest weight states |Q ) is given by inserting the Hamil-
tonian on any one of the quark lines. There are N,
graphs which add constructively since all N, quarks are
identical. Thus, (Q|#|Q) is of order N.. Any operator
that acts on a finite number of quarks (such as the Hamil-
tonian which is a single quark operator) cannot affect the
orthogonality of |Q) for different values of , so

N .f(Q), Q=Q',
(QIHIQ) =g qrq (5.6)

where f () is a function of Q which is a spin and flavor
singlet; i.e., it is invariant under the transformation (5.4).
An example of such a function is

fQ)=f +flelllzea‘azﬂtlalﬂtzaz, where f, and f, are
constants. Although the above argument shows that ma-
trix elements of the Hamiltonian # between states |Q ) is
of order N, it does not imply that the states are degen-
erate since the order N, term in the mass can be a func-
tion of (), and there can also be {)-dependent terms of or-
der one in the mass.

A similar argument can be used to show that axial
current matrix elements between (Q states are of order N_.
The axial current operator can be inserted on any one of
the N, identical quark lines. There is no cancellation be-
tween the different possible insertions, since all the
quarks are identical. The quark axial current operator is
a single quark operator, which cannot affect the ortho-
gonality of the |Q)’s, so

N.faQ), o=q',
0, QFQ,

(|la”Q)= (5.7

where £(Q) is a function of Q which transforms like a
tensor with spin one and isospin one under the transfor-
mation (5.4). One such function is
=0, , 0, (0 "), Thus, the matrix ele-
ments of the axial current between |Q) states is of order
N,.

Note that it is not possible to prove that the matrix ele-
ments of the spin operator J or isospin operator I are of
order N, using this method, since it is not possible to
construct a function with spin one and isospin zero (the
quantum numbers of J) or isospin one and spin zero (the
quantum numbers of I) from (Q, which is a ¢ number and
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transforms as (1/2,1/2) under spin ® flavor. The only
tensors that can be constructed from the mth power of
are in the totally symmetric tensor product (1/2,1/2)®™,
which does not contain (1,0) or (0,1).

C. The relation of |Q ) states to induced representations

Baryons annihilated by B, are completely symmetric
in spin ® flavor. The baryons have the quantum numbers
of states in the completely symmetric tensor product
(1/2,1/2)®N‘, which are states with (J,I) equal to
(1/2,1/2),(3/2,3/2), ... ,(N,/2,N./2). In the limit that
N,— =, it is easy to see that they correspond to the in-
duced representation discussed in the previous section
with K =0, and =+ if the N,—  limit is taken with
N, even, and with £=— if the limit is taken with N,
odd. The connection between the states |Q) defined in

J

(F) () ... (+)
Voo " Dy _yay _y Ya e,

annihilates baryons containing N, strange quarks. The
annihilation operator is completely symmetric under the
exchange of the strange quark indices, so the spins of the
N strange quarks are combined to form a completely
symmetric state of spin N, /2. These states correspond to
the induced representation discussed in the previous sec-
tion with K =N, /2.

The results of this section strongly suggest that the
lowest-lying baryons correspond to induced representa-
tions on orbits with X proportional to 8, and with 2K
equal to the number of strange quarks in the baryon.
However, this identification is not rigorous because it has
not been proved that the baryons annihilated by the
operators Egs. (5.3) and (5.9) are the lowest-lying
baryons. For example, the operator Eq. (5.3) with an ad-
ditional derivative on one of the ¢'*”s, or with a ¢‘*’ re-
placed by a ¢!, transforms under a different k represen-
tation of the spin-flavor algebra. One expects that these
states correspond to excited baryons.

VI. PION-BARYON COUPLINGS

The irreducible representations for the baryons con-
structed in Sec. III give the possible solutions to the

|

(+)g(+) .. ()
LNC—NSaNC _NS k

dim Idim Jdim I'dim J’
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this section and the induced representation defined in the
previous section is
X§olTrQ 70, (5.8)

where 7 are the Pauli matrices for’ SU(2). Note that the
point =1 corresponds to the reference point X, of the
orbit. The quark picture naturally gives orbits where X,
has all three eigenvalues equal since the quark representa-
tion labels states by €2, which transforms as (1/ 2,1/2) un-
der spin ® isospin. The only object which can be con-
structed out of ) that transforms as (1,1) like X o is a bi-
linear in Q of the form Eq. (5.8) which has all eigenvalues
equal.

A similar analysis can be done for baryons containing a
finite number of strange quarks as N,— «. The baryon
annihilation operator

Sk (5.9

1 2 N

s

pion-baryon consistency conditions. The solutions can be
classified by the quantum number K, where 2K is equal to
the number of strange quarks in the baryons. Thus, the
K =0 sector contains the strangeness zero baryons
(N,A); the K =1 sector contains the strangeness —1
baryons (A,X,3*); the K =1 sector contains the S =—2
baryons (Z,E*); and the K =3 sector contains the
S = —3 baryon . Pion interactions only couple baryons
within a given K sector, since pions do not carry strange-
ness. The results of Sec. III allow us to determine the
pion couplings within each strangeness sector in terms of
an overall coupling constant g (K) which can depend on
K. The pion couplings for each K sector are, first derived
at leading order in 1/N,. The analysis is then extended
to include 1/N, corrections. It is important to remember
that while the results in this section are for baryons con-
taining strange quarks, SU(3) symmetry is not assumed
and the formulae are true irrespective of the size of the
strange quark mass. A different approach which uses
SU(3) flavor symmetry is given in Sec. IX.

The pion-baryon couplings within a given K tower can
be computed using the explicit formula Eq. (3.18) for the
baryon states |II5,J7;;K ). The pion couplings are the
matrix elements of X, and are given by

172 J I' K

J I|K

('3, J'JK|IXE |, JT K )=
3 3 0 3 3 (dimK)z

x [dg [dn D;g;;,(g)u};z,,(h)*(XO,K,k'lU,(g)*xgu,(h)l)?o,x,k) )

Jy m'| k' ||[J3 m|k

(6.1

The orthogonality of the states Eq. (3.14) implies that the integrals over g and 4 in Eq. (6.1) collapse to a single integral

over g. Using Eq. (3.3) to evaluate U,(g)TXf,“U,(g) gives

5To be precise, the Q in Eq. (5.8) transforms as (Z,2) and is obtained from the € in Eq. (5.3) which transforms as a (2,2) by raising

one index using the SU(2) epsilon symbol.
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172 ’ '
R ; dim Idim JdimI'dim J' J'I'\K||J TI|K
(I'1,J'J5KIXe |, 0K )= .,
373 0 1733 (dim K )? Jy m'| k| (J3 m|k
x [dg Dil) (D], (8)* Dy (g)* XY (6.2)

where DV*=DV since the representation is real, and X2=5" by the definition of the reference point of the orbit Eq.
(3.8). The integral over g can be done using the identity on D matrices:
I 1|\r||r 1|r

I; a|I} i|m'

1
dim I’

(6.3)

fdg D(I) (g)D(I) (g)tD(l)(g)*_

Substituting Eq. (6.3) into (6.2), and rewriting three of the Clebsch-Gordan coefficients in terms of a 6j-symbol times a
Clebsch-Gordan coefficient gives the result

I 1 I 1\1r'\|J 1\|J
'y 'y, —(—1\2'+J-I'-K
('L, J' ;K| X8| IT,,07 4K )=(—1) V'dim IdimJ lK J J] I a1 | T,
(6.4)
For the special case K =0, Eq. (6.4) reduces to
1/2 , ,
) dim J I 11 J 1|J
3 20 ) £ ia 0)=
(I'14,J'J5;0|X%|114,J74;0) g nLoaln |l 7, (6.5)

which are the couplings of the I =J tower containing the nucleon and A baryons found in Ref. [4] by explicit construc-
tion. Equation (6.4) determines the pion couplings in a given K sector up to an overall undetermined coupling constant
g (K). The coupling constants in the different K sectors are not related by pion scattering, since pions have zero
strangeness and do not connect the different strangeness sectors to each other. Thus the final expression for the axial

current matrix elements in the large N, limit is

(I'13,J'J;K| A°|I13,07 ;K )=N,g(K)(—1)¥ T/~ 1 KlemIdlmJ[K 7

where g (K) is an unknown K dependent normalization.

Equations (6.4) and (6.6) are the N,— o predictions
for the pion couplings of each K tower. The 1/N,
corrections to the pion couplings in each K tower can
also be computed by generalizing the method employed
in Ref. [4] to calculate 1/N, corrections for the K =0
tower. In order to discuss 1/N, corrections to the pion
couplings, it is useful to define an expansion for the
operator X"

) ) 1 .. 1 ..
X=X+ —X+—X¥+..., 6.7
0Ty 1 N2 2 (6.7)
where X is the operator which describes the pion-

baryon couplings at leading order, and X© are operators
which arise as 1/N? corrections to the large N, limit.
With this definition, the consistency condition for pion-
baryon scattering becomes

(x*,x?]<0

) (6.8)

N,

since each pion-baryon vertex is order 4N, and the
scattering amplitude is of order one. Equation (6.8) im-
plies the commutation relation [X¥,X{®]=0 which was
used to obtain the leading order pion couplings.

1
I3a

I’
I3

J
I3

JI
I3

1 I r

(6.6)

[

A consistency condition for the 1/N, correction to the
axial current is obtained by considering the three-pion
scattering process 7w, +w,)+B —mw,)+7(w,y)+B’
shown in Fig. 5, where the incident pion has energy
®,+,, and the outgoing pions have energies ©; and w,,

respectively. Each pion-baryon vertex is of order \/J_V;,
so the scattering amplitude is order N2/2. The sum of the
Feynman graphs in Fig. 5 gives a total amplitude propor-
tional to

N3/2 1

—_ ke Jjb yia
a),a)z(wl-f-a)z)(wl[x ’[X ’X ]]

+aw,[ X[ Xk, X7]]) . (6.9

The large N, power counting rules imply that the scatter-
ing amphtude (6.9) is at most of order 1/v/N, N, in the

\\
\\
\\
®, + “’2\‘\

+ perms

; ;
/ ,
, ,
, ,
, ,
; ;
, ,
, ,
S0 /e,
, ‘
, ,
& &-

FIG. 5. The diagrams contributing to #+B—m+7+B’ at
leading order in 1/N.,.
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large N, limit, which means that the double commutator
of three X’s must vanish at least as fast as 1/N2:

1
N?

(X%, [x?,Xx"]]1<0 (6.10)

At this order, the 1/N, mass splittings of the baryons
also contribute to the scattering amplitude. These terms
have a different energy dependence from Eq. (6.9), how-
ever, and do not affect the double commutator condition
Eq. (6.10). They instead yield consistency conditions for
the baryon mass splittings, which are presented in Sec. X.
The constraint Eq. (6.10) restricts the form of the 1/N,
correction to the pion couplings. Equation (6.10) implies
that X’ must satisfy

(X6, (X§, X7 11+[X5, [ XP, X 11=0. (6.11)
Finding the complete set of solutions to Eq. (6.11) is sim-
plest in the |X,K,k ) basis rather than in a spin-isospin
eigenstate basis of baryon states. In the |X,K,k) basis,
the X are written as functions of X, partial derivatives
9/3X,, and operators Oy acting on the k indices. There
are no operators Oy for the K =0 sector (strangeness
zero baryons), so X, is only a function of X, and 9/9X,,
i.e., a function of X%, J*, and I°. The commutator of X,
with a polynomial in X, J and I reduces the degree of
the polynomial in J and I by one, since X, satisfies the
commutation relations (2.4). Thus, the constraint equa-
tion (6.11) implies that X; can be at most linear in J or I.
The only solution for X% in the K =0 tower is X‘* pro-
portional to X [4], since the two possible operators
which are linear in J and 1,

6iij6aJk’ Each(i)b € ’ (6.12)
do not transform under time reversal in the same manner
as an axial current. Equivalently, the operators in Eq.
(6.12) are commutators of J2 and I? with X%, and can be
removed by phase redefinition of the baryon states of or-
der 1/N,.. Because the 1/N, correction to the axial
currents in the K =0 sector is proportional to X, it can
be reabsorbed into the overall normalization factor g (K).
Thus there are no 1/N, corrections to the ratios of pion
couplings in the K =0 sector [4]. The Ademollo-Gatto
theorem implies that conserved charges are not renormal-
ized to first order in symmetry breaking. Large N, QCD
has a contracted spin-flavor symmetry that is broken by
1/N, corrections. At first order in 1/N_, one can get a
correction to the axial currents proportional to the lowest
order values because the axial currents are not normal-
ized by the commutation relations (2.3)—(2.5). The ratios
of axial couplings are determined by the contracted sym-
metry, and are not renormalized at first order in symme-
try breaking.

To solve Eq. (6.11) for K0 is more complicated.
Define angular momenta of the light degrees of freedom
and the strange quarks of the baryon by J,; and J,, re-
spectively, where J =J,,+J;. The angular momentum
J,.q acts only on the X, variables in | X, K,k ),
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i . . O
Jua= _'5.','15k'kX{f—_‘aX(,)c ) (6.13)
and the angular momentum of the strange quarks acts
only on the |K,k ) variables,

Ji=T&)". (6.14)
Any irreducible tensor operator O; with angular momen-
tum L acting on the |K,k ) variables is proportional to
the totally symmetric and traceless tensor product of
L JPs, by the Wigner-Eckart theorem. Thus any opera-
tor in a given K sector can be written as a product of X%,
1% J;, and J!, with at most one factor of J,; or I and at
most K factors of J;,. The possible operators can be

simplified using the identities
XExy==8%,
Xioxje=8",
fiijf)aX{;b =5ach§c ’
X gz 4= :«ld ’

iayi —ga
XO ud

(6.15)

In the K =0 sector there were no possible operators with
at most one power of J,; or I with the correct transfor-
mation properties to be an axial current. In the K+#0
sector, there is an operator with the correct time-reversal
properties,

X< gire, (6.16)
which satisfies Eq. (6.11) since X, commutes with J;.
This term can be shown to be absent by considering the
process 7+B —m+K + B’ involving two pions and a
kaon. This discussion is deferred to the next section on
kaon couplings. Thus the only 1/N, corrections to the
axial currents are proportional to X,, and can be ab-
sorbed into a redefinition of g(K) [4]. The pion-baryon
couplings including 1/N, corrections are still given by
Eq. (6.6). The 1/N, correction to X“ is proportional to
X9, so one finds that®

1
N2 |’
which makes a contribution to the 7+ B — 7+ B’ scatter-
ing amplitude Eq. (2.2) of order 1/N,. The order one con-
tribution to the scattering amplitude results from the 1/N,
correction to the intermediate baryon propagator due to the
baryon mass splittings (which are of order 1/N_).

The 1/N? correction to the axial currents is con-
strained by the four-pion scattering process
7+ B —m+ 7+ 7+ B’ which gives consistency conditions

for the 1/N? correction X. The scattering amplitude
for this process contains terms of the form

[X@Xx?]<0 6.17)

6This commutator condition implies that the A contribution
cancels the g% term in the Adler-Weisberger sum rule to two or-
dersin N,.
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N2[X,[X,[X,X]]] and N*[[X,X],[X,X]], which must be
of order 1/N,, by the large N, power counting rules.
Since [X,X] is of order 1/N?, the second commutator
condition is automatically satisfied. The first condition
places a restriction on X,:

(X, X6, (X8, XF 11+ (X, [XE, [ X2, X 11]=0 .

(6.18)

The most general solution of Eq. (6.18) (and the analo-
gous conditions obtained by replacing pions by kaons) is
that X, can have the form JI%J/I° {I%,X¥}, and
{(J2,X8). There are also terms proportional to the
lowest order operator X; which can be reabsorbed into a
redefinition of g (K).

The coupling constant g (K) depends on K and 1/N,.
The coupling constant g (K) for baryons in the K sector
has the form

g(K)=C0+ C2K2+0

1 1
—c K +— , .19
N ¢y I (6.19)

1
3
c [4

where the K-independent coefficients ¢; have expansions
in powers of 1/N_, i.e., the term of order one is K in-
dependent, the term of order 1/N, is at most linear in K,
and the term of order 1/N? is at most quadratic in K.
This form for g (K) is derived in the next section. Thus,
g (K) can be considered to be a polynomial in 1/N, and
K/N,. It is important to remember that this formula
was obtained without using SU(3) symmetry. Ratios of
pion couplings within a given K tower are given by Eq.
(6.6) up to corrections of order 1/N2, since g(K) drops
out in the ratio. Ratios of pion-couplings between two
different towers can have 1/N, corrections due to the K-
dependent term in g (K) which is linear in K and of order
1/N,.

VII. KAON COUPLINGS

The kaon couplings of baryons can be obtained by
studying kaon-baryon scattering in the large N, limit.
Consistency conditions for processes involving both pions
and kaons also restrict the form of the pion couplings dis-
cussed in the preceding section. The results of this sec-
tion are derived without assuming SU(3) symmetry, and
are valid irrespective of the size of the strange quark
mass. The analysis of kaon-baryon couplings is similar to
the discussion of heavy quark meson-baryon couplings in
Ref. [5].

The pion axial current matrix elements are of order N,
in the large N, limit, so that the pion-baryon vertex is of
order V'N,. The axial vector matrix elements of a
strangeness changing current between baryon states con-
taining a finite number of strange quarks as N,— « are
suppressed by a factor of 1/V'N, relative to the pion
couplings. Consider, for example, the AS =1 transition
matrix element between a baryon containing a single
strange quark, and a baryon containing no strange
quarks. The strangeness changing axial current must be
inserted on the strange quark line. The baryon contain-
ing a strange quark is a linear superposition of states in
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which the nth quark is the s quark (1<n <N,), each
with amplitude /v N,.. The axial current matrix ele-
ment is of order N, (the number of possible insertions on

quark lines) times 1/1/N, (the amplitude that the given
quark line is an s quark), i.e., of order V/N,. Thus the
kaon-baryon vertex is of order one, since fx is of order
1/V/N,. The constraints of the large N, limit of QCD
on the kaon couplings are less powerful than for pions,
because the kaon-baryon vertex does not grow with N,.
Nevertheless, it is still possible to derive the kaon cou-
plings to leading order in the large N, limit.

A general kaon-baryon coupling is written as the
baryon strangeness changing axial current matrix ele-
ment

(B'[57'ysq%B)=V'N (Y%,

times the derivatively coupled kaon field 3'K®/f, where
the index a represents the isospin flavor index of the kaon
and the index i is a spin index. This p-wave kaon carries
spin one and isospin }. The labels B and B’ denote
baryons in the K and K +1 sectors, respectively, since
the absorption of a K adds a strange quark to the baryon
A similar equation for the matrix elements of §%y'yss
defines the Hermitian conjugate matrix Y tia describing
couplings of K’s to baryons. Since fy ~v'N, N, in the large
N, limit, the baryon-kaon vertex is of order one.

Consider the scattering amplitude for
K%w,k)+B—>7%w,k')+B’, shown in Fig. 6, which
turns a baryon B into a baryon B’ with one additional
strange quark. The scattering amplitude for this process
is given by

(7.1)

N3 i

——[g(K)X?2 Y55 , (7.2)

where the coupling g (K) must be retained in the commu-
tator because the amplitude depends on initial, final and
intermediate baryons in different K sectors. Since

K ~4/N,, the scattering amplitude naively grows like
V'N,. Large N, . power counting rules imply that the am-

phtude should be order 1/V'N_, so the large N, con-
sistency condition for K*+ B —m®+ B’ scattering is

[g(K)X?, Y*]<0

N,

] . 7

Define the 1/N_ expansion for the kaon couplings Y by
, . 1

la— yia 4
Y=Yy N,

AT\

Yie+ - (7.4)

i

L 7 aw
v vZI
7

s

FIG. 6. A diagram contributing to X+B—7+B’. The
thick line is the s quark.



49 1/N. EXPANSION FOR BARYONS

Equation (7.3) implies that Y* must satisfy

[g(K)XP,Yi*1=0. (1.5)

It is important to remember that the kaon coupling
changes the value of K by 1. Thus gX,, in the two terms
of the commutator (7.5) refers to the pion couplings in
two different towers with K values differing by 1. The

solution of Eq. (7.5) is simple in the |X,,K,k) basis.
Taking the matrix element of Eq. (7.5) yields

(X0,K +1,k'|[g (K)XP, Y 11X, K,k)=0. (7.6)

Inserting a complete set of states and using Eq. (3.1) gives
[g(K +1)xy° —g(K)X{]
X{Xo,K+Lk'| Y| X, K, k)=0, (1.7)
which implies that g (K)=g (K + 1) if X, =X and that
(Xo,K +L kY| X0, K, k)=0
if Xo#Xp . (1.8)

The equality on g (K) which is a consequence of the con-
sistency condition Eq. (7.5) can be rewritten as

g(K)=g(0)+0

| (7.9)

which proves the assertion of the previous section that
the order one contribution to g (K) is independent of XK.

The constraint equation (7.8) on the kaon couplings
implies that the operator Y, does not change the value of
the collective coordinate X,. Thus, ¥, can be written as
a function of X, and operators acting on |K,k ), with no
derivatives with respect to X,. The matrix element of Y,
between general X, states is related to the matrix element
between states at the standard reference point X =5 by
a group transformation:

(X, K +LK'|Y§* X, K, k)

=DY? (g Xo,K +1,k'|Y¥| X0, K,k) , (1.10

where X, is obtained from X, by an isospin rotation g,

and D jf* is the rotation matrix in the spin-1 representa-
tion. The matrix element on the right-hand side of Eq.
(7.10) is determined by considering the transformation
properties of Y, under the little group generated by K.
Since Y, has spin one and isospin 1, it transforms as a
linear combination of irreducible tensor operators with
AK =1 and 2. These operators must be combined with
the states |K,k) and |K +1,k’) in K-invariant linear
combinations. The state |K,k ) can be considered to be
the completely symmetric tensor product of 2K strange
quarks, each with spin 1. The state |K +1,k’) is then
the completely symmetric tensor product of (2K +1)
strange quarks. Any transition operator between |K,k )
and |K +%,k’) can be written in terms of products of
creation and annihilation operators a, and a® which
create and annihilate a strange quark with spin a. To
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make a transmon from K to K +1, the operator must
have one more a' than a. Any operator that transforms
as AK =3 or AK =3 between K and K + ! states 1s pro-
portlonal to a hnear combination of a and aaa Ba" by
the ngner-Eckart theorem. The first operator is pure
AK =1, and the second is a linear combination of
AK =1 and AK =3. Thus the most general form for Y}

at the standard point X, of the orbit is

Yi*=c(K)al(o"*,+d(K)al(a'o (7.11)

where ¢ (K) and d(K) are coefficients which depend on
K. The AK =1 operator proportional to ¢ (K) preserves
the s-quark spin symmetry of the baryons, whereas the
operator proportional to d (K) violates the s-quark spin
symmetry.

The AK =32 operator is forbidden by a large N, con-
sistency condition obtained from K*+B-—»>Kf+B’
scattering. Naively, the amplitude is of order one since
each kaon-baryon vertex is of order one. However, large
N, quark counting rules show that the amplitude is at
most of order 1/N,, which leads to the consistency con-
dition

[Y#,v§]1=0. (7.12)
There is an important subtlety when one considers kaon-
baryon scattering. The quark counting rules show that
K*+B—>KP+B’ is of order 1/N,, but the process
K%+B—KP+B' is of order one. Thus one obtains the
consistency condition (7.12) but not the condition
[Y{8,Y}®]=0. The consistency condition equation
(7.12) requires that the coefficients d (K) in Eq. (7.11) van-
ish, so only the AK =1 amplitude is allowed at leading
order in 1/N,. Thus, kaon-baryon couplings respect
baryon s-quark spin symmetry to leading order in 1/N,
even though we have not assumed that the strange quark
is heavy. Note that this result does not imply that
strange quark spin symmetry is a good symmetry of the
full theory. For example, there is no reason to believe
that the couplings of the K * to baryons are related to the
couplings of the kaon to baryons by s-quark spin symme-
try.

Equation (7.11) can be restricted further by considering
the scattering process K°+B—KP+K7+B’, which
yields the constraint

[ka,[YjB’ Y'h'a]] <0 [ 1

N,

(7.13)

Equation (7.13) implies that ¢ (K)=c(0), a constant in-
dependent of K, so that
Yie=cal(o}), (7.14)

is determined up to an overall normalization constant c.
Kaon couplings for baryon states of definite spin and

isospin can now be computed using Egs. (3.18), (7.10),
and (7.14). The matrix element Eq. (7.10) becomes
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31

(Xg, K +1,k'| Y5 [ X, K,k ) =cVdimK D > (g) B

where the equation

1 K

2

B k

K+1
kl

(Xo,K +1,k'la}|Xo, K,k )=1/2(K +1)
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has been used. Using the definition of isospin and spin states Eq. (3.18) yields after considerable manipulation

(I'I3,J' 73K | Y| I, 7 5;K ) =cV/dim Idim Jdim Kdim K

where the quantity in curly braces is the 95 symbol, and
K’'=K+1. This equation determines all the kaon cou-
pling ratios to leading order in 1/N,, without assuming

SU(3) symmetry.

One can also consider the scattering processes
m+B—->w+K+B', K+B—-K+7+B’, and K+B
— K +K + B’ which give the consistency conditions

[Y*7,[g(k)X?,g(K)X“]]<0 12 , (7.18)
[
[g(k)X*,[ Y78 Yie])<0 | L (7.19)
g ’ ’ -_— N2 ) .
and
[Y*7,[ ¥, Yie]]<0 | == |, (7.20)
N;

respectively. These consistency conditions can be used to
show that the order 1/N, term in g (K) of Eq. (6.19) is at
most linear in K and that X¥ does not contain terms of
the form J, I, as was stated in the previous section.

VIII. n COUPLINGS

The matrix elements of the T® axial current between
baryon states containing finitely many strange quarks as
N_— = is of order one, so that the 7 couplings are of or-
der 1/\/Fc with respect to the kaon couplings, and or-
der 1/N, with respect to the pion couplings. As for the
pions and kaons, define the 7 couplings by the axial vec-
tor current

(B'lgy'ysT%q|B)=(Z"pp ,

times the derivatively coupled 7 field d'n/f 4> Where Z'is
a matrix with spin one and isospin zero. The 7-baryon
vertex is order l/m. The first nontrivial constraint
on Z' comes from the process 7+ B —m+m+B’, with
amplitude proportional to

NI[XE[XP,ZH))

8.1)

(8.2)

Large N, power counting rules require that the ampli-
tude be order 1/V'N_, so that

49
1[4 KK+
,y ,y k kl ’ (7.15)
(7.16)
11 1 \ ,
' N P 7.17)
I' J' K Iy a|I3| |J; i|J;
[
(xe,(x,zk1=o0. (8.3)
A similar  argument using  the  processes

n+B—->7+K+B' and n+B—~K+K +B' gives the
constraints

[Xie,[Yi,Zk)1=0 (8.4)
and

[Yie,[Y§,zE11=0. 8.5)
The solution to these equations is

Zy=aJ'+bJ] , (8.6)

where a and b are constants independent of K to leading
order in 1/N,. The ratios of the different 7 couplings are
not completely determined even at leading order, since
they depend on the unknown ratio a /b.

IX. MESON-BARYON COUPLINGS IN THE
SU(3) LIMIT AND F/D

The previous three sections analyzed the pion, kaon,
and 7 couplings of the baryons without assuming SU(3)
symmetry. In this section these couplings are studied in
the limit of SU(3) symmetry using tensor methods
[22-24]. The large N, results derived earlier allow us to
compute the F/D ratio for the baryon axial currents for
N.=3 to order 1/N,. They also constrain the form of
nonanalytic chiral logarithmic corrections to the axial
currents.

The spin-1 baryons in the large N, limit transform ac-
cording to the SU(3) tensor

B!

g ©.1

with one upper and v completely symmetric lower in-
dices, where N, =2v+1. For N,=3, Eq. (9.1) reduces to
the usual baryon octet tensor with one upper and one
lower index. The spin-3 baryons transform according to
the tensor

cl-{lfzis

Jljz ...jy—l (9-2)

which is completely symmetric in its three upper and
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(v—1) lower indices. For N =3, Eq. (9.2) reduces to the 2! . 9.7)
baryon decuplet with three upper indices and no lower B33 40 )
indices. Throughout this section the spin-1 baryons are for the 5~
referred to as octet baryons, and the spin-% baryons as or the ’
decuplet baryons, even though these are the dimensions B2 __ 1 9.8)
of the representations only for N,=3. What makes the 1333 Vv’
SU(3) analysis subtle is that the form of the SU(3) tensor for the 3°
changes with N_. In this section these “representation ’
effects” are eliminated in order to extrapolate the large 1 — - 1_ (9.9)
N, results consistently to N, =3. Bixs- 3= "By Vv’ '
The most general meson couplings to the baryon octet for the A
in the SU(3) limit are given by the two possible invariants ’
= =_ 1
Jnﬁzlbz bv(TA)ac ib . $}33...3—$%33...3—W )
172 v
(9.10)
—chb, - b 2
+NB VB L, (TAY,, (9.3) Bl 3= —————
a db, b, c 33 3 ‘/m ’
where T4 is the SU(3) octet matrix corresponding t0 2 for the =0,
meson of type A. These invariants reduce to the two in-
variants TrBT48B and TrBBT* for N,=3 with Bdyz...3=—21Bh3...3=—3Bly.. .3
coefficients (D + F) and (D —F), respectively. Similarly, 172
the meson-decuplet-octet coupling is given in terms of a |3 , 9.11)
single SU(3) invariant tensor: v(v+2)
b cee bv— " ++
LT T AV BYy 4 op, € 9.4) forthe A*™,
1
The components of the baryon tensors B and 7 are T5...5=1, ©.12)
[22-24], for the proton, for the =*+,
Bl...3=1, 9.5 172
> S Tl T T
for the neutron, 3 3(v+3) ’
B...5=1, (9.6) (9.13)
for the =, for the =*9,
J
133 113 1 2
1qid3 = 3 =—3qI3 =gl _gqi2 g |1
333
2 3 T1133--.3 2 £233---3 13---3 1233 223---3 v+2)(v+3) ’ (9.14)
and, for the O, TABLE 1. The coefficients of /4 and N using Egs.
) 172 (9.5)-(9.15).
v Amplitude M N
9.15)
p—>n1T+ 1 0
The symmetry of the tensors B and 7 determines the 1 1
+ St 307t = -
other nonzero components. For example, the 2™ tensor V2 Vv
has 3%33...3=$§23...3=$§32...3=$§334..2=1/‘/:’, etc. S+ Ant v 1
The coefficients of M, N, and .L obtained by using Eqgs. V(2v+4a) Vvt a)
(9.5)-(9.15) in Eqgs. (9.3) and (9.4) are given in Tables I AR 2 1
and II, respectively. P V2v+4 Vv+4
The octet-octet and decuplet-octet meson couplings in p—>3K+ 0 __1
the SU(3) limit are obtained using the Clebsch-Gordan Vv
coefficients computed using tensor methods in Tables I p—p7 1 -2
and II, and the unknown coefficients /M, N, and .L. The St3ty 1 —t 3
large N, analysis of the preceding sections determines the v
ratios of pion couplings in a given K sector up to correc- A—A7 V;; - 2"_:'21
v v

tions of order 1/N2, and can be used to determine the ra-
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TABLE II. The coefficients of L using Egs. (9.5)-(9.15).

Amplitude L
At prt 1
172
1
2t+ 20 + —_ +1 —_
- AR Py
2Av+2) |2
zt-{- A +
AT 3(v+3)

tio /M to order 1/N, and L /M to order 1/N?. What
makes the determination of N /M possible is that the
K =1 baryons tower contains two different isospin states
in the octet, the A and =. The ratio of the =— 37 cou-
pling to the =— A coupling is known to order 1/N2:

1 1 1)1 1|1
V6ii 1

2+—>207T+_ 7 37 7 011
St ATt Sl 00 011’
+ 4+ 4]0 1]1

_ 1

=140 7 | > (9.16)
N;

where we have used Eq. (6.6) for the pion couplings. The
SU(3) value for this ratio is obtained from Table I to be

172

=t 3% 2 v —N
=1+
St Ant v vM+N | ©.17)

Expanding Eq. (9.17) in a power series in 1/N,, and com-
paring with Eq. (9.16) gives the large N, prediction

=2+2 40|, 9.18)
Ne

5|2

lia
2 N,
where we have denoted the (unknown) coefficient of the
1/N, term in the ratio by a, because it will be needed
later in this section. An inspection of Table I shows that
knowing N /M to order 1/N, is sufficient to determine
all the octet-pion couplings to order 1/N?, since the
coefficient of WV is suppressed by 1/N, relative to that of
M. The ratio of pion couplings for A**—p7* to
p—nm" or the ratio of 2** 3% to * —Anr" can
be used to determine the ratio L /M to order 1/N2:

L_V3

N 2-i-O

1
F J . (9.19)

[The normalization of .L relative to /M depends on how
one normalizes the spin invariants for 8 and 7. Equa-
tion (9.19) is derived assuming that the spin invariants for
T—Bm and B— B are normalized to be equal to their
respective spin Clebsch-Gordan coefficients.]

The large N, results obtained in the previous sections
are consistent with SU(3) symmetry. For example, the
ratio
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11 1) 1)1
Ve s 1ilo 1)1
2#+_)207r+_ 7 3 7
St At sl ot 011‘
2
3 3]0 1)1
1 1
=——+0|— |, 9.20
ol |, o

is obtained using the large N, result Eq. (6.6), and is valid
for any value of the s-quark mass. The same ratio is ob-
tained using SU(3) tensors and the Clebsch-Gordan
coefficients in Table II. There is only a single SU(3) in-
variant amplitude for decuplet-octet pion couplings, so
the coupling .L drops out of the ratio to give

172

3 . 921

2*+ —>207T+
4v(v+2)

St L Art =D

which is valid in the SU(3) limit, for any N.. Expanding
Eq. (9.21) gives the same result as Eq. (9.20),
-+ o_+
PAMESS L/ AR RS
>* + — AT + 2

9.22)

1
N2 |’
since there is no 1/N, term in the expansion of the
Clebsch-Gordan coefficient ratio in Eq. (9.21).
In Sec. VI, the pion couplings of the different K sectors
were computed up to an overall coupling constant g (K)
which had an expansion of the form Eq. (6.19). In the

SU(3) limit, the coefficient of the term linear in X can be
determined. Consider the ratio

2L 1) (L 112

ﬂ[z : ] ; 2’

At Sprt _ g(0) 77 0|z 13

3t 30 8(%)‘/_ 11111 1‘
6

+ 2 110 1)1

v 9.23)

g(3)

which follows from Eq. (6.6). In the SU(3) limit, the same
ratio can be evaluated using the Clebsch-Gordan
coefficients in Table II in terms of no unknowns since the
coupling L cancels in the ratio

£+__’&+=_\/_6 1+L +0 1 9.24)
Se 30+ N, N2 | .

Comparing Eq. (9.23) with (9.24) gives

g0 _ 11 oL 9.25

g(L) N, N |’ 23
so that

&K _,_2K |1

L0 v, 70| % 9.26)

in the SU(3) limit. Note that (1—2k/N,) is just the frac-
tion of u and d quarks in the baryon. According to Eq.
(9.26), the pion coupling is proportional to this fraction
to order 1/N2.
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The same result Eq. (9.26) also can be obtained using
only the octet couplings. The ratio

p—onm’ __ g0) T3 0)|—3 1]z
StoArt g(3) lt 0 1]lo 1]
+ 4 s]lo 1
g(0)
2 9.27)
g($) (

using Eq. (6.6). Evaluation of this ratio using the
Clebsch-Gordan coefficients in Table I and Eq. (9.18) for
N/M gives Eq. (9.25). Thus, all the pion couplings can
be determined consistently to order 1/N? in the SU(3)
limit.

The F/D ratio for the pion couplings can now be
determined to order 1/N2, by extrapolating the large N,
results to N,=3. Different extrapolations lead to
different values for F /D, but the differences are of order
1/N?. The extraction of F/D for N,=3 from the large
N, results is tricky because the baryon SU(3) representa-
tion is a function of N, a subtlety that was not present
for SU(2) representations. There are 1/N, effects in the
pion couplings because the baryon representations
change with N,, which leads to 1/N_ corrections in the
Clebsch-Gordan coefficients of Tables I and II. These
“group-theoretic” 1/N_ representation corrections are
completely calculable, and must be eliminated before one
can extrapolate F/D to N,=3 with an accuracy of 1/N2.
One extrapolation method is to equate the ratio

2+—>201T+

=140
2+—>A1T+

, (9.28)

L
2
c

computed in large N, with its value in terms of D and F
at N.=3,

3t 3% _V3F

’ (9.29)
ST oArT D
which yields
F 1 1
—_—=—t — |=0.58, 9.30
D=3 o N2 (9.30)

for N,=3. Another method is to recall that the nonrela-
tivistic quark model values for the ratios of pion cou-
plings differ from large N, QCD at order 1/N2. Thus the
quark model prediction for F/D at N,=3 is accurate to
1/N?, which implies

F 1

=0.67 .
D N2 0.6

=%+o 9.31)

A third method is to use the Skyrme model predictions
[7] for the ratio of pion couplings at N, =3, which also
differs from large N, QCD at order 1/N?2:

(9.32)

The difference of these three numbers is a consequence of

1/N? effects. The range of the three values implies an
O(1/N?) correction of about 0.1. In the following we
use the quark model value F/D =%. Any of the three
values agrees well with the experimental value for the
F /D ratio, 0.581+0.04 [25]. The ratio of the decuplet-
decuplet and decuplet-octet pion couplings to F and D
are also determined to order l/ch, and may be taken
(with an error of order 1/N?) to be the nonrelativistic
quark model values. In the notation of Ref. [26], the
decuplet-octet pion coupling is @=2D, and the decuplet-
decuplet pion coupling is #=3D. These results are
known to agree with the experimental data [26,27].
One can also use ratios such as

—>n77'+

st S Art

involving states in different K towers to determine the
F /D ratio. In this case, it is important to remember that
there are 1/N, terms in the ratios of g (K). These terms
are purely group-theoretical in nature, and arise because
the weight diagram changes with N,. Since they are only
group theoretic, they are calculable (as was done in Eq.
(9.26)), and can be eliminated so that the extrapolation to
N.=3 is valid to order 1/N?. This procedure yields a
value for F/D at N,=3 which is consistent with Egs.
(9.30)-(9.32) up to order 1 /N2

The ratio N'/M is known to leading order in 1/N,, but
it determines the ratios of the pion couplings up to order
1/N?2, since the coefficients of W in Table I for the pion
couplings are suppressed by 1/N, relative to those of /M.
The leading order value for N/M also determines the
leading order values for the kaon couplings. It is a
straightforward exercise to verify that the kaon couplings
are of order 1/1/N, relative to the pions, and are given
by Eq. (7.17). In the SU(3) limit, one finds ¢ =—V'6g(0)
by comparing the ratio

p—>3K+ —__ 1 _ [
2V'N, V24Ng0)’

obtained using Eq. (9.18) and the SU(3) Clebsch-Gordan
coefficients, and by using Eqgs. (6.6) and (7.17). The 7-
baryon couplings are of order 1/N, relative to the pion-
baryon couplings, and depend on the unknown 1/N,
term a in N/M in Eq. (9.18). This lack of a prediction
for the 7 couplings is related to the fact that the % cou-
plings in Eq. (8.6) depend on two operators at leading or-
der in 1/N,. In the SU(3) limit, one finds that

a= —4—‘3/5013 (0),

(9.33)

9.34
p—onm’ ©.34

b=—6V2g(0) . (9.35)

The above analysis considered baryons with finite
strangeness in the large N, limit, for which the matrix
elements of pion, kaon, and 7 axial currents are of order
N, \/Fc, and 1, respectively. This analysis corresponds
to working near the top of the SU(3) weight diagram of
Fig. 7. For N,=3, however, the weight diagram contains
only eight states, and the nucleon states are not far away
from the other two corners of the weight diagram. One
can therefore imagine other ways of extrapolating the
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FIG. 7. The SU(3) weight diagram for the spin-1 baryons for

N, colors. The long edge of the weight diagram has (N, —1)
states.

large N, results to N,=3. For example, one can instead
consider states of definite U spin or definite V spin, and
use these states to extrapolate from N.— o to N, =3.
For U spin, the K% K° and —7°/2+V3 /2 couplings
are of order N,, the K *,K ~, 7", m~ couplings are of or-
der V'N,, and the V37°/2+7/2 coupling is of order
one. Nevertheless, the U spin or V spin extrapolations
give the same F /D ratio as the above procedure, up to er-
rors of order 1/N2.

A. Equal spacing rule for the axial couplings

The pion-baryon coupling g (K) is linear in K at order
1/N,_, as given in Eq. (6.19). This result was derived with
no assumption of SU(3) symmetry, so it implies that
SU(3) breaking in the pion couplings is linear in X to or-
der 1/N,. The SU(3) breaking in the pion couplings can
be extracted from the pionic decays of the decuplet
baryons to octet baryons. The values of @ (defined in
Ref. [26]) for A>Nm, 2*—Am, 2*—>27, and E* —>E7
are 1.8, 1.5, 1.5, and 1.3, respectively [28], and should all
be equal in the SU(3) limit. The couplings clearly satisfy
the linearity constraint on SU(3) breaking. In particular,
the SU(3) breaking in the ratio 2* —An/Z* — 37 is very
small because both decays involve states in the K =1 sec-
tor.

Pion couplings within a given K tower are determined
to order 1/N?2, so the SU(3) breaking in € between
A— N7 and 2* > A7 must be the same as the SU(3)
breaking in the axial couplings for the beta decays
n—pe v and Z—Aev. This observation will allow a
better determination of the F/D ratio from hyperon
semileptonic decays, since SU(3) breaking extracted from
decuplet-octet baryon pion couplings can be subtracted
from the B decay couplings before performing the SU(3)
fit.

B. Magnetic moments

The SU(3) analysis of the baryon magnetic moments is
similar to that of the axial currents. The stability of the
baryon magnetic moments under renormalization, or
equivalently, the large N, behavior of pion photoproduc-
tion, implies that at leading order, the baryon magnetic
moments must be proportional to the axial currents [4].
This implies that the F/D ratio for the baryon magnetic
moments is also 2/3, in good agreement with the experi-
mental value of 0.72. The difference between the experi-
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mental values for the F /D ratios of the axial currents and
magnetic moments is a 1/N? correction. Thus the exper-
imental data indicate that the 1/N? correction is about
15-20 %, which indicates that the 1/N, expansion (at
least for these quantities) is a reasonable expansion even
for N,=3. Relations for the baryon magnetic moments
are derived in Ref. [29] in the Skyrme model.

X. BARYON MASSES

The 1/N, expansion restricts the form of the baryon
mass spectrum. In this section, we derive mass relations
which are valid up to order 1/N? without imposing SU(3)
symmetry. These mass relations constrain the form of
SU(3) breaking in the baryon mass spectrum.

The mass of a baryon in large N, has an expansion of
the form

M=NCM0+M,+NLM2+... :

c

(10.1)

where the leading contribution to the mass is order N, so
that the baryon is infinitely heavy in the large N, limit.
Consistency conditions for the baryon masses can be de-
rived from the scattering amplitudes considered in Secs.
VI and VII. Since baryon mass splittings are suppressed
by powers of 1/N, relative to the leading mass N M, it
is possible to expand the baryon propagator about the
static limit. The static baryon propagator is i /k v, where
v is the baryon velocity and k is the residual momentum
of the baryon. Baryon mass splittings change the baryon
propagator to
i

kv—AM’
where AM is the mass difference of the intermediate and
initial baryons. In the rest frame of the baryon, the prop-
agator reduces to i /(o—AM). (The baryon widths, e.g.,
due to the decay A— N, can be neglected in the propa-
gator because they are of order 1/N2.) Consistency con-
ditions on the pion-baryon scattering amplitudes are val-
id for arbitrary pion energy, provided the energy is held
fixed as N,— . When the pion energy is greater than
AM, it is possible to expand the propagator (10.2) in a
power series in AM /(k-v). Since the terms in the expan-
sion of the baryon propagator have different energy
dependences, each term in the expansion of the propaga-
tor must separately satisfy the consistency conditions.
The leading term in the expansion of the propagator is
the lowest order propagator i /k -v, which gives the con-
sistency conditions for the pion couplings. The next term
in the expansion of the propagator is iAM /(k -v)?, which
gives consistency conditions for baryon masses.

The  pion-baryon  scattering  amplitude for
m+B—7+B' is naively of order N,, but the quark
counting rules imply that it is at most of order one. This
constraint was used to show that [X,X] is at most of or-
der 1/N,, using the lowest order propagator. The condi-
tion obtained by keeping the term proportional to AM in
the expansion of the propagator is

1
N, |’

(10.2)

[X?,[X7M]]<0 (10.3)
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which implies that
(X§,0X5,M,11=0,
(x§,[x5,M,]]1=0 .
Similarly the constraint that the __amplitude

m+B —>m+m+B’ be at most of order 1/1/ N, gives the
constraint

(10.4)

[Xk,[X?,[ X M]]]1<0 ‘2 ] , (10.5)
N;
which implies that M, satisfies
(X6, (X8, [X§,M,]11=0 . (10.6)

A simpler (but equivalent) form of the above condition
was derived in Ref. [5] using chiral perturbation theory:

[Xi,[Xi,M,]]=const . (10.7)

The solutions to Eqgs. (10.4) and (10.6) are that M, and
M, are independent of 7 and J 4, and M, is at most quad-
ratic in I and J,;. Arbitrary dependence on K and on J;
is allowed.

Further restrictions on the form of M are obtained by
studying scattering amplitudes involving kaons, since
these processes constrain the K and J; dependence of M.
Expanding out the intermediate propagator to first order
in AM in 7+B—K +B' and K +B —K + B’ scattering,
and in K+B—7+7+B’, K+B—>K+m+B’, and
K +B —K +K + B’ scattering results in the constraints

[Y78,[g(K)X' M]]< O WI*] (10.8)

(Y2 [Y'eM]]<0 1\} ] (10.9)
and

[g(k)Xkc’[g(k)ij:[Yia’M]]]SO Ivlz ] ’ (1010)

[g(k)X*, [ Y78 [ Yi*, M]]]<0 YV%] : (10.11)

(Y%, [ Y8, Yie, M]]]<0 # (10.12)

Equation (10.9) restricts M, to be at most linear in K,
while Eq. (10.12) restricts M, to be at most quadratic in
K. M, is independent of K.

The most general solution of Egs. (10.4)-(10.12) is that
M has the form

M=Nm,+mK + 1

N,

(myI*+myJ*+m,K?),

(10.13)

where m; are constants independent of K which have an
expansion in powers of 1/N,. [Note that the operator J2
is equal to K(K +1) and that J-J; can be written as a
linear combination of 2, J? and K (K +1).] The baryon
octet and decuplet each consist of four isospin multiplets.
These eight baryon masses are parametrized by five mass
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parameters m; in Eq. (10.13), so there are three mass rela-
tions among the octet and decuplet masses which are val-
id up to corrections of order 1/N?2. These relations are
any three of the following four mass relations:

YZ+23*)—A=%(A—N), (10.14)
S*-3=5*-%, (10.15)
IAHIZ—LN+E)=—HQ—E*—3*+4),  (10.16)
LZ*—A)—(E*—3*)+LQ—-E*)=0, (10.17)

each of which is valid including all terms of order 1/N,
in the baryon masses. These relations are true irrespective
of the mass of the strange quark, since they were derived
without assuming SU(3) symmetry. We will refer to the
linear combination of decuplet masses in Eq. (10.16) as
the equal spacing rule I, and the combination in Eq.
(10.17) as equal spacing rule II. Equation (10.16) relates
the violation of the Gell-Mann—-Okubo formula to the
violation of the equal spacing rule I for the decuplet. The
Gell-Mann-Okubo formula and the equal spacing rule I
are each violated at order 1/N_, but the difference of the
two in Eq. (10.16) is only violated at order 1/N?. The
equal spacing rule II is only violated at order 1/N?.

One can characterize the deviations of the three 1/N,
mass relations by 1/N? operators. Consistency condi-
tions for M; are obtained from four meson-baryon
scattering. There are three new operators which are first
allowed at order 1/N2,

LM3 = —1—2(m512K +mgJ’K +m,K3),

; (10.18)
N; N;

leaving no nontrivial relation among the eight octet and
decuplet masses at order 1/N?2. The eight masses can be
used to determine the eight mass parameters
my, . .., m4. The corrections to Egs. (10.14)-(10.17) are
—(ms+mg)/N?% 3mg/2N?, 3(3ms—m,)/16N2, and
—3(ms+m,)/8N2, respectively.

One can also study the octet and decuplet relations at
N_=3 starting from a SU(3) symmetric Hamiltonian, and
including a symmetry breaking term proportional to TS
In the symmetry limit, all the octet states are degenerate,
and all the decuplet states are degenerate, so that Egs.
(10.14)—(10.17) are satisfied. The mass relations includ-
ing terms of first order in symmetry breaking are the
Gell-Mann-Okubo formula for the octet’

IN+HIZ-HN+E)=0, (10.19)
and the equal spacing rule for the decuplet
Q—E*=E*—3*=3*—A. (10.20)

These relations are violated by nonanalytic terms of the
form m3/? and m2inm,. The equal spacing rule II, how-
ever, has no m2/? and m2nm, corrections [30]. Devia-
tions from the mass relations can be characterized by
combining the expansion in the SU(3)-breaking parame-

ter m, with the 1/N, expansion:

TThis formula is true for arbitrary N..
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mS
HE+23*)—A=LA—-N)+0 |— | (205=195),
c
S*—3=E*—E+0|— | (191=215),
c
372
SA+HIZ—UN+E)=—LQ—E*—3*+A)+0 |— }(6.5=3.4), (10.21)

2
s

2
c

LE*—A)+LHQ—E*)=(E*—3*)+0

372
s

IN+HLIZ=L(N+E)+0

] (1135=1128.5) .

c

The experimental values for these relations (in MeV) are
shown in parentheses.

The 1/N, expansion helps explain the relative accura-
cies of the SU(3) mass relations. Naively, equal spacing
rule I should work to order m?2. Since SU(3) mass split-
tings in the baryons are of order 150 MeV, and each addi-
tional factor of m; leads to a suppression by about 25%,
one expects that the equal spacing rule II is satisfied to
about 35 MeV. Instead, this relation works to about 3
MeV, since the violation of the equal spacing rule II is
suppressed by an additional factor of 1/N?, which makes
the relation work ten times better than naively expected.
One can examine the other mass relations in a similar
manner, and see that the 1/N, expansion explains why
some mass relations work much better than others.
There is one relation that does not fit perfectly into this
pattern, the Gell-Mann—-Okubo formula, which works
better than expected, and implies that m,+m, is small
[24]. It works as well as equal spacing rule II, which is
violated at 1/N2, whereas the Gell-Mann-Okubo formu-
la is violated at order 1/N,. The equal spacing rule I also
works much better than expected. However, this can be
understood in the 1/N, exansion, because Eq. (10.16) re-
lates the violation of the Gell-Mann-Okubo formula to
the violation of the equal spacing rule I; if the Gell-
Mann-Okubo formula works unexpectedly well, so must
equal spacing rule 1.

A similar analysis can be performed for the masses of
baryons containing a single heavy quark. The spin-{
SU@3) flavor 3 and the spin-1 and spin-3 6’s of heavy
quark baryons contain eight isospin multiplets. At order
1/N,, these masses are parametrized by seven operators:
1, K, K* I J% J-Sy and I-S,, where Sy, is the spin of
the heavy quark Q. Thus, there is only a single mass rela-
tion at this order:

) (10.22)

which is the analogue of Eq. (10.15) for heavy quark
baryons. In addition, there is a mass relation which re-
lates the heavy quark baryon hyperfine splittings to the
ordinary baryon hyperfine splittings [20,31]:

(145.8=148.8) ,

UZp+258)—Ap=2(A—N)+0

% ] . (10.23)

XI. SU@3) INDUCED REPRESENTATIONS

The previous sections have discussed meson-baryon
couplings using SU(2) induced representations. This for-
mulation is useful for understanding the implications of
the 1/N, expansion for SU(3) breaking in the baryon sec-
tor. One can combine the SU(2) analysis with an SU(3)
tensor analysis, as was done in Sec. X, to determine the
meson-baryon couplings in the SU(3) limit. In this sec-
tion, we will determine the meson-baryon couplings in
the SU(3) limit by starting directly with an SU(3) invari-
ant formalism for the induced representations. Most of
the analysis is identical to the SU(2) analysis of Sec. IV,
but there are several complications which occur in the
SU(3) analysis which are absent for SU(2).

Let |Xi4,...) denote states which are the SU(3)
analogues of the states defined in® Eq. (3.1):

(X5 )opl X5, .. ) =XF X, . .) . (1.1
The commutation relations
(X 1=iey XE2, [T4XP1=if 4pcX”  (112)

imply that X, transforms as (1,8) under SUQ)g;,
®SU(3)gavor- For a finite spin ® flavor transformation
(g,h), X, transforms as

U,(e)'Xi*U,(e)=D{(g)Xx{* ,

tyid (8) B (11.3)
Ur(h)' Xy Up(h)=D g (R)X} ,

where D! is a representation matrix in the adjoint repre-
sentation of SU(2), and D® is a representation matrix in
the adjoint representation of SU(3). The states
|Xi4,...) are in one-to-one correspondence with the
space of 3 X8 matrices. The irreducible representations
are orbits in the space of matrices under the transforma-
tions Eq. (11.3). Large N, baryons correspond to orbits

8We will use an upper case flavor index 4 =1,...,8 for the
SU(3) X,’s, and a lower case flavor index a =1,2,3 for the SU(2)
Xo’s.
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which contain the element’®

1, i=A and 4 <3,
0, A>3.

The little group of X5 is SU2) X U(1) X Z,, where SU(2)
is generated by K=1I+1J, U(1) is generated by T8 and Z 2
is generated by a 27 space rotation. The Z, factor splits
the induced representations into fermionic and bosonic
sectors [as for SU(2)], and will be omitted from now on.
The ... in the state |[Xi4, ...) is specified by the trans-
formation properties of [X{%, ...) under the little group
SU(Q2) XU(1). The lowest-lying baryons containing only
u, d, and s quarks are singlets under the SU(2) group gen-
erated by K, and have U(1) charge N./V'12. Let us
define the states [Xi%,y ) by

K|Xi%y)=0,
TUXgy ) =N.y|Xg'y)

so that the physical baryons have y =1/v'12. Then one
can define arbitrary states |X {,A ,y ) in the SU(3) irreduc-
ible representation by applying spin and flavor transfor-
mations on [Xi%,y ). One can show that all matrices X i
on the orbit of X§* in Eq. (11.4) can be written as

X{A=2TrAT'A™'T4,

Xid= (11.4)

(11.5)

(11.6)
where A is an SU(3) matrix. Two A’s which differ by
right multiplication by a hypercharge transformation,

A— de'T" give the same value for'® Xi. One can
define another operator on the |X}*,y ) basis states which
commutes with X4,

X34=2TraT®4"'T4, (1.7
whic_h is well defined, and can be written directly in terms
of Xi* as

1 N
X(S)A = ‘/_gdABCXaBX(')C .

The spin and flavor generators on the basis states are

(11.8)

J'=_’€iij6A5X—§A" )

3 (11.9)
T4= ~if ancXo' o T NYXG!

0

The flavor generator T4 has two terms, a term which

does not commute with X, and is of order one, and a

term which commutes with X, and is of order N,. This

feature makes the N, counting more complicated than for

SU(2), since T4 contains terms which grow with N,.. Itis

convenient to define

. s O
4= _'fABch)B_ —ic

=, 1
aXEC (11.10)

9This can be shown using the methods of Sec. V.
10This discussion closely parallels the quantization of the SU(3)
Skyrme model [32].
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so that

TA=T4+Nyx34 . (11.11)

The states | X4,y ) can be decomposed into states with
definite spin and flavor quantum numbers. This analysis
is identical to that in the SU(3) Skyrme model, and will
not be repeated here. The leading term X, for the
meson-baryon couplings gives the axial current matrix
elements (once an overall N, is factored out) in the pion
sector of order one, in the kaon sector of order I/X/Fc,
and in the 7 sector of order 1/N,. At order 1/N,, the
consistency condition (6.11) has a nontrivial solution for
SU(3), so that to order 1/N,:

XiA=XiA 4 %dABCX{,”TC : (11.12)

c

The d symbol vanishes for SU(2), which is why this term
was not found in Sec. VI. The correction in Eq. (11.12),
while formally of order 1/N,, actually makes a contribu-
tion to X‘4 of order one, since T4 has a piece that is of
order N,. Using the decomposition (11.11) for T4, one
finds that

A’I

XiA=X6A+_1V_.dABCXf)B(TC+NchgC) . (11.13)
c
The identity
ﬁdABCXf,Bch =X{)A (11.14)

shows that the order one piece is proportional to X,.

Thus it is more convenient to write the 1/N, correction

to the axial coupling as
xid=xid+ 2 g4  yimpc (11.15)

N,

This correction term yields an order 1/N, correction to

the N/M ratio in Eq. (9.18). It produces a correction to

the pion couplings at order 1/N?2, to the kaon couplings

at order 1/N, and to the 1 couplings at order one (rela-
tive to the leading terms).

XII. CHIRAL LOOPS

The 1/N, expansion also allows one to compute
corrections to the SU(3) symmetry limit in a systematic
way. The leading corrections are nonanalytic corrections
from chiral perturbation theory.!! Naively, these correc-
tions grow with N, because the pion-baryon couplings
diverge like \/Fc We will see in this section, that the
large N, consistency conditions imply that the correc-
tions to the axial currents decrease as 1/N,, instead of in-
creasing as N,. The m2/? corrections to the baryon
masses are more interesting. The order N,m>/? contribu-
tion to the baryon masses is SU(3) singlet, the m3/2 con-

'The 7’ mass is of order 1/v/N, [33], so 1’ loops should be
included in the large N, limit. The %’-nucleon coupling is of or-
der l/m, so 7’ loops contribute at order 1/N,, and are not
important for the results discussed in this section.
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tribution is SU(3) octet, and it is only the m}/2/N, con-
tribution that produces a correction to the SU(3) mass re-
lations, such as the Gell-Mann—Okubo formula, which
are derived under the assumption of octet symmetry
breaking. This pattern confirms earlier suggestions
[24,34-36] that the baryon masses might have a strong
nonlinear dependence on mg, but that this nonlinearity is
such that it does not violate the Gell-Mann—Okubo for-
mula. The chiral corrections to the baryon magnetic mo-
ments are more subtle, and will be discussed elsewhere.

A. Axial currents

The leading nonanalytic correction to the baryon axial
currents is a M?InM? correction from the loop diagrams
shown in Fig. 8. The renormalization of X' is propor-
tional to

N[ X7, [ X8 x 4] 15¢ (2.1
where the integral 1 BC depends on the meson masses, and
breaks SU(3) symmetry. IZ€ is equal to M2InM2 /u? for
the pions, MgInM} /u’ for the kaons, and M2InM? /u?
for the 77, and can be written as a linear combination of
dpc> dpcs, and dggedgs. Using the axial couplings to or-
der 1/N, given by Eq. (11.15), one finds that

1

rak (12.2)

[ch,[XjB,XM]]=0

so that the M InM? correction is of order 1/N,. Thus
meson-loop corrections in the baryon sector are
suppressed by 1/N,, just as they are in the meson sector.
It is important to keep in mind that the suppression in
Eq. (12.2) occurs only if one uses the large N, definition
of X, i.e., evaluating loop graphs including the complete
large N, tower of intermediate states, and using axial
couplings with ratios determined consistently in large N,.
This cancellation of the one-loop chiral logarithmic
correction to the axial couplings is precisely what was
found in earlier calculations for N, =3 [26].

For SU(2) pion couplings, one has a stronger constraint
on the chiral logarithmic correction than that of Eq.
(12.2). Because the order 1/N, correction to X & must be
proportional to X, one has the constraint

D00, L0 X)) o X

c

(12.3)

which fixes the form of the 1/N? term in the double com-
mutator.

[ 2

NI
<

FIG. 8. The diagrams for the one-loop correction to the
baryon axial currents.
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B. Baryon masses

The leading nonanalytic correction to the baryon
masses is a M3 correction from the graph in Fig. 9. The
loop graph is proportional to

N XiAxiBIAB ,
IAB

(12.4)

where is equal to M3 for the pions, M3 for the
kaons, and M ,37 for the 7, and can be written as a linear
combination of 8 4z, d 453, and d ,g3dggs. The form of the
nonanalytic correction can then be determined using Eq.
(11.15) for X‘4, and SU(3) identities for the d symbols.

A much simpler way of determining the form of the
nonanalytic corrections is to use the SU(2) formalism of
Secs. VI-IX. The pion loop corrections are proportional
to

N.g(K)*X"X"M3=3N_g(K)*M?

using XX =3 [note that X* is now an SU(2) X]. Using
Eq. (9.27) for g (K), one finds that the order N, term from
the pion loops is a constant shift in the baryon mass, and
the order one term [from the 1/N, term in g(K)] is a
correction proportional to the number of strange quarks,
and so is an SU(3) singlet plus octet. The kaon loop
corrections are proportional to

c2( Yiay"'ia+ YTiayia)Mé .

(12.5)

(12.6)

The form of Y in Eq. (7.14) shows that the order one
kaon correction is of the form of a constant plus a term
linear in K, and so is a SU(3) singlet plus octet. The 7
loops are of order 1/N,. Thus the order N, correction to
the masses is SU(3) singlet, the order one piece is singlet
plus octet, and the first nontrivial correction occurs at or-
der 1/N.. A similar result can also be derived for the
nonanalytic chiral logarithmic correction to the baryon
masses. The corrections had to have this form because
the baryon mass formula (10.13) was derived in Sec. X
without assuming SU(3) symmetry, and so it must be
respected by the nonanalytic corrections.

C. The large N, and chiral limits

Pion loop graphs such as the M3 contribution to the
nucleon mass shown in Fig. 9 include the entire baryon
tower as intermediate states. The baryon mass splittings
AM are of order 1/N,. If one first takes the large N, lim-
it N.— o and then the chiral limit m,—0, the entire
tower of baryons contributes to the nonanalytic m,;’?
mass correction, whereas if one first takes the chiral limit
m,—0 and then the N, — oo limit, only the nucleon in-
termediate state contributes to the nonanalytic correction
[37].

The non-commutativity of limits does not imply that
there is a conflict between the large N, and chiral expan-

v
& &
@ A4

FIG. 9. The diagram for the m>/? correction to the baryon
masses.
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sions. Chiral perturbation theory is valid provided AM
and M, are small compared with A, ~1 GeV, the scale of
chiral symmetry breaking, irrespective of the value of
M_./AM. The dependence of the nucleon mass on AM
and M, is calculable from the graph of Fig. 9. The result
is of the form

;M::r F

12.7
16712 (127

M, l
AM |’
where F(x) is known [28]. The function F(x) has the
correct limiting behavior as x —0 and x — o to correctly
reproduce both the (N,—c, m,—0) and (m,—O0,
N.— ) limits. In the real world, m,70 and N # o,
and one should evaluate F(x) at the physical value of
M_/AM.

The 1/N, expansion gives a systematic method of or-
ganizing the chiral corrections in the baryon sector, so
that the nonanalytic corrections are under control. Po-
tentially large corrections either vanish, as for the axial
currents, or can be reabsorbed into lower order terms in
the Lagrangian, as for the masses. It will take a lot more
work to see whether the 1/N, expansion can be com-
bined with baryon chiral perturbation theory to analyze
baryon properties in a systematic and controlled expan-
sion.

XIII. CONCLUSIONS

The 1/N_ expansion provides a systematic expansion
scheme for baryons. The contracted spin-flavor algebra
for the baryon sector is sufficient to constrain the leading
and subleading in 1/N, contributions to various baryon
static properties. The general expansion of operators
such as X and the baryon masses is in powers of
Xo, J/N,, I/N, [or T/N, for exact flavor SU(3)]. The
coefficients of the operators have an expansion in powers
of 1/N, and K/N,. In this work we have shown that it
is possible to consistently extend the 1/N, expansion to
the case of N;>2 light flavors even though the large N,
flavor representations are different from those for N,=3.
The extension to more than two light flavors is more in-
volved because of “representation effects,” which must be
taken into account before determining the predictions for
N =3.

The form of the 1/N_ corrections shows that the
N_— oo limit should be taken with I, J, and K held fixed.
Results for finite N, are obtained by expanding about the
N,— o limit, and using the infinite tower of baryon
states. All effects accounting for the fact that N, is finite
appear through 1/N, suppressed operators. For in-
stance, for finite N, the baryon tower terminates at
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J=N_/2. The finite height of the tower away from
N_.— o results in 1/N, corrections to calculations per-
formed with the infinite tower. These corrections are au-
tomatically included in the 1/N, suppressed operators.

Many of the results obtained in the 1/N_ expansion for
baryons are the same as those obtained in the Skyrme or
nonrelativistic quark models. The results obtained using
the 1/N, expansion are those model relations that work
“well,” such as F/D ratios. The operator structure of
the 1/N, expansion is similar to that in the Skyrme and
quark models. In large N, QCD, the coefficients of the
different operators are not determined by the consistency
conditions. The models, on the other hand, make definite
predictions for these coefficients. Model-dependent rela-
tions which depend on the values of these coefficients,
such as the absolute normalization of g ,, do not work
well, and cannot be derived from large N, QCD. Also,
the nonrelativistic quark model has a SU(2N) spin-flavor
symmetry for mesons as well as baryons. Only a con-
tracted SU(2N) spin-flavor symmetry for baryons exists
in the 1/N, expansion.

The 1/N, expansion also provides a way of computing
chiral loops in the baryon sector. Earlier computations
of chiral loops were plagued by large nonanalytic correc-
tions [38,39]. The 1/N, expansion provides an alterna-
tive calculational scheme in which the entire degenerate
baryon tower is included as intermediate states in loop di-
agrams. This procedure leads to large cancellations, and
makes the chiral expansion better behaved. Large
corrections which do not cancel can be reabsorbed into
lower order parameters.

Whether the 1/N, expansion proves useful depends on
the size of the 1/N, corrections. The corrections appear
to be under control for the baryon axial currents and
masses.
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