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Weinberg-type sum rules at zero and finite temperature
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We consider sum rules of the Weinberg type at zero and nonzero temperatures. On the basis
of the operator product expansion at zero temperature we obtain a new sum rule which involves
the average of a four-quark operator on one side and experimentally measured spectral densities on
the other. We further generalize the sum rules to Snite temperature. These involve transverse and
longitudinal spectral densities at each value of the momentum. Various scenarios for the relation
between chiral symmetry restoration and these Gnite temperature sum rules are discussed.

PACS number(s): 11.55.Hx, 11.30.Rd, 12.38.Aw, 12.38.Mh

I. INTRODUCTION

In a famous 1967 paper [1] Weinberg asked the ques-
tion: "What relations are imposed by current algebra
upon the spectra of the 1+ and 1 mesons?" Under cer-
tain conditions the answer was two sum rules involving
the vector and axial-vector spectral densities. They are
known as the Weinberg sum rules:

f ds—[pv(a) —px(a)1 = +~
p 8

da [pv(a) —p~(a)] = 0.
p

(2)
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Assuming vector meson dominance and the
Kawarahayashi-Suzuki-Fayyazuddin-Riazuddin (KSFR)
relation [2] these sum rules lead to the prediction that
the p and ai masses are related by m, = ~2m~, which
is approximately valid. In this paper we ask two ques-
tions. The first one is as follows: Given that QCD is
now known to be the theory of the strong interactions,
what extra information can we get from sum rules of the
Weinberg type?

The last 15 years have seen a great deal of activity
surrounding QCD at finite temperature. Of particular
interest are the issues of deconfinement and chiral sym-

metry restoration at temperatures of the order of 160
MeV. Therefore, we are led to consider a second ques-
tion: What are the implications of the approach to chiral
symmetry restoration at finite temperature for sum rules
of the Weinberg type?

The status of the original Weinberg sum rules in the
context of QCD sum rules was discussed by Shifman,
Vainshtein, and Zakharov [3] and then by Narison [4],
while a more up-to-date phenomenological analysis was
performed by Peccei and Sola [5]. The two sum rules

derived by Weinberg are very general, as he showed, and
do not depend on specific details of the QCD Lagrangian.
Higher-order sum rules (involving more powers of a in the
integrand) do depend on the dynamics of chiral symrne-
try breaking in the vacuum. In Sec. II we derive a third
sum rule of the type of Eqs. (1) and (2). This new
sum rule involves the vacuum expectation value (VEV)
of a certain local four-quark operator. It can be obtained
&om the sum rule if we know the vector and axial-vector
spectral densities accurately enough from experiment. It
can also be obtained from lattice QCD; the chirality-
violating structure of the operator helps here because
its VEV has no short-distance perturbative contribution.
We perform a detailed analysis of all sum rules in Sec.
III. We will see that they are restrictive enough to fill in
gaps in the experimental data, allowing us to determine
the spectral densities with quite some accuracy.

There has been a lot of discussion in the literature
and at conferences about the temperature dependence
of hadron masses. Some calculations yield increasing
masses, some yield decreasing masses, and still others
yield masses that either increase or decrease depending
on the quantum numbers of the hadron; see [6—10] and
the review [11]. Clearly all these calculations are only
approximate. In addition, the very notion of a mass at
finite temperature must be very clearly defined, such as
the screening mass or the pole mass corresponding to
collective excitations.

A common denominator of all studies of this type is
the temperature dependence of correlation functions. It
would be good if some general statements about these
correlation functions could be made which rely on the
fundamental properties of QCD at finite temperature.
This is the aim in Sec. IV. We generalize the original
Weinberg sum rules, and the new one, to fi.nite temper-
ature. The first one [Eq. (1)] generalizes to a suin rule
involving only the longitudinal spectral density and de-
pends on the three-momentum. The second one [Eq. (2)]
generalizes to two separate sum rules, one involving the
longitudinal spectral density and the other involving the
transverse spectral density, both depending on momen-
tum. At zero three-momentum they collapse to the same
expression. In the vacuum there is no dependence on
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momentum because of Lorentz invariance, but at finite
temperature there is a preferred rest kame, hence a de-
pendence on momentum and on polarization. We would
like to point out here that probably the first discussion
of Weinberg s»~ rules at finite temperature was given by
Bochharev and Shaposh~ikov [6] in the context of /CD
sum rules and for zero momentum.

The finite temperature sum rules can be used to con-
strain models or approximations to /CD, and can help us
to understand the approach to chiral symmetry restora-
tion. Various possibilities will be considered in Sec. V.
We should reference here the early paper on phenomenol-
ogy of the chiral phase transition in heavy ion collisions
by Pisarski [12]. For a recent discussion of the topic one
can see [13].

We remark that throughout this paper we assume that
the up and down quark masses are identically zero so that
chiral symmetry is exact. Consideration of the impact of
nonzero quark masses on the original Weinberg s»m rules
within perturbative /CD was done by Floratos, Narison,
and de Rafael [14].

II. DERIVATION OF ZERO TEMPERATURE
SUM RULES FRGM +CD

We define the vector and axial-vector currents:

&; = &~~(& /2)&

A„= 97„7s(7 /2)Q,

(3)
(4)

where 7 /2 is the isospin generator. With this normaliza-
tion the current algebra of charges obeys the equal time
commutation relations

qv, qv
qv~ qA

q~ q~

= za'~q'
= ~a ~q'„,

abc qc

(5)

(6)

(7)

We define the vector and axial-vector spectral densities
in the usual way. They are positive definite quantities
defined for positive 8:

hab ( pppv )
(O~V."(z)Vb"(0) (0) = —,d'p~(p') e*"'

I

a""—,
I
pv(a)(2s)a g p' )

hab ( pgapv )
(0IA."(z) Ab(0)l 0) = — . d'p~(p')"

~

~""-, ~»(a)+F-'(a»"&" .(2)' . ~ p' )
The dimension of the spectral densities is energy squared. Note the explicit contribution of the pion to the axial-vector
correlator.

In this paper we work in imaginary time so that all distances are spacelike or Euclidean: z = t2 —r2 = r. In-
this domain the spectral representation of the correlation functions looks like [11]

&D I'(~)= (0~7 Q "(z)V„(0)—A "(z)A„(0) ~0)

hab
3pv(a) —3p&(a) —a Fab'(a) K&(+s7 )4' 7'

(1o)

and

».'b(~)= (o)7' &.'(*)Vb'(o) —&'.(*)&s(o) Io) = —;f
x pv(a) —p~(a) —aFeh(a) +

~ 2 + 1
~
Kq(y a7)Kp(+a~) ( 2

87 87

Notice that the integrands essentially involve the stan-
dard Feynman propagator for a particle of mass m which,
in the Euclidean domain, is

m
D(m& T)free scajm 'Kg(mr) .

4x v.

Exponential decay of the Bessel function K~ at large
arg»ment ensures convergence of such integrals for any
/CD correlation functions, except probably at v = 0. In
this sense, there is no difFerence between the Euclidean
time representation [ll] and the Borel-transformed sam
rules [3], in which the propagator is replaced with
exp( —a/Mz), with the Borel parameter M replacing Eu-

clidean time v.
The coordinate representation is more transparent and

accessible to n»merical methods, such as lattice calcula-
tions. Recent studies based on the instanton liquid model

[15]and lattice /CD [16]have reported on the calculation
of a set of Euclidean correlation functions, including vec-
tor and axial-vector ones. Unfortunately, none of them
has focused on their

difference

with suKciently high accu-
racy, and therefore they are not discussed in the present
work.

We now come to the central idea behind the derivation
of the s»m rules: each s»m rule corresponds to a partic-
ular term in the smaO-distance asymptotic expansion of
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D "(&) —= (ol& & "(&)&,'(0) lo)

(ol (gs'„'„) lo)~'
+4&6 m 3X 27

7r'7-
»(~~)(ol. lo) +.

where, in the argument of the logarithm, y, (( 1/7 is
the renormalization scale, and G~ is a complicated four-
quark operator. There is a similar expression for the
correlator of two axial-vector currents but with a different
four-quark operator 0, . For our purposes we only need
their difference, which is given below.

Since chiral symmetry breaking is a long-wavelength
phenomenon, at very short distances, or at very high
energies, the difference between vector and axial-vector
correlators should go to zero. Indeed, taking this differ-
ence one finds that all terms except for the four-quark
operators in Eq. (13) drop out.

One can now look for consequences of this statement
for the spectral density. Expanding the Bessel function
in Eq. (10) for small values of w we get

3b'
&D„'"(~)= —, da [pv(a) —p~(s)]

0

1 s (Vs~c i
X —+ —1il e

7 2 ( 2 j

+0 (7, r ln~) (i4)

where C is Euler's constant. The OPE has no power
divergence in 7 in the digemnce b,D„s". Therefore the
coefFicient of 1/r2 in Eq. (14) must vanish. This is just
the second Weinberg sum rule [Eq. (2)]. In the OPE
framework it simply follows from the observation that the
first covariant operators which are not chirality blind are
four-quark ones which have dimension 6 or more. Sim-
ilarly expanding Eq. (11) for small 7 and applying the
observation of chirality blindness we get

ds 1 s—[pv(a) —p~(s) —s I' b(a)
s 7-4 4v-2

= 0.

The first and second terms in the last square brackets
reproduce the first and second Weinberg s»m rules, re-
spectively.

The next term in the small 7 expansion is logarithmic.
In Eq. (14) we multiply the argument of the logarithm
by p/p, which we must do to match the OPE. Equating

the correlation function.
In the limit v —+ 0 the product of currents can be

expanded according to the operator product expansion
(OPE), a very powerful means for connecting VEV's of
quark and gluon operators to experimentally observable
hadronic properties. The first terms in this expansion
were first computed in [3]. For the contracted polariza-
tion tensor the result is

the coefficients of ln(p~) in b,D„s"(~) we obtain the third
sum rule:

da a [pv(a) —p&(s)] = —2m-(0[a, e7„"IO) .
0

Here

= (&L'f t &I, dLP t dL)(&RQ t &R dR'7 t dR)~

(17)

where t are the color SU(3) matrices and R, I stand for
right- and left-handed quarks. Note the appearance of
the renormalization scale p on the right side of this sum
rule. Since the other side of the equation is expressed
in terms of physical observables, it must be that a, (p)
times the four-quark operator is a renormalization group
invariant.

The numerical value of the VEV of this operator is
unknown. The estimate suggested in [3] is based on the
so-called "vacuum dominance" hypothesis, which leads
to

(ol&,"Io) =
9

(ol&&lo)'

The accuracy of this estimate should of course be ques-
tioned, and various models of chiral symmetry break-
ing [17] and lattice numerical calculations can be used
for that purpose. Let us only add a comment on p,

dependence here. If the vacuum dominance hypothe-
sis is correct, then the VEV should be proportional to
[ln(y/AqcD)] ~, the anomalous dimension of the quark
condensate. (Here b = s N, —

s Ny comes f'rom the Gell-
Mann —Low function. ) Since the power is close to 1, after
being multiplied by a, (p) 1/1n(p/AqcD) the right side
of the third sum rule is nearly p, independent. Thus, at
least concerning the p dependence, this approximation
can approximately hold.

The regular (r-independent) term was not considered
in the /CD s»m rule context; it was first discussed in
connection with point-to-point correlators in the coordi-
nate representation by one of us [ll]. It is interesting to
express it in terms of an integral over the difFerence in
spectral densities, and it may be useful for lattice cal-
culations. Dropping terms which vanish in the limit, we
find

OO

hD„"(7. -+ 0) = —ln(p~) ds a [pv(s) —p~(s)]
0

3 / ~a)
ds a ln

I
-

I
[pv(a) —p~(a)]8~2 o &pj

where p, = 2pe / = 1.85@. The use of p here is just
for convenience; AD is actually independent of it.

III. PHENOMENOX OGY
AT ZERO TEMPERATURE

Phenomenological analysis of the steinberg sum rules
was originally made in a very simple approximation us-
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ing only the contributions of p, aq, m mesons. In other
words, Weinberg aawsmed that contributions from all ex-
cited states other than the lowest resonances mentioned
canceled out. Together with the KSFR relation it leads
to the famous prediction m, = ~2m~ which looked ex-
cellent from the point of view of data available at the
time. However, now we know that this prediction, as
well as predictions for coupling constants, agrees with
experiment only up to the level of 10—20%.

The sum rules are exact in the chiral limit, and so one
should be willing to verify them as accurately as possi-
ble. If the complete spectral densities were measured, one
could simply evaluate the integrals and check whether the
sum rules are indeed satisfied, up to the accuracy of the
data. Unfortunately the situation is not that straight-
forward because there are no meaningful measurexnents
of the nonresonance contribution in the axial channel.
Therefore we first have to close this hole using the sum
rules themselves.

Let us first discuss how well the spectral densities are
determined experimentally. In the pole-plus-continuum
approximation one would write

and

pv(s)= ~b(s —m)
P

+ 1+8 A's 8 + "g(s —Ev)2

8' 2 vr

p~(s) = 'h(s —m', )
&a

+ 1+ + " 8(s —E„). (21)
8 ~s8 2

8m2

The continu»m is the same in the vector and axial-vector
channels, according to perturbative /CD, but the phe-
nomenological threshhold is in general difFerent. Note
that the individual integrals over s for the vector and
axial-vector channels which enter the s»~ rules are actu-
ally divergent because of the continu»m, but the diger-
ence is finite. The coupling constants are the same ones
used in a vector dominance approximation to the currents
as expressed in the current-field identities of Sakurai [18]:

m2
(22)

gp

m
~A = Q + pion.

We do not use these approximations for the spectral den-
sities because the three sum rules involve integrations of
the spectral densities with difFerent powers of 8 and so it
is likely important to incorporate the finite widths of the
resonances.

The vector spectral density is very well measured in
e+e + p ~ m+m . An 8-wave relativistic Breit-Wigner
form is not a good representation because the p meson is a
p-wave resonance. A much better representation is given
by the Go»naris-Sakurai formula [19,20]. It turns out
that this complicated formula can be approximated by a
relativistic Breit-Wigner form with an efFective width I p

= 118 MeV and an efFective pole mass m' = 761 MeV:

m I mpI"
pvs)=

g2 ~ (s —m'2)2+ m2$'2
P P P P

8 1+
8vr2 1+exp[(Ev —~s)/hv]

0.22
x 1+

ln(1+ ~s/0. 2GeV) (24)

We take gp from the KSFR relation

2
YQp

g (25)

With mp = 768 MeV and F = 94.5 MeV one gets from
this g2/4n = 2.63. The second termin Eq. (24), cor-
responding to the continu»~ Rom 2n-pion states (n =
2, 3, .. .), has Ev = 1.3 GeV and bv = 0.2 GeV [11].

The coupling of the a~ to the current can be de-
termined Rom the measured branchi»g ratios of T
v + hadrons. According to the Particle Data Group
[21], the branching into the two three-pion channels dom-
inated by the a~ is 11.2 6 1.4% while the p-dominated
two-pion channel is 24.0 6 0.6%. The first number gives
rise to the main uncertainty in our n»merical analysis be-
low. Using these numbers and the theoretical expression
for the branching ratios (which follows from the narrow
width approximation)

B(v-+ v +. ag)
B(~~v +p)

m2, g~ (1 —m2, /m2)z (1+2m2, /m2)

m g (1 —m /m ) (1+2m /m )

one can get the coupling g, = 10.5 6 0.7.
For the axial-vector spectral density we use an expres-

sion analogous to the vector one but with the following
difFerences. First, we use a constant width of 400 MeV
and a constant mass of 1260 MeV for the a~ contribution
(for more details about this see Ref. [22]). We have, how-
ever, cut ofF this resonance below the threshold mp+ m .

The large width of the a~ and its proximity to the r
lepton causes a significant correction to Eq. (26). Nu-
merically integrating the difFerential decay rate [5] with
the realistic shape of the resonance we get finally a value

g, = 9.1 + 0.7.
The available data for the nonresonant axial states are

very poor so that the continuu~ threshhold E~ and the
width b" are unknown. The reason is partly statistical.
More importantly, since the data about the axial-vector
spectral density come from the 7 lepton decay, there are
fundamental limitations due to the v mass which is not
big enough to provide sufBcient phase space for three-
and five-pion final states with the needed invariant mass.
Therefore, some authors (for example [5]) have analyzed
the Weinberg sum rules without the axial-vector contin-
uum.

In Fig. 1 we show our spectral density with axial-
vector continuum using the same width as the vector con-



4698 J. I. KAPUSTA AND E. 'lJ'. SHURYAK

'
I

'
I

'
I I

'
I

'
I I

'
I

'
I

.01

.005—

I J
I

.01
I

.005—

—.005—

0 I I I I l I I I I l I I I

1.3 1.4 1.5 1.6
E„(ceV)

—.01
1.3 1.4

Es,

1.5
{GeV)

i I i I i I I I ~ I i I i I i I i I i

0 .2 .4 .6 .8 1 1.2 1.4 1.6 1.8 2
E (GeV)

FIG. 1. The difFerence between the spectral densities of the
vector and axial-vector currents versus s at zero temperature.
The two dashed curves show the uncertainty due to the exper-
imental determination of the a~ coupling constant, descnbed
in the text. The abrupt change at s = 0.8 GeV corresponds
to the sharp onset of the aq contribution at (m~ + m ) .
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tinuum [ll] and with a threshhold value to be determined
below. In this figure the dashed curves correspond to the
experimental uncertainty in the branching ratio iato aq.
One can see that this is a rather nontrivial, sign-changing
function, which should obey the sum rules under consid-
eration. Naturally, the new sum rule we consider is more
sensitive to the large s behavior of the difference of the
spectral densities. Thus we may at least ask whether alt
sum rules are consistent with one common value of the
parameter EA.

In Figs. 2(a)—2(c) we have plotted ski~ rules I —III
as fuactions of E~. The horizontal dashed line shows in
all cases the right side of the sum rule which depends
on the vacuum quark condensate or E„as appropriate.
The intersection of the lines should occur at the same
value of E~ As expl.ained in the previous section, we

do not know exactly the VEV of the relavent operators;
therefore we use the vacuum dominance estimate, with

)(O~uu[0)[ ~ = 240 MeV (y, = & GeV). (27)

Fortunately, there seems to be very little sensitivity to
the value of the quark condensates. One can clearly see

that sum rules II and III are quite consistent with the
common value of E~ ——1.45 GeV. This observation is

noatrivial.
Now we can come back to the Brst s»~ rule, use t s

value of E~ as input, and compare the n»merical value
of the iategral to the right-hand side. This procedure
predicts E about 5'%%uj& higher than the experimental value.

Finally, let us comment on a closely related integral o
the spectral densities under consideration. It was shown
in [23] that the electromagnetic mass difference of pious
can be expressed as

I [pv(s) —p~(s)],
3c (A'+ s)

]6~2+2 s )
(2S)

FIG. 2. Dependence of the zero temperature sum rules

I—III on the efFective perturbative threshhold EA in the ax-

ial-vector channel. The last panel shows the m+ - x mass

difFerence. As in Fig. 1, the solid and the two dashed curves

correspond to the central value and uncertainty in the aq cou-

pling constant. In all cases, the expected magnitude of the
corresponding sum is shown by the horizontal long-dashed

line.

where A is some cutofF parameter used to regulate the
divergent integral over virtual moment»m in the loop.
The result obviously depends on it; only in one partic-
ular limit, namely, for A && m~, m, aad for the origi-
nal Weinberg values of the p and aq parameters without
continunm, can one get rid of it and recover the original
result m2+ —ms, = (31n2a/2z)ms of [23]. However, for
the parameters extracted &om data as explained above,
it is no longer true. The integral does depend on the
cutoH' A.

In Fig. 2(d) we show this sum rule with A = 2 GeV as
a function of E~. Note that the value of the pion mass
splitting is very sensitive to E~, and can even change sign
if it is only 40 MeV above the suggested value. However,
at E~ ——1.45 GeV it agrees with the experimental value

d be(horizontal line) reasonably well. Fine-tuning co e
accomplished by adjusting the cutofF A, but we shall not
do this.

IV- FINITE TEMPERA'ZURE SUM RULES

In this section we first generalize %einberg's two sum
rules to finite temperature using essentially the same
methods as he used without any specific reference to
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/CD. Then we verify the generalizations by using the
OPE, which also allows us to obtain the finite tempera-
ture extension of sum rule III. Finally, we investigate the
behavior of these sum rules at low temperature.

(A"(x)Ai", (0))

A. Derivation of VVeinberg-type sum rules
at Sxed momentum

Consideration of Weinberg-type sum rules at finite
temperature (or chemical potential) is more involved
than at zero temperature. Lorentz invariance is not man-
ifest because there is a preferred frame of reference, the
kame in which the matter is at rest. Thus spectral den-
sities and other functions may depend on energy and
momentum separately and not just on their invariant 8.
Also, the number of Lorentz tensors is greater because
there is a new vector available, namely, the vector u„=
(1,0,0,0) which specifies the rest frame of the matter.

For a given four-momentum p it is useful to define two
projection tensors. The first one Pg" is both three- and
four-dimensionally transverse:

amp~
T 2 )

P
(29)

with all other components zero. The second one Pg
"

is
only four-dimensionally transverse:

+ PT""
I

~

p j

(V"(z)V"(0))

The notation is L for longitudinal and T for transverse
with respect to p. There are no other symmetric second-
rank tensors which are four-dimensionally transverse.

We now define the longitudinal and transverse spectral
densities for the vector current as

In these expressions the angular brackets refer to the
thermal average. In general the spectral densities depend
on p and p separately as well as on the temperature (and
chemical potential). These definitions are standard and
insure that both spectral densities are non-negative. In
the vacuum we can always go to the rest kame of a mas-
sive particle, and in that kame there can be no difference
between longitudinal and transverse polarizations, so
that pr, = pT = p. Since Pf "+Pg" = —(g&" —p~p"/pz)
these equations collapse to Eqs. (8) and (9). The pion,
being a massless Goldstone boson, is special. It con-
tributes to the longitudinal axial-vector spectral density
and not to the transverse one. In fact, we could write

F.'~(p') p"p" = F'p'~(p')PL, "
~

This should not be done at finite temperature because
the contribution of the pion to the longitudinal spectral
density cannot be assumed to be a b function in p2. In
general the pion's dispersion relation will be more com-
plicated and will develop a width at nonzero momentum.
Therefore, we do not try to separate out the pionic contri-
bution but subsume it in the spectral density p&, without
any loss of generality.

Following Weinberg, we define a three-point function
by

—ia, i,M"" (q y) = f d zd ye 'i~'+~'"i

We multiply both sides by q„. On the right side we can
use

«—'(~ ~+» ~) ~ ~
—'(e ~+» s)

Bx~ (35)

d'pe(p') e"' pvPL,
" + &vPT""

27r s

and for the axial vector current as

Both the vector and axial-vector currents are conserved.
We assume that we can integrate by parts and that the
surface term is zero. The nonzero contribution comes
&om

(7 A."(*)A,"(y)V."(0) j = h(*' —y') (8(*') A'. (*) A"(y) V."(0)+~(—*')V."(o) A'-(*) A"(y) }
+&(*') (e(y')A"(y) A'( ), V"(o) +g(—y') A ( ) V. (0)»"(y)) . (36)

From this expression we see the need for knowledge of
the equal time commutators. Consistent with the nor-
malization of Eqs. (5)—(7) we have

b(z ) [A (z), Vb" (y)] = ie ggAs(~)&(z)

+S~~ ~(x) . h(z) .

b(z ) A. (x), Ai", (y)] = ie ~Vq"(x)b(z)

+Sf s(x) .h(z),

(37)

Here z = x —y, and the S's denote the Schwinger terms.
Consider now the contribution of the Schwinger terms

to the thermal average. Generically they will be of the
form
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(SJ) = g-') e
— -~ (n]S~m)(m~J~n),

relations we can 6nd the thermal average of the equal
time commutators:

where K = H —p,N is the Hamiltonian minus the chemi-
cal potential times conserved particle number, the states
are chosen to be eigenstates of 8, N, and isospin, and
J is either the vector or the axial-vector current. J has
isospin 1, and so we get zero if either (i) S is a c number
or (ii) S is an operator with no isospin 1 component. We
shall assume that one of these holds. Then

~(* )( V (*) V (0) )= ~(* )( + (~) + (0) )

= h sC"" „h(x) . (48)

The commutators above can be expressed in terms of
the spectral densities from Eqs. (31) and (32). Taking
their difference one obtains the finite temperature gener-
alization of the 6rst Weinberg sum rule:

~ „(& &."(&)&s(&)V."(0) )
pv((u, p) —p~(ur, p) = 0.

0
(49)

- ~( -~)(7 V"(*)V."(o) )

+ - ~(*)P ~"(~)&"(0).)

It is now a simple matter to show that

1
q~M""-"(q p) = Dv" (q+ &) —D~"(p)

(39)

(40)

Similarly, one can show that

(q+ p)IM-"""(q p) = DA"(q) —DA"(&). (42)

These Ward identities have exactly the same form as at
zero temperature [1].

With a similar consideration of the three-point func-
tion

ie,e Ne "(q, p) = f—d ed el e ' e' + '"

x(7 V."(*)V"(~)V."(0) ) (43)

one can prove two more Ward identities:

where the D's are the propagators for the currents, such
as

b.,a„"( ) = fd . ""(r ~:-(„)~,"(D) ).

Notice that this sum rule involves only the longitudi-
nal spectral densities and not the transverse ones. At
zero temperature the spectral densities depend only on
p = s = u —p2. Then this equation reduces to Eq.
(1) once we remember to separate out the pion piece of
pL&, namely, sIl 2b(s). At finite temperature, the spectral
densities in general will depend on ~ and p separately
and not just on the combination s. Then this sum rule
must be satis6ed at each value of the momentum.

At this point, Weinberg made an additional assump-
tion in order to obtain the second sum rule [Eq. (2)]:
The currents behave like &ee fields as p2 ~ oo. He also
related the difference between the vector and axial-vector
propagators to the matrix element of a particular oper-
ator between the vacuum and a one-pion state. This is
diffjLcult to generalize to an ensemble average. To obtain
the 6nite temperature generalization of the second sum
rule we follow the arguments of Das, Mathur, and Okubo
[24] instead.

Deleting the index V or A the explicit expressions for
the propagator and the Schwinger term are

(p p) = p DL(p p)
D"(p' p) = p'p'DL(p', p),

s

D"(p', p) =
l

~*' —,
~

DT(p', p)+, DL(p', p),
J

and

1
2q~&" "(q») = Dv" (q+&) —Dv" (&) (44)

where

(52)

DL(p, p) = 2i
0

D'L(p, p) = 2i
0

Dz(p, p) = 2i
0

(q+ p) &" "(q-p) = D""(q) - D""(J) (45)

(q + I )~Dv" (q + p) = q~Dv" (q) +»Dv" (p)
= q~D~" (q) +»D~" (&) . (46) and

Multiply Eq. (42) by (q +p)p and Eq. (44) by q„. Do
the same for the other two Ward identities. One obtains
the constraints

d~ ur pL(u, p)
~2 p2 ~2 p2 +0

du) u)s pL(u), p)
—P (d —P0+ ZE

c (,p)
(d —P0 + X6

(54)

This implies linearity in the momentum: C =C~ =C~ =0 C"(p) = ~"Ds(p), (56)

kyDv"(k) = kyD~"(k) = C""kg, (47) where

where C"" is momentum independent (but can depend
on temperature) and is the same for the vector a,nd axial-
vector channels. By taking the Fourier transform of these

dc' 4)
Ds(p) = », , pL(~, p).

0
(57)
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(II-L)

Like the first, this sum rule involves only the longitudi-
nal spectral densities, and we call it II-L. Also like the
first, it reduces to the original Weinberg s»m rule as the
temperature and/or chemical potential go to zero.

Next we consider the space-space components of the
propagators. Examination of the D& in the infinite en-

ergy limit gives us the sum rule II-L and nothing new.
Examination of the D~ in the infinite energy limit gives
us another sum rule which we call II-T because it involves
the transverse spectral densities,

d ~ ~v(~ p) —~~(~ p). = o.
0

(60)

The finite temperature sum rules II-L and II-T should
become degenerate at p = 0 because there ought not
to be any difference between longitudinal and transverse
excitations at rest. The sum rule II-T also then reduces
to the original second sum rule in the vacuum.

We want to emphasize that the sum rules derived in
this section, I, II-L, and II-T, must be satisfied for every
value of the momentum. Furthermore, our derivation
is more general than /CD; any theory which satisfies
the ass»mptions we made must obey these sum rules.
Perhaps they would be useful in the context of models of
the electroweak interactions where the Higgs particle is
a composite of other fields or for technicolor theories.

The first observation we can make concerns the ther-
mally averaged Schwinger term C. Since it is the same for
the vector and the axial-vector correlators, by Eq. (4?),
the D&(p) must be the same as well. Equating them re-
produces the first finite temperature sum rule [Eq. (49)].

The essence of the argument of Das, Mathur, and
Okubo is that spontaneous chiral symmetry breaking is
a low-energy phenomenon. At very high energy it must
disappear, at least in the limit that quark masses are
zero and chiral symmetry is exact. Thus the difference
between the vector and axial-vector propagators should
go to zero at very high energy:

lim D""(p,p) —D""(p,p) = 0. (58)
pomoo, p fixed

If we do this for the time-time or time-space components
of the propagators, that is, for the DL„we again repro-
duce the first finite temperature sum rule. Expanding
to the next order in 1/ps2we obtain a finite temperature
generalization of the second zero temperature sum rule,
which is

gous to that in deep-inelastic scattering, for which one
also has a preferred frame, that of the target. Thus, one
can simply use formulae derived in that context (see dis-
cussion in [ll]). The finite temperature sum rules were
recently reexamined along these lines in [9].

The fact that we are not going to discuss vector
and axial-vector channels as such, but only concentrate
on their digfemnce, brings in significant simplifications.
Most operators describing the interaction of a quark with
the gluonic field are chirality blind and therefore cancel.
In the chiral limit, the difference appears only starting
with the four-quark operators.

To leading order in the momentum the difference be-
tween the vector and axial-vector correlators is given by
the OPE to be

(61)

where the operator 0 was defined in Sec. II. This struc-
ture first appeared in the OPE analysis of the next-twist
correction to deep inelastic scattering in [25]. Observe
that this quantity is transverse: p„b,D""= p„AD&" = 0.
This is consistent with Eq. (47), the equality of the
Schwinger terms, and therefore with the ass»options
made to derive it.

First, consider AD . In terms of the spectral den-
sities it is given by Eqs. (50) and (53). Expand it in
inverse powers of poz in the limit that ~po~ ~ oo. Since
the coefficients of 1/poz and 1/ps4 in Eq. (61) are zero, it
must be that the corresponding coefficients in Eq. (50)
are also zero. This gives us the finite temperature sum
rules I and II-L immediately. We can say nothing about
the next term without knowledge of higher d.imension
operators in the OPE, which would contribute to order
1/po

Next, consider b,D„". From Eqs. (50)—(55) it is

de) 4P
b.D„" = 2i 2 . 2b, p ((u, p)+b, p~(u), p)

p —4J —XE'

(62)

Again, expand in inverse powers of po. The term of order
1/poz, when combined with the just derived snm rule II-L,
gives us the snm rule II-T. The term of order 1/po gives
us the finite temperature version of sum rule III:

(III) d(u~ 24p ((u, p) + Ap~((u, p)
0

B. Sum rules and the operator product expansion = —2vrn, (0„")+ 2(Q ) . (63)

Application of the OPE to 6nite temperature has a pe-
culiar history. In the first papers ([6] and several later
ones) the authors considered only the T dependence of
average values of the same operators as at T = 0, the
Lorentz scalars. However, the rest f'rame of the heat bath
selects a four-vector; thus symmetric tensors should also
be included. In fact, the situation is completely analo-

We can make two observations about this sum rule. In
the limit of vanishing temperature, Lorents covariance
says that

(64)

This reduces Eq. (63) to the previously derived zero tem-



4702 J. I. KAPUSTA AND E. V. SHURYAK 49

perature sum rule Eq. (16). At finite temperature, the
right side of Eq. (63) depends on T but not on p. There-
fore, the integral on the left side xnust be momentum
independent. If the integral is known at zero momen-
tum, for example, then it must have the same value for
any momentum.

C. Low-temperature limit

As we are taking the zero quark mass limit in this work,
the pion is massless below any critical temperature for
chiral symmetry restoration and/or deconfinement, and
thus at parametrically low temperature the heat bath is
dominated by pions. In [26] the so-called Dey-Eletsky-
IofFe mixing theorem was proved, which says that, to
order T, there is no change in the masses of vector and
axial-vector mesons. What changes are the couplings
to the currents. The finite temperature correlators can
be described by a mixing between the vector and axial-
vector T = 0 correlators with a temperature-dependent
coeKcient:

Dv" (» &) = (1 —e)Dv" (p o) + eD&"(S, o),
D""(p &) = (1-~)D""(p,o) + D""(u,o).

(65)
(66)

These are valid to first order in e—:T2/6I" 2. This implies
the same mixing of the spectral densities: namely,

pv(p, p, T) = (1 —e)pv(s, 0) + op~(s, 0),
p~(p, p, T) = (1 —c)pA. (s, 0) + op~(s, 0),

(67)

(68)

with the appropriate longitudinal and transverse sub-
scripts. The temperature dependence of the pion decay
coupling was thus proven to be F2(T) = (1 —e)I'2 for
small T consistent with the prediction of chiral perturba-
tion theory [27]. Therefore, the finite temperature sum
rules I [Eq. (49)], II-L [Eq. (59)], and II-T [Eq. (60)]
reduce to the original, zero texnperature sum rules but
with both sides of Eqs. (1) and (2) multiplied by the
factor (1 —2e).

One may ask whether the third sum rule also obeys the
Dey-Eletsky-Ioffe mixing theorem. A general formula de-
scribing the thermal average of any four-quark operator
using soft pion methods was derived in [28]. For an op-
erator O~~ ——qAqqBq the expression is

(O~~) =
~

1 —
~
[Tr(A)Tr(B) —Tr(AB)] — [Tr(ps' A)Tr(ps7 B) —Tr(psr Apse B)], (69)

(uu)2 f T' ) (uu) 2 T'
144 q

4F2 ) 144 12F2

where it is assumed that at T = 0 one can use the vacuum
dominance approximation.

The average of the four-quark operator appearing in
sum rule III gets multiplied by the correct factor (1—2e),
as shown by Eletsky [28]. This is not a trivial result: The
average value of an arbitrarily chosen four-quark opera-
tor will not have the same temperature dependence. As
already emphasized by Eletsky, a simplistic application
of factorization at nonzero temperature, which would

suggest the same behavior as for the quark condensate
squared,

of the subject elaborates on this [13]. The p and ai cur-
rents are both unchanged by the U(1)~ transformation
but are mixed under SU(Ny) ~. Therefore, if this symme-
try is restored at high temperatures, then there should
be no difFerence between the vector and the axial-vector
correlators, and the object of our considerations is zero.

In this section we speculute on exactly how this differ-
ence goes to zero with increasing temperature. Generally,
one may suggest many difFerent scenarios. Let us discuss
the following three.

(7o)
A. Mixing of vector

and axial-vector spectral densities

would be wrong, and in fact violates the sum rule.
In summary, at low temperature the sum rules under

discussion satisfy the Dey-Eletsky-Ioffe mixing theorem
exactly.

V. SCENARIOS
FOR CHIRAL SYMMETRY' RESTORATION

Chiral transforxnations are rotations of the quark field
with ps, and they may or may not have the SU(Ky)
(isospin) generators. The corresponding U(1)~ and
SU(Ny)~ have difFerent fates in @CD; the former is ex-
plicitly violated by the anomaly, and the latter is bro-
ken spontaneously at low texnperature and is restored at
some critical temperature T„provided the quark mass is
strictly zero as it is assumed in this paper. A minireview

The simplest scenario is that the T dependence factor-
izes. It means that the vector and axial-vector spectral
densities mix, without changing their shape, as in the
low-temperature limit considered in the previous section,
only with a more general function e(T). When the mixing
becomes maximal, e = 1/2, chiral symmetry is restored.

It is amusing to see at what temperature this occurs
using the lowest-order formula, e = T2/6I" 2. This esti-
mate gives T, ~i,t, ;„;„s= y 3F 164 MeV, which is
indeed roughly equal to the expected critical temperature
T-

B. Shift in meson pole masses and residues

In this scenario we assume that the p and aq mesons
retain their identities and dominate the correlation func-
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tion. However, their parameters change with tempera-
ture. In particular, the masses may move towards each
other [10] or go to zero [7]. At T they become degener-
ate, and chiral symmetry is restored.

It is instructive then to look at the sum rules. Let us
ass»~e that vector meson dominance is a good approxi-
mation for the spectral densities and not worry about the
continuum contribution for the time being. Let us focus
on zero momentum for the sake of simplicity. When a
pole mass is de6ned at finite temperature, it is usually
de6ned as the energy of the excitation at zero momen-
tum.

The vector spectral density is (there is no difFerence
between longitudinal and transverse at zero momentum)

1 m 1
pv(~) = — 'Im

p . p (71)
vr g2 (u2 —m2 —II~(u)) —ill~i((u)

'

where II& and III are the real and imaginary parts of
the p self-energy at temperature T. In the narrow width
approxixnation this becomes

4

pv((u) = ~6((u —m —II~(~)) .
P

(72)

The pole mass is determined self-consistently &om
mz(T) = m2 + II~&[m~(T)). Then the spectral density
can be rewritten as

pv((u) = Zp(T) ~6(ur —m'(T)),
P

(73)

where the temperature-dependent residue is

Z '(T) = 1 — II~~(ur)
d

(74)

The normalization is Z~(0) = 1. Similarly

4

~(u) = Z (T) 2'6(~ —m, (T))
O

+Z (T)F ur 6 ((o2) .

Substituting these spectral densities into the 6nite
temperature sum rules I, II-L, and II-T tells us that the
p and aq residues are equal,

Z~(T) = Z-(T) (76)

and that the pion residue is

m2
Z (T) = 2'(T) mpT

2
mp

m2, (T)
(77)

We expect that m2, (T) —m2(T) -+ 0 as the temperature
increases. Three types of behavior can be distinguished:
Both the p and the aq masses decrease with T, both
masses increase with T, or the p mass increases while
the aq mass decreases with T. The s»~ rules do not
appear to rule out any of these possibilities. In any case,

the result is that Z (T) + 0 unless Z~(T) m oo, which
seems rather unphysical.

C. Resonance broadening
and downward shift of the continuum

As distinct from the previous scenarios, it may be that
particles are not well de6ned as we approach a chiral sym-
metry restoring phase transition. That is, the imaginary
part of the self-energy may become larger with increas-
ing temperature. This broadening would also decrease
the maxixnum peak value of the spectral density. Eu-
phemistically, the vector and axial-vector mesons melt
away. There may be also a decrease in the threshholds
Ev(T) and E~(T) of the continuum. The continuum
would merge with the broadened particle poles to give a
very broad distribution of strength in the spectral densi-
ties. The difFerence of spectral densities shown for T = 0
in Fig. 1 would become flatter and decrease everywhere
towards zero, electively restoring chiral symmetry.

Concluding this section, we say once more that the sum
rules by themselves cannot of course tell which scenario
is preferable. However, the sum rules can be used to
significantly restrict the parametrization of the spectral
densities at nonzero temperature.

VI. CONCLUSION

In this paper we studied Weinberg-type sum rules at
zero and at nonzero temperature. All considerations were
made in the exact chiral limit of /CD, m~ + 0. In the
former case, we derived a new sum rule of the Wein-
berg type. Although it belongs to an infinite series of
sum rules, one for each type of OPE term at small dis-
tances, we think it is special in several respects. First, it
is relatively simple theoretically because it is related to
the VEV of a specific four-quark operator. S»m rules of
higher order than the third are much more complicated.
Second, it is related to the leading nonzero in(v) term of
the correlators, while others can be related to sublead-
ing terms which are much more difficult to single out,
especially in lattice simulations.

Continuing the zero temperature analysis, we reexaxn-
ined the experimental data together with all relevant sum
rules. We found that, although we do not have sufficient
information on the VEV of the operator for sum rule III,
we still can use it, together with sum rule II, to fix the
numerical value of E~, the continu»m threshold in the
axial-vector channel. This essentially closes the gap in
the experimental data, and allows one to test the origi-
nal Weinberg sum rules without any ad hoc assumptions.
Good agreexnent with the experixnental values of F and
the electromagnetic mass difference of pions provides a
nontrivial consistency check of the data used.

Our 6nite temperature analysis consists of several dif-
ferent parts. First, following Weinberg s original deriva-
tion, one can 6nd generalizations of his sum rules to
nonzero temperature. Sum rule I involves only the dif-
ference of the longitudinal spectral densities, while s»~
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rule II bifurcates into two sum rules, one involving the
longitudinal spectral densities, and the other involving
the transverse ones. These sum mles must be satisfied at
each value of the momentum. These new features arise
because of the appearance of a preferred reference kame
at nonzero temperature. These sum rules were derived
without specific reference to /CD, and so they are appli-
cable to other theories satisfying the assumptions made.
We were also able to derive them &om the OPE. Further-
more, we used the OPE to obtain the finite temperature
generalization of the new sum rule III, which makes spe-
cific reference to the dynamics of /CD.

We also considered very low temperatures at which
chiral perturbation methods predict the general behavior
of the correlators. We showed that these results are in
exact agreement with all sum rules under consideration.

We would like to emphasize that the average value of
the four-quark operator which appears in sum rule III is
of great theoretical interest. It shows correlation between
densities and currents made of left- and right-handed
quarks and is another order parameter for restoration
of SU(Nf) chiral symmetry. The average value in the
/CD vacuum and at finite temperature can and should
be studied in lattice numerical simulations. This task is
facilitated by the fact that it does not have any pertur-
bative contributions.

Finally, we speculated on possible scenarios of chiral
symmetry restoration. We have no preferences among
them, and only future work, including especially lat-
tice numerical simulations, can clarify which of them (if
any) is realized in /CD. However, the derived sum rules
should hold in any case, thus providing some relations
among parameters of the vector and axial-vector spec-
tral densities.

Note added in proof A. detailed analysis of the sum
rules and their phenomenology at zero temperature has
been carried out independently by J. F. Donoghue and
E. Golowich, Phys. Rev. D 49, 1513 (1994).
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