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Dynamical chiral symmetry breaking and confinement
with an infrared-vanishing gluon propagatory
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We study a model Dyson-Schwinger equation for the quark propagator closed using an Ansatz
for the gluon propagator of the form D(q) q /[(q ) + b ] and two Ansatze for the quark-gluon
vertex: the minimal Ball-Chiu form and the modi6ed form suggested by Curtis and Pennington.
Using the quark condensate as an order parameter, we 6nd that there is a critical value of b = b,
such that the model does not support dynamical chiral symmetry breaking for b ) b, . We discuss
and apply a con6nement test which suggests that, for all values of b, the quark propagator in the
model ia not confining. Together these results suggest that this Ansatz for the gluon propagator is
inadequate as a model since it does not yield the expected behavior of /CD.

PACS number(s): 12.38.Aw, 11.30.Rd, 12.38.Lg

I. INTRODUCTION

Dynamical chiral symmetry breaking (DCSB) and con-
finement are two crucial features of quantum chromody-
namics (/CD). Indeed, it might be argued that a realistic
model of /CD should manifest both of these properties
since they are responsible for the nature of the hadronic
spectrum, DCSB ensuring the absence of low-mass scalar
partners of the pion and confinement ensuring the ab-
sence of free quarks, for example.

A natural method for studying both DCSB and con-
finement in /CD, and models thereof, is the complex of
Dyson-Schwinger equations (DSE's) [1]. The equations
for the two-point functions of gluons and quarks have
been used in many such studies. This manifestly rela-
tivistically covariant approach, recent reviews of which
can be found in Refs. [2,3], has provided the foundation
for a useful and successful understanding of the phenom-
ena of low-energy /CD by facilitating the construction
of realistic field-theoretic models [4].

Another goal in the DSE studies is to develop this non-
perturbative approach to a point where it is as firmly
founded as lattice @CD and calculationally competitive.
Although much remains to be done in order to achieve
this goal there has been a good deal of progress, especially
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in the study of Abelian gauge theories where direct and
meaningful comparisons can be made, and agreement ob-
tained, between the results of lattice and DSE studies [5].

In considering DSE studies it is important to note that
they are hampered by the fact that there is an infinite
tower of coupled equations: the equations for the two-
point functions couple them to other two- and three-
point functions; the equations for the three-point func-
tions couple them to the four-point and higher n-point
functions, etc. A commonly used resolution of this prob-
lem is to truncate the system at a finite number of cou-
pled equations by making Ansatze for the higher n-point
functions. For example, one may study the DSE for the
quark propagator alone by choosing Ans6tze for the gluon
propagator and quark-gluon vertex thus closing the sys-
tem. This is the nature of our study.

Herein we study the fermion DSE obtained with a
model gluon propagator (two-point function) which van-
ishes at q2 = 0:

&(q) =-
q'[1 —II(q2)] (q')2 + b4 '

where II(q ) is the gluon vacuum polarization function
and b is a real parameter, in order to determine whether
it can support DCSB and/or generate a confining quark
propagator. Two properties we require of the propagator
of a confined particle are (1) the absence of a Kallen-
Lehmann representation and (2) no singularity on the
timelike q axis [6]. The gluon propagator obtained from
Eq. (1) satisfies both of these requirements.

Such a form for the gluon propagator, even though
it may be argued to describe a confined gluon, is per-
haps counterintuitive, since it would appear to provide a
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weak interaction between quarks at small p, which cor-
responds to large distances. Indeed, some studies of the
fermion DSE in QCD have employed quite a difFerent
Ansatz: one which behaves as I/(q2)2 for q 0 [7,8].
This form for the infrared (IR) behavior of the gluon
propagator is suggested by a number of studies of the
DSE for the gluon propagator in both axial [9] and covari-
ant gauges [10,11] using various approximation and/or
truncation procedures; notably, they all efFectively ne-
glect the 4-gluon vertex. (We note that the results of
the axial gauge studies [9] may be questioned on the ba-
sis that the gluon propagator therein is inconsistent with
the known spectral representation in axial gauge [12].) In
addition, this form of gluon propagator in the in&ared is
consistent with area law behavior of the Wilson loop [13],
which has been observed in lattice gauge theory studies
of QCD [14] and is often regarded as indicating confine-
ment.

However, the form in Eq. (1) is suggested by a num-
ber of studies. It has been argued [15] that in order to
completely eliminate Gribov copies [16], and hence to
fix Landau or Coulomb gauge uniquely in lattice studies,
one must introduce new ghost fields into QCD in addition
to those associated with the Faddeev-Popov determinant
in the continuum. Analyzing the lattice action thus ob-
tained suggests that the gluon propagator vanishes as
(q2)~, with p ) 0 not determined. Subsequent analysis
of a simplified model yields p = 1 and, in fact, a gluon
propagator of the form in Eq. (1) with b a finite constant
in Landau gauge. Similar considerations in Ref. [16]yield
the same result. A propagator of the form in Eq. (1) was
also suggested in Refs. [17—19] as a result of an analysis of
an approximate DSE for the gluon propagator. A recent
lattice QCD simulation [20] also provides some support
for this form. We also note that a gluon propagator of the
type in Eq. (1) may arise in the field strength approach
to QCD [21].

It is therefore important to study the phenomenolog-
ical implications of Eq. (1); i.e, to determine whether it
can support DCSB and confinement in QCD-based mod-
els of the type in Refs. [4]. It has been argued [15,17—19]
that Eq. (1) represents confined gluons because there are
no poles on the timelike real axis in the complex-q2 plane
and it allows the interpretation of the gluon as an unsta-
ble excitation which &agments into hadrons before ob-
servation (in a time of the order of I/b). It is also ar-
gued [19] that such a gluon propagator should lead to
a quark propagator with similar structure in the com-
plex plane, and hence a similar interpretation, but this
result has not been proven. Learning enough about the
quark propagator to make inferences about its analytic
structure is therefore an important part of our study.

We study the implications of Eq. (1) for the structure
of the quark propagator and DCSB using the fermion
DSE. A similar study is undertaken in Ref. [22]. Our
DSE is closed using two An8atze for the quark-gluon ver-
tex: the minimal Ball-Chiu vertex [23] and that of Curtis
and Pennington [24]. These vertices are free of kinematic
light-cone singularities. We find that in either case there
are regions of DCSB and unbroken chiral symmetry char-
acterized by a two-dimensional phase diagram in (b2, ln ~)

space, where b appears in Eq. (1) above and 7. will be
introduced below in connection with an ultraviolet mod-
ification of Eq. (1). The phase transition is second order.
We also employ a confinement test which suggests that,
with either of the vertex Ansatze and for all values of 6
and w, Eq. (1) leads to a quark propagator that is not
confining. Given these results it appears that the gluon
propagator of Eq. (1) is inadequate as a model, at least in
our DSE framework, since it does not yield the behavior
expected in QCD.

In Sec. II we present a model quark DSE which we solve
numerically. We also discuss the gluon propagator and
quark-gluon vertex An86tze in some detail. In Sec. III we
evaluate the quark condensate, which we use as an order
parameter for DCSB, and determine the characteristic
properties of the phase transition. We also demonstrate
that the quark propagator is not confining. In Sec. IV
we discuss and summarize our results and conclusions.

II. MODEL DYSON-SCHW'INGER EQUATION

In Minkowski space, with metric g„„
d&ag(1, —1, —1, —1) and in a general covariant gauge, the
inverse of the dressed quark propagator can be written
as

S '(p) = P —m —Z(p)—:Z '(p') P —M(p')
=—A(p') 8 —B(p'), (2)

with m the renormalized explicit; chiral-symmetry-
breaking mass (if present), Z(p) the self-energy, M(p ) =
B(p2)/A(p ) the dynamical quark mass function, and
A(p2) = Z i(p2) the momentum-dependent renormal-
ization of the quark wave function.

The unrenormalized DSE for the inverse propagator is

d4I
S '(p) = P — "—4g2 p"S(k)I'"(k, p)

xD„„[(p—k) ],

where I'" is the proper quark-gluon vertex and D„„(q ) is
the dressed gluon propagator. Hereafter we set m "= 0
so that we can concentrate on dynamical symmetry-
breaking efi'ects. (A study of explicit chiral symmetry
breaking in such DSE models of QCD can be found in
Refs. [25,26].) The renormalized, massless DSE is

a4I
S~ (p) = Zg gf —i' sg p" ~S( )kI' i(i,kp)

xD„„[(p—k) ], (4)

where Zg and Zp are quark-propagator and quark-gluon-
vertex renormalization constants, respectively, which de-
pend on the renormalization scale p, and ultraviolet cutofF
A. Neglecting ghost fields and explicit 3-gluon vertices,
as we do in the following [see Eq. (7) below], one has
Zg ——1 = Zp at one loop in Landau gauge. Using this
result here leads to our model renormalized DSE for the
quark self-energy:



49 DYNAMICAL CHIRAL SYMMETRY BREAKING AND. . . 4685

' d4X
~(p) = -', ~' 2,~"~(&)l'"(»p)D -[(p —&)'] (5)

where here and hereafter we suppress the label R.

A. Model gluon propagator

In a general covariant gauge the dressed gluon propa-
gator, which is diagonal in color space, can be written

D""(q ) =
~

g"" — —a —,(6)q' ) 1 —11(q')

where II(q2) is the gluon vacuum polarization and a is the
gauge parameter. It should be noted that in covariant
gauges the longitudinal piece of this propagator is not
modified by interactions. This follows kom the Slavnov-
Taylor identities in /CD. (See, for example, Ref. [27],
pp. 42—45.)

The form of the propagator we consider herein has been
argued to arise in Landau gauge (a = 0) and we shall
use that gauge hereafter. [This has the benefit that the
gluon propagator is purely transverse. In addition, Lan-
dau gauge is a fixed point of the renormalization group
and therefore the gauge parameter does not "run. " (See,
for example, Ref. [27], pp. 135-136.)]

A commonly used approximation is to write

g 1 = n( —q'),
4vr 1 —II(q2)

(7)

where n( —q2) is the running coupling in the gauge theory.
In /CD this amounts to neglecting ghost contributions
to the gluon vacuum polarization [11]. (In Abelian theo-
ries, of course, this is not an approximation but an exact
result which follows &om the fact that, in the absence of
ghost fields and gauge-boson self-interactions, the renor-
malization constants for II(q2) and gz are the same [28].)
For Q = —qz )) A&2cD, the one-loop contribution is
dominant and the running coupling is

d7r 12

Q/A )
' 33 —2N (8)

(We use Ny = 4 herein. Our results are insensitive to
changes in this value. ) In /CD, the use of Eq. (7) in
Eq. (6) is expected to be accurate at large Q2 where
it leads to the correct perturbative leading-log behav-
ior [29].

In considering the small q behavior we return to
Eq. (1). We observe that in Refs. [17—19] a solution of the
coupled DSE's for the gluon propagator and triple-gluon
vertex was obtained, using rational polynomial Ansatze,
(the coupling to the 4-gluon vertex was eliminated) and
it was argued that Eq. (1) is a good approximation to the
solution. A significant result in this study is that, in order
to support a solution of the type in Eq. (1), the transverse
part of the triple-gluon vertex, I'sz (pi, p2, ps), necessarily
has kinematic light-cone singularities of the form 1/(p;).
These singularities, which cannot arise in perturbation

1 (q2)2

1 —II(q2) (q')' + b4 (9)

is not implausible, at least at small q2. For this reason we
study Eq. (1) in the DSE approach in order to determine
whether it can lead to DCSB and a confining quark prop-
agator. This will provide further insight into the validity
of this form of gluon propagator.

Combining Eqs. (7) and (9) leads to the ultraviolet-

theory, are introduced in "solving" the Slavnov-Taylor
identities for the triple-gluon vertex. In this connection
we remark that Ref. [23] might be argued to suggest that
the Slavnov-Taylor identities for both the triple-gluon
vertex and quark-gluon vertex can be solved without in-
troducing kineinatic light-cone singularities. This latter
approach would allow for nonperturbative corrections to
the vertices and a simple connection with the perturba-
tive vertices in the asymptotically &ee region. In this
case the light-cone singularities in the triple-gluon vertex
of Refs. [18,19] might be viewed as undesirable.

%e note too that there has been an attempt to employ
the gluon propagator described by Eq. (1) in a study of
quarkonium spectra [30]. A Blankenbecler-Sugar reduc-
tion of a ladderlike approximation to the Bethe-Salpeter
equation is used and it is argued that in the bound-state
equation that results one can approximate the e8'ect of
Eq. (1) by a Coulomb potential for all r. The interest-
ing structure in this equation arises because the bound
fermions are described by propagators with complex con-
jugate poles just as the gluon propagator has [see Eq. (40)
and associated discussion below]. The results in this
study, however, are not competitive with detailed fits us-

ing potential models. It may be that the approximations
and/or truncations made in Ref. [30] are partly respon-
sible for this.

In connection with the small q2 behavior of the quark-
quark interaction the lattice results of Ref. [20] are also
interesting. This study, on 16 x 40 and 24 x 40 lattices
at P = 6.0, yielded a gluon propagator in a lattice Lan-
dau gauge which allowed a fit of the form in Eq. (1) at
small q2 but which could not rule out a fit using a stan-
dard massive particle propagator. Other lattice sizes and
values of P were also studied. The results at P = 6.3 on a
lattice of dimension 244 were not inconsistent with these
results, but in this case the small physical size of the lat-
tice was a problem. On a lattice of dimension 16 x 24
at P = 5.7 it was found that the gluon propagator was
best fit with a standard massive vector boson propagator
with mass 600 MeV. (We note that the gauge fixing
in this study did not include the modifications suggested
by Ref. [15].) These studies represent an improvement in
both technique and lattice sizes over earlier lattice stud-
ies of the gluon propagator [31],but the conclusions are
not markedly different. The studies of Ref. [31], using
P = 5.6, 6.0 on a 4s x 8 lattice and P = 5.8 on a 4s x 10
lattice, obtained results that were consistent with a f'ree

massive boson propagator with mass 600 MeV. Clearly,
further lattice studies would be of great interest.

At present, one can only say that Refs. [15—20] suggest
that, in /CD,
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improved model gluon propagator that we consider
herein; i.e, we study the phenomenological implications
of a model gluon propagator obtained with

q&r" (» p) [I + b(q') = [1 —B(q p)] S '(k)

—S '(p) [1 —B(q,p)], (12)

where (Q2 = —q )

n(~; Q') =
ln

+CD

4. 1 11(q2)
= ('- ) (;).+b4 (10) where q = (p —k), b(q2) is the ghost self-energy, and

B(p, q) is the ghost-quark scattering kernel, constrains
the longitudinal part of the vertex. Clearly, the often
used "rainbow" approximation, in which I'„(k,p) is sim-
ply taken to be p„, cannot satisfy Eq. (12) in an inter-
acting theory.

Neglecting ghosts, as we have done so far, this relation
takes the form of the Ward-Takahashi identity in /ED:

in Eq. (6). Here 7 ) 1 is an IR regularization parameter
introduced so that the logarithmic singularity is shifted
to Q2 = —rA&cD, which ensures that the piece derived
from Eq. (9) dominates in the spacelike IR region [32,33].

B. Model quark-gluon vertex

q„l'"(k, p) = S '(k) —S '(p) . (13)

The constraints that this relation places on the vertex can
now be inferred from the /ED studies [23,24,35]. Taking
these into account one is led to a vertex of the form

In choosing an Ansotz for the vertex we note that in
/CD the Slavnov-Taylor identity [34] where

r (k P) = rBc(k P) + rcp(k P)

I" (k p) = ~" + A(p ) —A(k ) —B( ) —B(k )

I'" (k )= A(k) —A( )cP ~P =
2d(k )

P (16)

with

1 B2(kz) B2(p2)
{g2 y p2) { ) +2{$2) g2 {p2)

In these equations, 1"Bc is the Ball-Chiu vertex of
Ref. [23] and rcp is the additional piece suggested and
studied by Curtis and Pennington in Ref. [24).

Equation (14) specifies our vertex Aruatz which has the
properties that it satisfies the Ward- Takahashi identity, is
&ee of kinematic singularities, reduces to the bare vertex
in the absence of interactions, transforms correctly un-
der charge conjugation and Lorentz transformations, and
preserves multiplicative renormalizability in the quark
DSE. (Of these properties the minimal Ball-Chiu vertex
satisfies all but the last. )

For the most part in the following we neglected
r~&p(k, P); i.e, we used a minimal Ball-Chiu Ansctz. As
we show below, this has the virtue of simplifying the in-
tegral equations. We did include this term for a single
value of v and a number of values of b in Eq. (10) and
found, as shown below, that it generates a small quan-
titative change in some of the characteristic quantities
calculated in the model, but does not alter its qualita-
tive features.

C. Wick rotation and Euclidean space

The model is now almost completely specified. Up to
this point, however, we have not considered the possi-
ble complications that may arise in. employing a Wick
rotation to obtain the DSE in Euclidean space where a
numerical solution is most easily obtained. In all model
fermion DSE's that have been studied so far the Wick
rotation is not allowed in the sense that the rotation of
the ko contour always encounters at least a pole and very
often a branch cut [22,36]. Indeed, in some models it is
not possible to rotate the contour at all [37]. This point
is discussed in Re&. [3,6]. We shall simply complete the
definition of our model DSE by specifying it in Euclidean
space, with metric b„„=diag(1, 1, 1, 1) and with p„Her-
mitian:

A d4I
~(p) = —;u',~"S(k)r"(»p)D -[(p —k)']

(18)
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where

S '(p) = ~.p+~(p) = ~ pA(p')+B(p') (19)

and all of the other elements in this equation are taken

to be speci6ed by the expressions given above, evaluated
at Euclidean (spacelike) values of their arguments.

Using Eqs. (6), (10), (14), (15), and (18) we obtain the
following pair of coupled integral equations for the scalar
functions that specify the model quark propagator:

16' d4k a(~; (p —k)2) 1

3 (27r) (p —k) A (k )k +B2(k~)

x A(k ) —[3p k —h(p k)] —A(k )b,A(k' ') k' — + h( k)
2 p2" p' 'p' "'

B(k—')AB(k )fp g

~

t

16' d4k a(7.) (p —k) ) 1

3 (2z) (p —k) A (k )k'+ B (k )

& 3B(kz)"( )+"(")+B(k')~A(k' ')-A(k')~B(k' ') h( k)t

(20)

(21)

where h(p, k} = 2 k p —(k ~ p) /q and AF(k, p) = [F(k ) —F{p )]/[k —p ].
Including the additional Curtis-Pe~nington term in the vertex, Eq. (16), these equations are modified as follows:

16m d4k n(~; (p —k)~) A(k2)EA(k, p ) (kz —p2) 3(k —p2)k p
(2~)4 (p k)2 A2(k2)k2 + B2(k2) 2d(k p) p2

(22)

16' d4k o, (v;(p —k) ) B(k )b,A(k, p ) (k2 —p )
(2z )

4 (p —k) A2 (k2) k2 + B2(k ) 2d(k, p)
(23)

These equations were solved numerically by iteration
on a logarit&mic grid of 2: = p /A&cD and lr = k /A&cD
points. In doing this we ensured that our results were
independent of the seed solution and grid choice. Our
results were independent of the UV cutofF, which was
A = 5 x 10 Ac» and this value was also sufBcient to
ensure that the leading-log behavior of the mass function,
Eq. (25) below, had become evident.

III. ANALYSIS OF ORDER PARAMETERS
A. Quark condensate

We are interested in determining whether the model
gluon propagator specified by Eqs. (6) and (10) can sup-
port DCSB—a crucial feature of QCD. The quark con-
densate, which is gauge invariant, is an order parameter
for DCSB and it is easily related to the trace of the quark
propagator, which is the focus of our DSE study:

( p,
2 ) ( A2 ~ B(s)

(qq)& ——— ln 2 lim ln
I 2 ds s

47rz (A2qcD) ~~~ (A2qcD) s»(s)'+ B(s) (24)

where d = 12/(33 —2ny) and p is the renormalization
point for the condensate, which is usually 6xed at
1 GeV . This is the parameter that is used to study
DCSB in lattice QCD and in many of the model stud-
ies in the continunm. [It is clear from Eq. (24) that an
equivalent order parameter is B(s = 0) since if this is
zero then so is the condensate ].

As we remarked above, Eqs. (10) and (ll) in the quark
DSE ensure that the leading-log behavior of QCD is re-
tained in the model so that [25,29,33]

4 d (1 p /AqcD ) {qq)
p*~oo 3 - - 1—d

p~ (ln pm/A~geo )
This provides another means of extracting the condensate
and hence a check on its evaluation.

In cases for which our iterative solution procedure for
the DSE converged quickly, with relative errors of less
than 1 x 10, the condensate could be obtained easily.
However, for values of 6 near a phase transition the con-
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FIG. 1. Criticality plot for —(qq)~~ as
a function of ln v and 6 . The conden-

1
sate, —(qq) 3, is in units of MeV, scaled to
p, = 1 GeV, and 6 is in units A&» the
gluon regulator 7 is dimensionless.

vergence could be extremely slow. In those cases, the
numerical solution was examined at constant intervals
through the run (say, every 50th cycle), and the conden-
sate evaluated in each case. Aitken extrapolation [38]
was then used to find the "infinite-cycles" limit. In sev-
eral cases the program was subsequently run until the so-
lutions had converged to within 1 x 10 and the extrap-
olated result always matched the actual result to within
a few parts in. 10

B. Critical behavior of the condensate

We solved Eqs. (20) and (21) for values of inr in the
domain [0.0, 0.7] and b in [0.1, 1.0] using the minimal
Ball-Chiu vertex and we plot the condensate obtained
&om our solutions in Fig. 1. This figure shows regions of
unbroken and dynamically broken chiral symmetry.

Our numerical results suggest that the condensate rises
continuously &om the transition boundary and hence
that the transition is second order. As a consequence
we assumed that the order parameter, (qq)„, behaves as

1. Critical panarneters for the chisel phase treasition

Prom Table I we find

PBc = 0.575, op = 0.024 . (27)

for z ~ z, (for z equal to either in' or b ) and ex-
tracted the critical points, z„and critical exponents,
P, using ratio-of-logs methods adapted from Gaunt and
Guttmann [39]. We list these quantities in Table l and,
in Fig. 2, plot the critical curve in the (b, lnr) plane.

We also solved Eqs. (20) and (21) with the Curtis-
Pennington additions, Eqs. (22) and (23), using
inn = 0.6. The critical curve (in b2) in this case is shown
in Fig. 3 along with the minimal Ball-Chiu results for the
same value of ln~. The efFect of the Curtis-Pennington
addition is to lower the critical value of b but, as we
show below, the critical exponent is unchanged. This
curve illustrates the point that the qualitative features
of the model are not affected by this modification of the
model quark-gluon vertex.

f zl
(«)~(z) = &11——

I

z~)
(26)

We note that the critical exponent obtained with ln v. = 0
is quite different &om the others. This is a special case

TABLE I. The critical points and exponents extracted for various values of ln v", the cumulative
result is Psc = 0.575, with op = 0.024; excluding the point with in' = 0.0, Psc = 0.572 with

(rp ——0.020.

0.00
0.10
0.20
0.25
0.30
0.35
0.40
0.50
0.55
0.60
0.?0

&c
critical b value

0.6439
0.5448
0.4642
0.4278
0.3932
0.3601
0.3289
0.2706
0.2437
0.2180
0.1710

critical exponent
0.609
0.579
0.570
0.579
0.573
0.570
0.56?
0.567
0.570
0.561
0.579

0'p

standard deviation in P
0.03
0.021
0.021
0.021
0.021
0.0195
0.021
0.021
0.021
0.021
0.021
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I

+Endpoint: b W, ln(x)=1.69

1.5

10
FIG. 2. Critical curve for the phase tran-

sition in the (lnr, 5 ) plane. The asterisk is
the result extracted from Ref. [33].

0.5

0.0
0.0

Dynamically Bro

Chiral Symmetry

b [units A~]
0.5

since for this value the propagator does not vanish in the
infrared:

Pcp = 0.579, o'p = 0.015 .

A2—D(q ) = der

If we neglect this point in our analysis then we find

Pnc = 0.572, op = 0.020 .

(28)

(29) I'„(k,p) = A(ks)p„. (31)

This suggests that the vertex modification does not alter
the critical exponent of the transition; a conclusion that
is also supported by the observation that the vertex used
in Ref. [33] was not of either of the above forms but was,
electively, a simple modified rainbow approximation:

The results in Eqs. (27) and (29) are in agree-
ment with those of Ref. [33] where it is argued that
P = 0.589 + 0.031. That study used bs = 0 and found
a critical value of ln v' = 1.69 which complements the re-
sults reported herein, as will be seen in Fig. 2.

We also calculated the critical exponent using our
m~merical DSE solutions obtained with the Curtis-
Pennington addition to the vertex at inc = 0.6:

C. Con6nement test

It is important to determine whether the model gluon
propagator specified by Eqs. (6) and (10) leads to quark
confinement, i.e., the absence of free quarks in the /CD
spectrum. This form of gluon propagator has been con-

80.0- +
+

C 0 minimal Ball-Chiu

+--+C+P term added

Q

70.0-
O

8

0

60.0—

8
~ &
C

+~ 50.0-
y
O Bo

1
FIG. 3. Comparison of the —(qq)g con-

densate curves for the minimal Ball-Chiu and
Curtis-Pennington Ansiitze for the proper
vertex. Both curves have ln7 = 0.6. Dia-
monds, o, connected with solid lines are the
results from the BC vertex; plus signs, +,
connected with dashed lines are results from
the CP vertex.

40.0
0.07 0.12 0.17

2 2
b [units h D ] —gluon regulator

0.23
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structed so that the dominant IR behavior ensures that
it vanishes at q = 0. In order to determine whether
the quark propagator obtained as a solution to our DSE
can represent a confined particle, we follow Ref. [40] and
adapt a method commonly used in lattice @CD to esti-
mate bound-state masses.

We write

&(p')
p2+(p2)2 + Q(p2)2 ~

and define

d4p
b, s(T, X) = e'("' + "log(p')

(2~)4

This is the scalar part of the Schwinger function of the
model quark propagator. If we now define

1 /' bTI fbT( . (bT(
b, (T) (x exp

/

—
/

cos
/ )

—siil
/

b 2 i 2) (, 2) ( 2)
(38)

%"e remark that the Schwinger function in this case is
not positive definite, which is an easily identifiable sig-
nal in A(T) that is due to the pair of complex conjugate
poles, and this violates the axiom of reBection positiv-
ity. It follows from this that Eq. (38) describes a field
with a complex mass spectrum and/or residues that are
not positive. This is appropriate for particles that decay
and forms the basis of the argument [15,17—19] that a
propagator of the type in Eq. (1) allows colored states
to exist only for a finite time (of the order of I/O) before
hadronizing, i.e., that the propagator describes confined
gluons.

Es(T) = J d zAs(T, x),

and, for notational convenience,

E(T) = —» [&s(T)],

(34)

(35)

1. Coafinemerat and dressed qua-rk masses

In applying this method here it is obvious that numeri-
cal evaluation of the Fourier transforms required in, using
Eq. (36) will be hindered by numerical noise as T is in-
creased. In order to minimize the effect of this noise on
the derivative, we fitted b, s(T) to a form

then it follows that if there is a stable asymptotic state
with the quantum numbers of this Schwinger function

t exp (—mT), (39)

dE(T)
lim = m,

T~oo (36)

where m & 0 is the mass of this excitation; i.e, this limit
yields the dynamically generated quark mass. A finite
value of m indicates that the quarks are not confined
since it ensures that the cluster decomposition property
is satisfied by this Schwinger function [6].

We argue, therefore, that if the limit in Eq. (36) ex-
ists for a given propagator then the associated excitation
is not confined: this is our definition of a nonconfining
propagator.

In order to illustrate this point we note that the cal-
culation of the "constituent quark mass" in the Nambu-
Jona-Lasinio model [41] can be understood in just this
fashion: in this model m, as defined above, is finite and
quarks are not confined.

In contrast, one can consider the model of Ref. [37].
Applied to this model one finds

dE(T) T~
dT

(37)

where r is a constant and hence the limit in Eq. (36) does
not exist. In this case the Schwinger function does not
satisfy the cluster decomposition property and hence the
quarks are confined [6]. Alternatively one may say that
through self-interaction the quark acquires an infinite dy-
namical mass. This provides another way of understand-
ing the claim that the model of Ref. [37] is confining.

Another application of this method, which is of direct
interest here, is the IR vanishing gluon propagator of
Eq. (1). In this case one has a boson propagator and
finds for the analogue of b,g(T)

TABLE II. Asymptotic dressed-quark-mass values for the
family of propagators with ln7. = 0.1, the propagator which
showed maximal DCSB (at lnr = 0 and 5 = 0.35), and
for ln7 = 0.6, b = 0.1 with both the Ball-Chiu and Cur-
tis-Pennington vertices.

ln~
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.0
0.6
0.6

b2

0.25
0.3
0.35
0.4
0.45
0.475
0.49
G.5
0.51
0.52
0.525
0.53
0.535
0.5375
0.539
0.54
0.35
0.1
0.1

~free
0.410
0.354
0.296
0.237
0.176
0.143
0.122
0.107
0.0913
G.0739
0.0644
0.0539
0.0421
0.0353
0.0308
0.0275
0.406
0.210
0.210

C
0.664
0.650
0.633
0.624
0.619
0.619
0.619
0.621
0.619
0.619
0.619
0.619
0.619
0.619
0.619
0.619
0.667
0.648
0.507

Comments
BC vertex

BC vertex
CP vertex

and extracted the derivative from this fit. [Importantly,
we found no indication of the structure suggested by
Eq. (38) in our results. ] This was particularly useful with
the propagators obtained using small values of b which
had large dynamical masses (as one would expect since
the condensate is large in this case) and hence a rapid
decline with T.
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a lied the confinement test in the following cases:

[, ]; (2) the ropagator obtained with

of — on the (b, in') domain considered;
& j wo

in the Ball-Chiu vertex and another using e
Pennington a i ion.
form qE . (39) to our numerical outpu are p

DCSBases be ond b, there is notransition: as b increases y
ain massless. ince

of all the other solutions we obtained was qua-

W also note that the rainbow appro
'eason

. (1) in Ref. [22], which addressthe fermion DSE with Eq. & j in e.
nt b a direct continuation othe question of confinemen y

'nk ski momentum space, ioun qf nd a uark propaga or
l ke 2 i.e. a nonconfining propaga-with a pole at time i e p, '

tor.
ark that, within numerical noise,

~ ~ ~

the Curtis-
ade no difFerence to the dressed-
ted in the cases consi ere anuark-mass value extrac e in

t C.
qu

d ed the normalization constanonly slightly reduce e
s onl to aClearly, t e ur is- ey, h C t -Pennington addition leads on y

minor quantitative e ec inmin 8' t this part of our study, too.

IV. DISCUSSION AND CONCLUSION

It has been suggeste d [19] that the model gluon prop-
ark ro a-E pig would lead to a confining quar propa-agator in q.

gator of the form

(40)

d c C C are constants, i.e., to a
ion ro agator with complex conjugate po es jes 'ust

istic signature in g w
'

ro a atord l th it is clear that a fermion prop gInour mo e eni
d es notf the t e in q. oE . i40) does not arise. This doe

lo ed for the vertex functions therein mayAnaatze employe or e
k- luon vertex to thatl d to a completely difFerent quar -g uon ver

im l remark that our results suggestused here. We simp y remar a
ro a ator of the type in q.that a fermion propag

&ee of kinematicnot arise if the quark-gluon vertex is ee o in
singularities.

ied a model DSE (Dyson-I conclusion, we have studie a mo en co
k ro a ator using

d 1 luon propagator that vanishes as q + 0,
uark- luon ver-

—17j. This is the first study to analyze the

work of the fermion DSE. Our resul s gg
su ort DCSB for values of ln~ and b

ks. ualitatively similar results are obtaine
Ref. 22. As a consequence we e eve a

y S —Bethe-Salpeter equation type consi-Dyson-Sc winger — e
text our~4~. Indeed, taken in a broader contex,

results do not support the contention t a q.
correct form o t e quar-e h k-quark interaction at small q
in @CD.
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