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Quantized relativistic Aux tube
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We explore the dynamics of mesons composed of spinless quarks connected by a straight Sux tube.
The mesons are quantized and the constituent motion is relativistic. The methods developed are
applied to mesons containing equal mass quarks and heavy-light quarks. For massless quarks a nearly
straight leading Regge trajectory with Nambu slope is accompanied by nearly parallel equally spaced
daughter trajectories. For heavy-light mesons an analogous structure is found but with double the
usual Nambu slope. Comparison with six observed spin-averaged heavy-light meson states yields
good agreement.

PACS number(s): 12.38.Aw, 12.38.Lg

I. INTRODUCTION

The last few years have witnessed some rapid progress
in understanding hadronic states on both experimental
and theoretical fronts. In the arena of model building
the relativistic aux tube (RFT) model has been pro-
posed [1—3] as a successor to the potential model. As
previously pointed out [2, 4], the spin-independent rela-
tivistic correction generated by a Lorentz scalar confin-
ing potential is inconsistent with QCD. In addition, the
small quark mass limit with a scalar confinement poten-
tial implies a catastrophic loss of Regge behavior [5]. The
Lorentz scalar nature of confinement has no obvious ba-
sis in fundamental QCD but was chosen phenomenologi-
cally [6] to avoid long range spin-spin correlations. Once
this choice is made one must accept the spin-independent
consequences. These consequences require the rejection
of the concept of scalar confinement.

The RFT model gives, in a natural way, the correct
spin dependence [3], the correct spin-independent correc-
tions [2,3], and for massless quarks reduces to the Nambu
string. The RFT model also provides a simple physical
picture for the QCD relativistic corrections derived from
the rigorous Wilson loop formalism [4, 7]. The leading
relativistic correction at large angular momentum is just
due to the energy of the Bux tube rotating about the
c.m. of the heavy quarks [2]. The qualitative change in-
troduced by the RFT model is to include the momentum
of the interacting field whereas the potential model only
includes its energy.

In [1] an effort was made to solve the spinless quark
RFT model for quantized mesons. The purpose of the
present work is to expand upon this treatment, to develop
more accurate n»merical procedures, and to explore the
Regge structure of heavy-light mesons. The basic techni-
cal problem with the quant»m solution is that one can-
not analytically eliminate all of the quark velocities be-
tween the energy and angular momentum equations. We
develop a systematic approach which efhciently handles
quantum systems of this type. In Sec. II we generate the

II. RFT EQUATIONS AND CLASSICAL
SO'I UTIONS

In Fig. 1 we show the portion of a meson from the
meson c.m. to the ith quark including the corresponding
portion of the Bux tube. For the ith quark alone the &ee
Hamiltonian is

Hp; —— p2, + m2.

The Qux tube segment is introduced by a four-momentum
substitution [3]

Iq ~ I Jg (2)

where p" is the new canonical momentum and

ge

FIG. 1. Portion of a meson consisting of a segment of Sux
tube from the center of momentum to the ith quark.

equations of motion by the tube substitution approach
[3] and discuss the classical yrast solutions in the cases
of equal mass quarks and heavy-light quarks. The quan-
tum solution is outlined in Sec. III and some detailed
numerical solutions are given in Sec. IV for equal mass
quarks and in Sec. V for heavy-light systems. Our con-
clusions are summarized in Sec. VI. In the Appendix we

present some analytic results for the operator representa-
tions used and discuss the convergence of our numerical
procedure.
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pi = (Hi, Ii)
is the tube four-momentum. By direct evaluation [1,2],

arcsin v~,.

mass. Denoting = H„, etc. , two equations follow
from the yrast condition:

L„=O,
H =0.

Vgi

(pi;)s ——Li; = 2ar, f (VL;),
arcsin v~, 1

4VLi VLi
vL Qli

(4) For the equal mass equations (8) direct evaluation of the
above derivatives and the elimination of v~ „yields

2m(pgvg) = ar.
where v~; is the quark velocity perpendicular to r;. Mak-
ing the substitution (2) we obtain Substituting this back into (8) we find that

20; = p; —p~, +m,2. +a„..

The square-root term can be reexpressed as

(5)
aL, 4, t' . V~)= p&v&2

~

arcsinv~ + vi)
M f . 1= p~vg

~

arcslnvg +
2m 'YJ VZ)

(i2)

(p; —p&;) +m2 = W„2,. +
r,' In the limit of large L or small m, v~ approaches unity

and it follows that

where

W„; —= gp„', + m,'. ,

pq, e = r; W„;v~;p~, ,
(7)

I
Nambu &

which is the well-known Nambu-Regge slope relation.
A similar yrast solution for the heavy-light meson

yields

L—= W p~v~ + ar f(v~),
arcsin v~H = 2W„pg + ar

(8a)

(8b)

and p~ ~
—1 —vg

For a meson we must add contributions (5) for both
quarks. To ensure that the meson is at rest we take
p„q = p„2 ——p„and a separate constraint that the total
momenta perpendicular to the rotation axis and to the
interquark axis must vanish [2]. In two important special
cases this latter constraint is trivially satisfied. For equal
mass quarks the total perpendicular momentum clearly
vanishes. For heavy-light mesons the constraint has no
e8'ect since the c.m. point always remains close to the
heavy quark.

Summing (5)—(7) for both quarks yields, for an equal
quark mass meson,

aI, p~4V~2 ( . v~'i
~

arcsinv~ +
ml 2 l pg)

M —m2 2
1'

!
= p& v~

~

arcsin v~ +
m] l'YJ VJ j

(i4)

The analogous Regge plot relation for the heavy-light
case in the limit of large L or small mi is

L 1
2~Nambu '

(M —m, )2 Ira

We note that the yrast slope for heavy-light mesons is
double the "Nambu" slope of (13).

For large angular momentum we expect correspon-
dence between the yrast and quantum solutions. It will
be informative therefore to compare the results of the fol-
lowing two sections to the yrast slopes of (13) and (15).

and for a heavy-light meson with the heavy quark mass
m2 » m~ and m2 )) ar, III. QUANTUM SOLUTION

I—= W„q~v~ + 2ar f(v~),r (9a)

arcsin v~0 —m2 ——R„p~ + ar
Vg

(9b)

where f (v~) is defined in (4), W„ in (7), and r = rl + r2
is the interquark separation.

As a point of comparison we first seek the yrast, or
minimum energy for fixed angular momentum, solutions
of (8) and (9). The minimum H will be M, the meson

From (8) or (9) the quantized solution would be rela-
tively simple to construct if one could solve the angular
momentum equation for v~ and substitute in the Hamil-
tonian. The resulting wave equation H@(r) = M@(r)
could then be solved by standard numerical methods with
the replacements L2 = g(I. + 1) and p„= —-„s„",. Unfor-
tunately, this is only feasible for heavy quarks in which
case the Schrodinger equation with static linear confine-
ment results [1].

Since we are faced with transcendental functions in
(8a) or (9a) we must devise a numerical way to elimi-
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nate v~ while treating v~, r, and W„as noncommuting
operators. For de6niteness we concentrate on the equal
mass case. The heavy-light solution proceeds in a nearly
identical way.

In our scheme we first reduce (8) to finite matrix equa-
tions by introducing a complete set of basis states (ex, (r) )
and then truncating at a finite number N:

Q(r) = ) cx, ex, (r) .
k=1

(16)

L
det ——W„p~v~ —ar f(v~) = 0, (17)

where here by assumption vg is a sixnple number. For
N basis functi. ons there are N zeros of the determi-
nant. The matrices p2, 1/r, and r are given in the Ap-
pendix in analytic form. As an example, we assume that
a = 0.2GeV, m = 0, and P = 1GeV. The eigenvalues of
v~ are the zeros of (17) and are exhibited in Fig. 2. From

25
:~ O ~ ~ ~ ~ ~ ~ ~::~ O ~ ~ ~ ~ ~ ~ ~~O ~ ~ ~ ~ ~ ~ ~ ~

20 -~oo ~ ~ ~ ~ ~ ~ ~ ~

~O ~ ~ ~ ~ ~ ~ ~ ~

~O ~ ~ ~ ~ ~ ~ ~ ~

~OOOO ~ ~ ~ ~ ~ ~ ~ ~

OOOO ~ ~ ~ ~ ~ ~ ~ ~

$5 - oooo ~ ~ ~ ~ ~ ~ ~

~ O ~ ~ ~ ~ ~ ~ ~ ~

The spirit of this approximation parallels the well-known
Galerkin method [8]. The basis set we work with is a
variant of hydrogenic wave functions corresponding to a
totally discrete energy spectrum [9]. Other convenient
sets such as the spherical harmonic oscillator wave func-
tions would presuxnably also suffice. As discussed further
in the Appendix, the basis set contains a scale parameter
P. We will show that the eigenvalues found are indepen-
dent of P for a sufficiently large N. The larger the number
N of basis states used, the wider the range of P for sta-
bility of the eigenvalues. Equation (8) can be thought of
as two N x N matrix equations involving known r and
W„matrices and an unknown v~ xnatrix.

The second step is to solve (8a) for the v~ matrix.
Since various functions of v~ enter, it is best to pick
a direction in the basis function space in which v~ is
diagonalized. The condition for 6nding such a direction
1s

this 6gure we see that the eigenvalues of v~ are mono-
tonically distributed between zero and unity, and evolve

sxnoothly toward a limiting distribution as N becomes
large. The matrix representation of v~ is then obtained
by the inverse of the similarity transformation which di-

agonalizes v~. The representation of v~ in the original
basis set in general will be asymmetric and the similarity
matrix will not be orthogonal. Any function of v~ can
now be found in matrix form since the same similarity
transformation diagonalizes any function of v~.

The third and 6nal step consists of substituting the
matrix functions p~ and arcsin v~/v~ into the Hamilto-
nian. We then diagonalize H to obtain the eigenvalues,
or xneson masses, and the meson wave functions. If the
v~ dependence appears in the same order in (8a) and

(8b) the resulting Hamiltonian will be symmetric. It is
clear that the same steps can be followed in the solution
of (9) for heavy-light xnesons.

In the following two sections we carry out the above
procedure for equal mass quarks and for mesons com-
posed of one heavy and one light quark.

IV. EQUAL MASS QUARKS

a = 0.2 GeV (18)

which is in agreement with most analyses of heavy
quarkonia and yields a Nambu slope (13) aN
(2vra) i = 0.8 GeV2 which closely matches the xxniver-

sal Regge slope. We will in most cases plot our results in
terms of a dixnensionless mass M2/2z a so that the Regge
slope should approach unity at large angular momentum
and also the results can be scaled to any desired string
tension. The remaining parameter is the quark mass for
which we consider two illustrative cases.

We now address the detailed solution of the coupled
RFT equations (8) describing mesons composed of equal
mass quarks. A short range, possibly Coulombic, inter-
action could easily be added to the Hamiltonian (8b)
without changing the symmetry of the Hamiltonian or
the calculational difficulty. For the most part we ignore
such an addition in this paper except at the end of the
next section on heavy-light mesons. In order to solve (8)
we must specify the physical parameters, specifically the
string tension a and the quark xnass m. In the rexnainder
of this paper we will assume that

]0 - ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~

5

~ ~ ~

~ ~

0
0 0.2 0.4

Vg

0.6 0.8 1.0

FIG. 2. Eigenvalues of v~ from the zeros of (17) with
f = 1. For N basis states, N zeros, denoted by dots, are
found. The eigenvalues lie between zero and unity and ap-
proach asymptotic values at large N. The zero distribution
pattern shown corresponds to basis state scale P = 1 GeV.

A. Quark mass m = 1.5 GeV

We 6rst brie8y discuss the results for two heavy quarks.
The lowest-lying states are nearly nonrelativistic but as
the angular momentum increases v~ approaches unity
and the Regge structure should approach the massless
case. The leading trajectory and three daughters are dis-
played in Fig. 3. The dots indicate the physical states
which occur at integral angular momentum quantum
number f The system of. RFT equations (8) has been
solved as a continuous function of orbital angular mo-
ment»m as discussed in the Appendix. Since our solu-
tion is a continuous function of E, it is straightforward to
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FIG. 3. Regge trajectory plot for heavy equal mass quarks
m = 1.5 GeV. The leading trajectory and three daughter
trajectories are shown. Equations (8) are solved for arbitrary
E and physical states are noted by dots at integral angular
momentum quantum numbers.

compute the dimensionless Regge slope

dE
A = 2TG (19)

B. Massless quarks (m = 0)

Nothing too unusual happens as the quark mass goes
to zero. In Fig. 5 we show the leading and three daughter

The slope of the four trajectories of Fig. 3 is shown in
Fig. 4. %e observe that for large angular momentum the
slopes seem to approach unity as expected. The daughter
trajectories approach the Nambu slope more slowly as
might be anticipated since more energy is contained in
radial motion.

FIG. 5. Light quark Regge plot. The leading trajectory
and three daughters are shown for m = 0 (solid line) and
m = 0.3 GeV (dotted line).

trajectories for the cases of m = 0 (solid line) and m =
0.3 GeV (dashed line). The m = 0.3 GeV trajectories
are displaced but otherwise similar. For these upper four
m = 0 trajectories we compute the dimensionless slope
(19) as shown in Fig. 6. We show in this figure results for
N = 15. For 8 = 40 the slope of the leading trajectory
still divers by a &action of a percent from unity and the
daughters by successively larger amounts.

The N = 50 solution is used in Fig. 7 to display the
global structure of the RFT model particle spectrum for
massless quarks. Again, the dots indicate physical states
of integral orbital angular momentum.

Prom Fig. 7 we observe the following.
(1) The trajectories are remarkably straight and evenly

spaced.
(2) The physical states align into towers of approxi-

mately mass-degenerate states of even or odd E. For the

0.9

(cadi rtg
----- I' datsghter

1.05

leading
I"daughter
gad
3/d

0.8

0.7

0.6
0.95

s

r

0.5
10 20 30 40 50

0.9
10 20 30 40

FIG. 4. Slope of m = 1.5 GeV trajectories of Fig. 3. The
dimensionless slope of (19) is normalized so that the clas-
sical limit is unity. At large angular momentum the slope
approaches the classical limit.

FIG. 6. Dimensionless slope for massless quarks showing
convergence to unit slope at large E. The classical limit is
approached from below since radial oscillations add to the
meson energy.
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FIG. 7. Particle spectrum for massless quarks showing the
Regge classification out to Z = 20. The physical states are
denoted by dots. The towerlike structure for even and odd
Z should be noted. The solution shown used N = 50 basis
states.

= 2 tower the E = 0 and E = 2 states are degen-
erate to within 1 MeV and for the E = 4 tower the
8 = 0, 2, and 4 states are the same mass within 16 MeV.
The lack of mass degeneracy becomes more pronounced
for the higher towers; for example, the / = 15 tower
contains states separated by as much as 70 MeV.

Finally we refer the reader to the Appendix for a dis-
cussion of the convergence of our numerical eigenvalues
as a function of trial function scale parameter P and num-
ber of basis states N. Our system of equations does not
appear to fit the standard Galerkin theorem [8] require-
ments of a self-adjoint and positive de6nite eigenvalue
equation. In this case we are assured that each eigen-
value approaches the correct one from above as a func-
tion of any variation such as P or N. In the RFT so-
lution two nested eigenvalue problems are solved using
the same basis states. One of these eigenvalue problems
is a nonstandard one involving a nonorthogonal similar-
ity transformation. (Despite this complication we see in
Figs. 11—13 Hat regions in P which widen as N increases.
These P plots are very similar to those for a single wave
equation in the potential model [10].)

FIG. 8. Heavy-light Regge structure with mz ——0, mz in-
finite. The leading trajectory and three daughters are shown.
Equations (9) were solved with N = 15.

2.2

2.1

leading
j"daughter
2nd

3rd

Again we observe apparently straight evenly
spaced trajectories but this time of dimensionless slope 2
as one would expect from the yrast solution (15). It is in-
teresting to note that although the slope has changed the
trajectory spacing compensates so that the tower mass
degeneracy is preserved. ' The detailed structure can be
seen from the slope plot of Fig. 9. As in the equal mass
case the leading trajectory most rapidly approaches the
classical solution, followed in turn by successive daugh-
ters as one would expect.

It is of interest to see if the actual heavy-light meson
spectrum is consistent with the predicted doubling of the
Nambu slope. Since we are presently considering spinless
quarks, we should use the observed states to compute a
spin-averaged spectrum. In Table I we show the heavy-
light states which have established quark model spectro-
scopic assignments [11].

V. HEAVY-LIGHT QUARK MESONS

Another interesting class of mesons is when one of the
quarks (m2) becomes very massive, speciBcally m2 )& mq
and m2 )& ar. As seen in Sec. II the classical yrast solu-
tion (15) to the heavy-light equation (9) implies a Regge-
type slope double the normal Nambu slope (13). To ob-
serve Regge behavior we must Brst subtract the heavy
quark mass &om the meson state mass before squaring.

The numerical solution of (9) proceeds similarly to the
equal mass case. In Fig. 8 we exhibit the leading trajec-
tory and three daughters for the limiting case mq ——0 and
m2 in6nite. The angular momentum quant»m number is
plotted as a function of a dimensionless mass squared

1.9

1.8
10 15 20 25

FIG. 9. Dimensionless slope for the heavy-light system of
Fig. 8. The classical limit in this case is double the equal mass
limit. Again the quantum solution approaches the classical
limit from below due to radial motion in the quantized case.
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TABLE I. Heavy-light spin-averaged states. Using ten
observed heavy-light mesons having established quark spec-
troscopies [11] six spin av-eraged levels can be extracted as
discussed in the text. Using the RFT model with a Coulom-
bic short-range part all of these levels are accounted for us-
ing standard values (20) for masses, string tension, and short
range coupling.

1.8

1.6

1,4-
1.2

State

c6, cd quarks
D (1867)
D' (2009)

Dg (2424)

D; (2459)

0 1S
3S

1P

P

Spectroscopic label
JP 2s+1L

Spin-averaged
mass (MeV)

1S (1974)

1P (2424)

0.8

0.6 .
0.4-
0.2-

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

(M —m, )
~

27t'G

cS quarks

D, (1969)
D; (2110)

D, g (2537)

0 1S
Sx

PI

1S (2075)

1P (2537)

FIG. 10. D and D, leading trajectories from the St to
the data of Table I. The four observed spin-averaged states
are denoted by dots. The dashed line indicates the universal
Regge slope for light quark states.

bu, bd quarks
B (5279)
B' (5325)

0 Sp
Sg

1S (5312) VI. SUMMARY AND CONCLUSIONS

b8 quarks
B. (s37s) 0 1S 1S (5416)

m, = 517 MeV,
m, = 1285 MeV,
vn, = 4626 MeV,

]c = 0.51,
(20)

we it all six of the spin-averaged states of Table I ex-
actly. These parameters are consistent with previous 6ts
to spin-averaged cc aad bb data [9]. The D and D, lead-
ing trajectories generated by our fit are shown in Fig. 10.
The four charm spin-averaged experimental states of Ta-
ble I are shown by dots. The reader should be reminded
that our calculation assumes that one of the quarks is
very massive, which is not clearly valid for the charm
quark.

Prom Table I we note that the cg meson 8-wave hyper-
fine splitting is about 140 MeV for both cG and cs, as
expected by heavy quark symmetry. The B' —B differ-
eace is about 50 MeV which follows if the color-magnetic
moment of the heavy quark is inversely proportional to
its mass. We therefore expect the b8 8-wave hyperfine
splitting to be about 50 MeV. The spin-averaged 1Sstate
of bs may then be confidently predicted. Assumiag the
p-wave hyperfiae splitting is small, we may take the ob-
served Dq and D, q states as the two 1P spin-averaged
states.

As a semirealistic model we add to the Hamiltonian
(9b) a short range interaction IIsR = lc/r. We fix th—e
light quark mass at mg ——300 MeV and the string tension
a = 0.2 GeV2. By varying the remaining parameters to
the values

The fiux tube model has slowly evolved from a clas-
sical generalization of the QCD string [12], a unifying
picture of many possible states of hadronic matter [13],
and a simple physical explanation of the spin dependence
expected in QCD [14] into a realistic successor to the po-
tential model.

The potential model with scalar confinement has
failed in several respects. It generates relativistic spin-
independent corrections which are inconsistent with
QCD and it behaves poorly in the limit of small quark
mass [2]. Both of these shortcomings are circumvented
within the RFT model [2, 3]. The main new ingredient in
the RFT model is to include the angular momentum and
rotational energy of the interacting field. In the potential
model only the field energy is considered

Of course any specific model such as the RFT model
cannot compete with a fundamental QCD calculation. It
is also clear that our understanding of QCD at this point
does not permit wide ranging fundamental predictions
in particle spectroscopy. The advantage of the poten-
tial model is that it is QCD motivated in the quasistatic
(nonrelativistic) limit and is easy to solve. Oace rela-
tivistic corrections are considered, the potential model
unfortunately diverges from QCD. The RFT model can
be considered as the simplest generalization of the poten-
tial model which retains the known properties of QCD for
moving quarks. The drawback of the RFT model is that
it is more dificult to solve.

Earlier [1] we addressed the question of the quaati-
zation of mesons consisting of relativistic spinless quarks
joined by a straight fiux tube or QCD string. The method
used to solve these two transcendentally coupled operator
equations is essentiaIly the same as in the present paper.
The major change is the realization that the object of the
solution is to eliminate v~ and that any method which
respects the matrix nature of the variables will be equiv-
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alent. A crucial step is that the transcendental matrix
equations are reduced to algebraic ones if one works in a
representation in which v~ is diagonal.

The method developed is applied to numerically solve
mesonic systems with equal xnass quarks and with one
light and one heavy quark. In both cases a simple
Regge spectr»m emerges. For massless quarks, or for
one heavy and one massless quark, we find a sensibly
straight leading trajectory accompanied by an apparently
infinite number of equally spaced daughter trajectories.
For two massless quarks the Regge slope is the classical
Nambu slope of nN b„——(2m a) ~. For heavy-massless
mesons a similar spectrum of states is found but with

I = 2aNambu
Finally, we coxnpare RFT predictions to the observed

heavy-light mesons. After adding a short range Coulom-
bic interaction to the heavy-light Hamiltonian we are
able to account perfectly for the six known spin-averaged
heavy-light states. The parameters of the fit (20) are
quite consistent with those obtained in accounting for
charmonium and bottomonium levels. It should be em-
phasized that m, ~ corrections may well be appreciable,
so that the parameters given in our fit (20) cannot be
taken too seriously. A more rigorous test of the RFT
model must allow for arbitrary masses as well as include
fermionic quarks at the ends of the tube.

76ER00881 and in part by the University of Wisconsin
Research Committee with funds granted by the Wiscon-
sin Alumni Research Foundation.

APPENDIX: MATRIX REPRESENTATIONS
AND CONVERGENCE

OF ENERGY EIGENVALUES

The radial basis functions are those used in previous
calculations [9, 10]: namely,

R;(r) = N;IP ~ (2Pr)'e ~"L, (2Pr), (Al)

where

N2 S(i')"=r(+ (A2)

a =2l+2
and it assuxned that 0 & i & N —1. For computational
precision and eKciency, the xnatrix representation of all
operators (with the exception of v~) has been calculated
analytically. These expressions have also been extended
to nonintegral I for the purpose of computing Regge tra-
jectories and slopes thereof. For example,
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1 82
ppg' (A4)

can be computed analytically. The result is (for i ( j)

P2 t (i+a)! . . 1
(P )'q = NaNqI ——.,

'

(j —i)(1 —h;, I
—h;, ) + h;, , + —h;,.

5 ~

.(k+ a —1)! . n fl(l + 1)(i+ 1 —k)(j+ 1 —k) )
)I!..+a —1

(A5)

1 P ~. (k+ n —1)!
4 xl Jl ~ gf

u k=0
(A6)

To compute the W„matrix we use (AS) to obtain W2 =
p2+ m2 and then the matrix square root. This is done by
diagonalizing W„, taking the square root of the diagonal
elements, and then rotating back to obtain the R'„ma-
trix. The other analytic expressions used are (for i & j)
[10]

4
ll

~
I I ~

I I

II

3.5
4P

I

I
I
I

Qi 3P
I
I
I
I
I

I I

K=10
N =20

and
2

1P

1
(r);,. = —(2i +a+1)h;,- —gj(j + a)h;, ,

1.5 I I I I

1 2 3 4

P(Gev)

—Qi(i+ n)h;, +I (A7)

where results for i & j are obtained by simple re8ection

FIG. 11. Basis state scale parameter P dependence for the
four lowest energy p-+rave eigenvalues for massless quarks. As
the basis state number N increases a clear region of conver-
gence develops.
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FIG. 12. Basic state scale parameter P dependence for the
four lowest energy p-wave eigenvalues for two m = 1.5 GeV
quar ks.

FIG. 13. Heavy-light meson basis scale P dependence for
the four lowest p-wave eigenvalues.

due to the symmetry of the operators. For nonintegral E

the factorials are replaced by the corresponding I' func-
tions and ratios of F functions are computed &om the
differences of their natural logarithms.

Figures 11 and 12 show the four lowest energy p-wave

eigenvalues for equal mass mesons as a function of the
scale parameter, P, for ms = 0 and ms = 1.5, respec-
tively. Figure 13 is the corresponding plot for mq ——0
and m2 ——oo. In each instance increasing the number of
basis states N enlarges the region of P where the eigen-
value is stable.
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