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Heavy dynamical fermions in lattice QCD
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It is expected that the only effect of heavy dynamical fermions in QCD is to renormalize the gauge
coupling. We derive a simple expression for the shift in the gauge coupling induced by Nf flavors of
heavy fermions. We compare this formula to the shift in the gauge coupling at which the confinement-

deconfinement phase transition occurs (at fixed lattice size) from numerical simulations as a function of
quark mass and N&. We find remarkable agreement with our expression down to a fairly light quark
mass. However, simulations with eight heavy flavors and two light flavors show that the eight flavors do
more than just shift the gauge coupling. We observe confinement-deconfinement transitions at P=O in-

duced by a large number of heavy quarks. We comment on the relevance of our results to contemporary
simulations of QCD which include dynamical fermions.

PACS number(s): 12.38.6c, 11.15.Ha, 12.38.Aw

I. INTRODUCTION

QCD investigations frequently deal with the effect of
heavy fermions either as real physical effects (heavy
quarks) or as the consequence of the regularization (Wil-
son fermions). In all cases the influence of heavy fer-
rnions at low energies was expected to be no more than
some induced effective gauge coupling.

Finite temperature simulations with two light and one
heavier quarks do not show a significant difference from
two light quark simulations. The effect of the heavy fer-
mion can be described to a good approximation by a shift
of the gauge coupling, b,P=0.08 for m =0.25 [1] and
b,P=0. 13 for m =0.1 [2].

Wilson ferrnions have 15 heavy fermion doublers for
each light fermion yet the spectrum hardly differs from
the spectrum of staggered fermions if one takes into ac-
count the doublers by shifting the gauge coupling. For
two flavors at a gauge coupling around P=5.6 and hop-
ping parameter value a =0. 16 this shift is about
b P= 0.3—the only apparent effect of the doublers.

When can we expect that the fermions influence the
physical spectrum in a nontrivial way and when can we

just replace them with an effective local gauge action?
The answer obviously depends on the physical processes
we are investigating. Heavy fermions are always present
in the spectrum, unless their mass is above the cutoff, but
if the low lying gauge and light quark hadronic spectrum
is much below the energy level of the heavy fermions they
will not directly influence the low energy spectrum.

The fermions' induced gauge coupling can be calculat-
ed by evaluating a one-loop graph if the fermions are
heavy. This analysis was presented in Ref. [3] using di-
mensional regularization, where the possibility of gen-
erating a continuum gauge theory with heavy ferrnions
was investigated. The lattice regularized calculation is
briefly mentioned in Ref. [4]. In this paper we analyze
further the analytically predicted induced gauge coupling
and compare it to existing and new numerical results.

II. THE INDUCED GAUGE COUPLING
ON THE LATTICE

Consider the lattice regularized model of Nf funda-
mental (Wilson) fermions interacting with SU(3) gauge
fields, whose action is

S =13g Tr( U )+ g g„E„[U]li
n, p n, m

where

E„[U] =5„—~ g ((r —y„)U„„5„+„

+(r+y„)U„„6„„).
~ is related to the inverse of the bare fermion mass

1K-
2ma +8r '

(2)

(3)

where a is the dimensional lattice spacing. r =1 corre-
sponds to the usual Wilson fermion formulation while
r =0 describes Nf =16XNf staggered fermions. In-
tegrating out the fermions we obtain the effective gauge
action

S,s =S —Tr 1nK [ U]

iver)=S + etc'(") Tr g (r+y„)

X(TrU[I ]+TrU [I ]),
where the sum is over all closed gauge loops I and l [I ]
is the length of the loop. Using the continuum represen-

iag A (n)
tation of the gauge field U„„=e " one can express
S,'z™in terms of the continuum fields A„(n) as the sum
of one-loop diagrams

+ + + ~

s(w „)
+
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The leading term of the effective action is the usual
continuum gauge action ( 1/g o )F„„F„„where the
coefficient I/go can be calculated by evaluating the two
two-legged graphs in Eq. (5). The quantity I/go can also
be calculated starting with Eq. (4) and using the method
presented in Ref. [5] for adjoint scalars. It happens that
this technique is actually incorrect for adjoint fields but
correct for fundamental ones.

The result is given by a four-dimensional lattice in-

tegral

d4p a2
Tr p„Sp p„2S pg~ 4 (2m) P gp2

where S (p) is the lattice fermion propagator

S '(p) = —r g cos(p„) i g—y„sin(p„) (7)

and Q (p ) is given by

TABLE I. hP as predicted by Eq. (6) as the function of the

quark mass.

m 0.025 0.05 0.1 0.2 0.3 0.4 0.5 0.75 1.0

bP 0.203 0.168 0.133 0.096 0.074 0.059 0.048 0.029 0.020

term and (2) how well does Eq. (6) predict the coefficient
of this term? It is possible to have a pure gauge effective
action in a region where Eq. (6) is no longer valid. We
will consider the second point in the next chapter and
now investigate the first question.

The low-energy effective theory can be considered pure
gauge if the gluonic spectrum characterized by the A pa-
rameter is much lower than the fermionic mass scale that
is characterized by the fermion mass m.

The one-loop definition of the lattice A parameter is

1 er
A =—exp ~—

latt
& 12P

(11)

where pe= 1 1N, /48nis th. e first (universal) coefficient of
the P function and P,tr=P+hP. The condition A~,«((m
can be expressed as

+ ln(am) »0 .+b.
12Po

As hp is proportional to Nf, this condition can be
translated into a lower limit on the fermion flavors. For
example, for p=5. 7, ma =0.1, assuming the validity of
Eq. (6), if Nf » —28 (i.e., for any physical Nf ) the heavy
fermions and the gluonic sector decouple.

It is interesting to consider the p=0 strong gauge cou-
pling limit. For small m b,P is logarithmically divergent
leading to the condition for decoupling

Q(p„)=ir sin(p„)+y„cos(p„) . (8)
33Nf)
2

(13)

The integral reduces to the hopping parameter expansion
result in the ~~0 limit

=2'x
go

1 — 4=1Nfz,
go

r=1,

r=0.
(9)

For small ma (a.~O. 125) it has a logarithmic singularity

=16 ln, r =0.
g 24~2 m 2g 2

(10)

III. VALIDITY QF THE EFFECTIVE ACTIQN

In this section we investigate under what conditions a
single plaquette effective action can describe the fermion-
ic theory at low energies.

The question is twofold: (1) Can the nonlocal effective
action Eq. (4) indeed be replaced by a single plaquette

The effective action has additional terms containing more
derivatives and/or external gluon legs. These graphs are
multiplied by negative powers of m and are suppressed
for heavy fermions [3]. In the limit where the higher or-
der terms can be neglected the effective action is indeed a
pure gauge action with bare coupling constant given by
Eq. (6). In terms of the plaquette action lattice model it
corresponds to an effective plaquette term with coefficient
EP=6/go. Table I shows hP for several I values for
r =0 and Nf = 16Nf = 1 fermion flavor.

in the a~O limit (recall Nf=16Nf). The minimum
number of flavors coincides with the value where the p
function of the gauge-fermion system changes sign and
becomes nonasymptotically free. Since the presence of a
gauge term (p%0) relaxes the limit on Nf, if Eq. (6) holds
in an SU(3) gauge theory with 17 or more fermions, then
the fermions always decouple from the low lying gluonic
spectrum. An identical condition was found in Ref. [3]
using dimensional regularization. An interesting conse-
quence is that the m =0 theory is always deconfined even
in the strong gauge coupling limit for Nf 17 flavors, as-
suming b,P diverges as in Eq. (10). One should keep in
mind, however, that this derivation is valid only if the
higher order terms in the effective action can be neglect-
ed.

IV. EXAMPLES

Now we want to address the second question. When a
gauge-fermion theory with massive fermions can be re-
placed by a gauge theory with a single plaquette action, is
the shift in p induced by the fermions given by Eq. (6)?
The easiest way to explore the shift in p due to fermions
is by tracking the confinement-deconfinement transition
as a function of quark mass and number of flavors.

The quenched phase transition at NT =4 is at
pp=5. 69(1) [6]. Introducing Nf flavors of fermions with

mass m will shift the transition to p, =pt2 —bp. If I is
such that the fermionic action can be considered pure
gluonic at low energies then hp(Nf, m)=Nfbp, (m). If,
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in addition, m is large enough that the perturbative for-
mula is valid, bP&(m) is given by Eq. (6). Thus we expect
the following behavior for the shift AP(Nf, m ): For
m ))A where the fermion and gluon mass scales are well
separated we expect to see universal behavior
bf3/Nf =f (m) where f (m) is given by Eq. (6). For
smaller m we expect Eq. (6) to fail quantitatively. How-
ever, it might happen that AP/Nf is still some universal
function of the quark mass. Finally, when the fermion
scale is the same order as the gauge scale one can no
longer replace the fermions by an effective gauge action.
The shift b,P/Nf would then be difFerent for different Nf,
NT. Measuring the finite temperature transition for
different Nf and m values makes it possible to distinguish
the different scenarios.

The finite temperature transition is first order for the
pure gauge theory, and is stable under the inclusion of
heavy fermions. With decreasing quark mass the loca-
tion of the transition shifts downward in P. At some
point the deconfinement transition line terminates (at
sufficiently light quark mass). We might still be able to
track the crossover point as a function of Nf and m. As
long as the ferrnionic spectrum remains heavy compared
to the low energy gluon spectrum, the system could still
be described by an effective gauge action and Eq. (6)
could be valid.

At very small or zero quark mass (depending on the
number of light flavors) there is a second transition whose
behavior is thought to be primarily chirally restoring. At
this transition the role of the fermions is fundamental and
one would not expect the decoupling of the gluonic and
fermionic spectrum.

In a model with NI light flavors of mass mI and Nz
heavy flavors of mass m&, we also expect that the transi-
tion should be shifted by the heavy flavors:

P, (N„m, , N„,m„)=P, (N, , m, )+AP(N„, m„) where AP is

given by Eq. (6). It is a phenomenologically interesting
question to ask, "How light is still heavy?" For example,
several groups have recently performed simulations with
N&

=2 and N& = 1 in an attempt to model the
deconfinement transition in the real world of two light
(u, d) quarks and one strange quark. To the extent that
Eq. (6) predicts the shift in lattice critical coupling, the
heavy flavor is merely renormalizing the gauge coupling
and contributing no new physics.

In the above consideration we had to assume the rela-
tion P=6/go —the induced gauge coupling is expressed
through the bare continuum coupling go while in a lattice
simulation one uses the coe%cient of the plaquette term
P. P=6/go should hold in the continuum, large P limit;
one expects to encounter deviations when the finite tem-
perature transition happens in the strong coupling (small
P) region.

Now we consider a number of cases. We have chosen
to focus on staggered fermions since it is easier to make a
connection to Eq. (6) with them than with Wilson fer-
mions. In Sec. V we discuss a possible connection to the
confinement-deconfinernent transition for Wilson fer-
mions.

In the following we will translate numerical data to ex-

press the shift in the gauge coupling caused by one of the
fermions only, b P &

= (PP P—, ) /Nf . Here f3~ is the

Monte Carlo quenched critical coupling and P, f is
the Monte Carlo Nf flavor critical coupling. This way
we can compare simulations with different Nf and NT
values.

A. Nf =24

B. Nf =17

These data (shown in Table III) are from runs using the
Langevin updating algorithm on Nr =4 lattices [9]. The
analytic formula consistently overestimates the shift in

I3, . This is hard to understand given that the Nf =24 and

Nf = 8 simulations (see below) are well represented by the
formula. However, the Langevin time step htl is related
to the time step of microcanonical simulations ht~ by
[10] btL =(b,t~) /2. These simulations are performed at
AtL =0.01 corresponding to At~ =0.14, which is known
to be large enough to induce sizable integration time step
errors.

TABLE II. Xf =24 simulations on 6 X4 lattices performed

by us. All the phase transitions, except the m =1.00 one are
very sharp, probably first order. At m =1.00 there is only a
broad crossover around P= 5.24.

1.00
0.75
0.60
0.50
0.25

5.24(4)
5.00(2)
4.76(2)
4.62(2)
3.90(5)

pic/N
0.0188( 16)
0.0287( 8 )

0.0387( 8 )

0.0446( 8 )

0.0746(20)

gPanal/N

0.0175
0.0286
0.0388
0.0478
0.0840

Table II shows the result of a 24 flavor staggered fer-
mion simulation on 6 X4 lattices for several mass values.
These simulations were done by us and use a version of a
code written by the MILC collaboration [7]. We employ
the hybrid molecular dynamics algorithm described in
Ref. [8]. We have defined the dynamical fermion fields
on all sites of the lattice, so that the "natural" number of
flavors in the simulation is a multiple of 8. Simulations
with large Nf require a very small time step compared to
ones with small Nf since the fermion force in the micro-
canonical evolution equation scales linearly in Nf. For
example for m =0.5 step size At =0.020 is needed. The
Nf =24 transition is very sharp. Figure 1 shows the ex-
pectation value of the Polyakov loop at m =0.5. At
@=4.62 the time evolution shows tunneling between two
states (Fig. 2), the transition is probably first order. The
data points agree with the analytical prediction for
m &0.25. At m =0.25 simulations with Nf ~8 agree
with the analytic prediction. The deviation here should
be attributed to the fact that P, =3.90(5) is a very strong
coupling where P=6/go does not hold anymore.
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I I I I I I I I I TABLE III. Nf = 17 simulations, from Ref. [9],at Nr =4.

0.8—

0 60

0.4—

0.50
0.25
0.10

5.025
4.6(1)
4.3(1)

CPM cyN

0.039
0.064
0.082

gPanal yNf
0.0478
0.084
0.133

0.0
4.5

I I I I I

4.7

bulk transition. Our analytic formula does not predict
this transition. On the other hand at such small mass
values Eq. (6) is not expected to be valid anymore.

FIG. 1. The real part of the Polyakov loop for
m =0.5,Nf =24.

C. Nf =8

These data, shown in Table IV, are also from runs us-
ing the Langevin updating algorithm on NT=4 and 6 lat-
tices. For smaller mass values the results are very sensi-
tive to the step size used in the simulations. For too large
ht the transition is generally overestimated, so the shift
b,p is underestimated. The analytic formula accurately
predicts the location of the transition or crossover point
for the larger values of the quark mass studied. For
smaller quark mass values the agreement is still reason-
able though hP is consistently smaller than the analyt-
ic prediction. At very small m and Nz) 8 a number of
authors [11—13] have seen a transition which may be a

D. Nf =4

These simulations, shown in Table V, do not show a
phase transition at moderate values of the quark mass.
At small m they show a first-order transition which is be-
lieved to be associated with chiral restoration. The loca-
tion of the transition and/ or crossover is well predicted
by Eq. (6) down to m =0.05. For NT=4 at m =0.073
the first-order chiral transition switches on [6]. It is
surprising that Eq. (6) is still valid. One can see deviation
from the analytic formula for m & 0.025.

E. Nf =2

Most of the Nf =2 simulations were performed at very
light values of the quark mass. They do not show a phase
transition; instead, they show a smooth crossover from a
chirally broken phase to a chirally restored one. Never-
theless, the location of the crossover point is very well
tracked by the ana1ytic formula, even at very light value
of the quark mass. The results are collected in Table VI.

0

0.5—

I I I I I I I I I I I I
F. Summary

Figure 3 contains our Nf =24 data and Nf =17, 8, 4,
and 2 data for NT=4-8. Some of these data points cor-
respond to real first-order transitions, others describe just
a crossover. For larger masses they correspond to the Z3
transition, for smaller masses they describe the chiral
transition. The agreement with the analytic prediction,
especially with smaller Xf, is remarkable even for masses
as small as m =0.05 or below. The fact that the data ap-

TABLE IV. N& =8 simulations, from Ref. [11].

0.0 I I I I I I I I I I I I

500 1000
iteration

1500

FIG. 2. Time evolution of the real part of the Polyakov loop
for m =0.5,Nf =24.

1.0
0.50
0.25
0.10
0.10
0.05

5.54
5.31
5.025
4.80(1)
4.95
4.75

gPMc yN

0.0187
0.0475
0.083
0.111(1)
0.12(1)
0.14(1)

aP'""rN

0.0175
0.0478
0.084
0.133
0.133
0.168

NT
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TABLE V. N& =4 simulations performed by several groups.

0.5
0.5
0.4
0.3
0.2
0.1

0.05
0.0375
0.0375
0.025
0.0125
0.01
0.25
0.10
0.075
0.065
0.05
0.025
0.01
0.025
0.01

5.50
5.45
5.42
5.35
5.25S(5)
5.130(5}
5.04
4.99
5.02
4.98(2)
4.919
4.95
5.509
5.322
5.25
5.22
5.175
5.130
5.08
5.25
5.15(5)

gPMc yN

0.04
0.055
0.063
0.08
0.104(2)
0.136(2}

0.163
0.173
0.168
0.175
0.190
0.185
0.090
0.137
0.155
0.162
0.174
0.187
0.199
0.188
0.213

SP'""ZN

0.048
0.048
0.059
0.074
0.0958
0.1334
0.168
0.183
0.183
0.203
0.240
0.25
0.084
0.133
0.149
0.155
0.168
0.203
0.25
0.203
0.25

NT

4

4

4
4
4
4
4
4
4
6
6
6
6
6
6
6
8

8

Ref.

[13]
[15]
[15]
[13]
[16]
[16]
[17]
[18]
[17]
[16]
[18]
[17]
[19]
[19]
[19]
[19]
[19]
[17]
[17]

[21]

pear to lie on a universal curve is a signal that the fer-
mions induce an effective p whose strength is linear in N&

at fixed quark mass, down to very small mass.
One can conclude that the effect of dynamical fermions

for finite temperature transition is no more than an in-
duced effective gauge coupling even for fairly small
(m ~ 0.05) fermion masses.

j. .o

V. LIGHT AND HEAVY FLAVORS TOGETHER

A. Ng =2+1

Several groups studied QCD with two light and one
heavy flavors. In these simulations the heavy fermion
mass was between 0.1 and 0.25 and 4 to 20 times heavier
than the light species, According to the previous chapter
the effect of fermions with m =0. 1 —0.25 on the finite
temperature transition is well described by an effective
action with induced gauge coupling given by Eq. (6). Un-
less there is a strong interaction between the light and
heavy flavors one would expect the same here. This hy-
pothesis can be tested by comparing the shifts caused by
a light species in the N&=2 and NI=2+1 simulations
assuming the effect of the heavy flavor can be described
by Eq. (6). Table VII shows this comparison for recent
simulations. Here we use the notation

0.5 b p,
+ ' = [p~ —(p, + ' +Apl,

""
) ]i2,

~p'=(p~ —p', )n, (14)

0.0 O. j

FIG. 3. The induced gauge coupling divided by the number
of 11avors, hp/X&, from the simulations described in this paper,
compared with the curve from Eq. (6), as a function of quark
mass. Data are labeled with octagons for N&=24, pluses for
NI = 17, diamonds for N& =8, bursts for N& =4, and squares for
N~ =2.

where P~ is the Monte Carlo quenched critical coupling,C

p +' is the Monte Carlo N =2+1 critical coupling, andC f
analP, is the Monte Carlo N&=2 critical coupling. b,P& is

the analytically predicted induced gauge coupling due to
the heavy fermions. If b,p&+' =b,p&, the shift in coupling
due to the light quarks is independent of the presence of
the heavy quark. If Eq. (6) is valid for the light species,
too, we expect b,P, +'=b,

P& =b,P'I"'. The shifts from the

NI =2+1 and N&=2 simulations agree within errors
though EP&+' is consistently smaller than b,P& which
agrees with the analytic prediction b,PI""



49 HEAVY DYNAMICAL FERMIONS IN LA i i'ICE QCD 471

TABLE VI. N& =2 simulations performed by several groups.

1.0
0.4
0.2
0.1

0.05
0.025
0.0125
0.01
0.025
0.0125
0.0125

5.63
5.54
5.48
5.38
5.34
5.2875
5.271
5.265(10)
5.445
5.42(1)
5.5375

gpMC/~

0.02
0.065
0.095
0.15
0.165
0.197
0.21
0.212
0.212
0.225( 10)
0.23

gpanal/~

0.018
0.059
0.096
0.133
0.168
0.203
0.24
0.25
0.203
0.239
0.239

Nz- Ref.

[13]
[13]
[13]
[15]
[13)
[15]
[22]

[23]
[23]
[24)

B. Nf =2+8

As another test of the interplay of light and heavy
flavors, we performed simulations with two light flavors
and eight heavy flavors on 8 X4 lattices.

We were motivated to perform these studies by con-
sideration of the deconfinement transition with Wilson
fermions. Wilson fermions have 15 doublers for each
light species. What is the role of the doublers? Do they
only generate an effective gauge coupling or can they
influence the low energy spectrum in a nontrivial way?
Perturbatively, the 4 doublers sitting at the nearest edges
of the Brillouin zone with one component of momentum
equal to ~ and three components of momentum equal to
zero are much lighter than the others. It is plausible to
assume that they give the most important contribution to
the effective action, i.e., 2 flavors of Wilson fermions can
be modeled as 2+8 flavors of staggered fermions. (Wil-
son fermions and 2+8 flavors of staggered fermions are
of course not identical, since they have different flavor
and chiral symmetry properties. This approach just mod-
els the effect of doublers. )

For the heavy flavors we chose mass values mz =0.88,
0.77, 0.665, and 0.4, corresponding roughly to the bare
Wilson doubler masses at a'=0. 17—0.21. The light
masses were chosen as listed in Table VIII.

These runs were performed on the Intel iPSC/860 hy-
percube at the San Diego Supercomputer Center. The
iPSC/860 and the code are described briefly elsewhere
[7]. We used a truly hybrid algorithm for these simula-
tions: the eight heavy flavors were simulated using the 4
algorithm of Ref. [8], with a random noise term for the
fermions which was refreshed at the start of each micro-
canonical trajectory. (The fermion fields were defined on
all sites of the lattice to produce eight flavors. ) The two
light flavors were simulated using the R algorithm of Ref.

[8]; the noise estimator for their determinant was updated
throughout the simulation. We also performed a two
flavor simulation at m =0.04 for comparison. We used
integration time steps of At =0.1 for the mi =0.2 and 0.1

simulations. The smaller quark mass simulations were
more sensitive to At systematics. We used ht =0.05
away from the transition for all the m =0.04 simulations
and switched to At =0.02 near the transitions.

We display plots of the Polyakov loop and t7tf for the
light quark from our simulations with light quark mass
0.04 in Fig. 4. The heavy quark masses are 0.4, 0.665,
and 00. The smaller step size points are shown as squares
in the figure. The transition for the system with two light
and eight heavy flavors appears to be much sharper than
the transition for the system containing only two light
flavors. It might be first order. Note that at this value of
the light quark mass the Nf =2 transition is a smooth
crossover and the Nf=8 system does not have a first-
order transition for mI, &0.25 either.

In the previous section we concluded that the gauge
coupling induced by the heavy flavors is well described by
the analytic formula. Using Eq. (6) we compute the shift
caused by one of the light flavors as in Sec. V A and com-
pare it to the shift observed in the Xf=2 simulations.
We present these results in Table VIII. Our results for
mi =0. 1 and 0.2 reproduce the Nf =2 simulation results
and the analytical prediction, as we would expect follow-
ing the successes recorded in the last section. Neither of
our mr=0. 04 results agree with the analytical formula.
That could be explained simply as a breakdown of the an-
alytic formula at light quark mass. However, with Nf =2
or 4, simulations at m =0.05 still agree with the analytic
formula, as can be seen by comparing Tables V, VI, and
the last entry of Table VII. What is even more surpris-
ing, the m& =0.665 and 0.4 data show a different shift in
P from the same light quarks m& =0.04. These facts, cou-

TABLE VII. N& =2+ 1 simulations from Refs. [2] and [1].

m

0.025
0.025
0.0125
0.00833

mp,

0.025
0.10
0.25
0.1667

p2+ 1

5.132{2)
5.171
5.199(2)
5.325(25 )

gpanal

0.20
0.13
0.084
0.11

0.18
0.20
0.20
0.22

gp2

0.20
0.20
0.23

gpanal

0.20
0.20
0.24
0.26

4
4
4
6



472 ANNA HASENFRATZ AND THOMAS A. DeGRAND 49

TABLE VIII. N& =2+ 8 simulations performed by us.

0.04
0.04
0.10
0.20
0.04

mg

0.665
0.40
0.77
0.88

@8+2

5.065(5)
4.89( 1)
5 ~ 18(1)
5.275(25)
5.324(25)

gpanal

0.271
0.474
0.22
0.18
0

gp2+ S

0.170(3)
0, 155(5)
0.138(5)
0.11(2)

A@2

0.183(5 )

0.183(5)
0.15
0.095
0.183(5)

gpanal

0.18
0.18
0.133
0.096
0.18

pled with the qualitative sharpening of the transition at
smaller m&, lead us to conclude that the eight heavy
flavors have an observable influence on the light flavors in

addition to an induced gauge coupling. The assumption
that the heavy flavors are unimportant at low energies
does not seem to hold.

One might expect that this result would be even

stronger if the light fermions were lighter.
One might also expect similar behavior for Wilson fer-

mions. In fact, one might expect an even stronger effect,
since Wilson fermions include explicit interactions be-
tween the light quarks and the doublers which are not
present in this 2+8 flavor system.

VI. P=O LIMIT

128 flavors of fermions with mass m =0.4 induce a

gauge coupling 6/g =p;„d=7.6. That is large enough to
deconfine an NT=4 system even when the plaquette

gauge coupling is zero. With large number of flavors one
should see a confining-deconfining pure gauge phase tran-
sition in the p=O limit as the function of the fermion
mass.

The naive analytical prediction in Sec. II predicted
that for NI) 16 flavors the fermions always decouple

from the low-lying gauge spectrum even in the p=O
strong coupling limit. Does that mean that for N& & 16 at
p=O one will always find a deconfining phase transition
for some value of the quark mass?

We obviously cannot check this scenario numerically
but we can study the NT=4 finite temperature phase
transitions in m at p=O for different N& values. Figure
5(a) shows m„;, and Fig. 5(b) shows p;„d at the phase
transition calculated from Eq. (6) as the function of N&.
Since we observed strong metastability in all cases, we
conclude that the phase transition with so many fermions
is first order.

The induced P lies in the range 7. 5 —8. 5 for N&
~ 80.

The constancy of this result over a wide range of X& indi-

cates that the fermions do induce an effective gauge cou-
pling which scales with N&. This p;„d is not consistent
with the quenched critical coupling P~=5.69 indicating
that 6/g, the coefficient of F„,F„„,does not equal p for
small P values.

VII. CONCLUSION

We demonstrated that the effects of fermions on the
finite temperature phase transition can be described by an
induced effective plaquette term for masses as low as
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FIG. 4. Plots of (a) the Polyakov loop and (b) I)2$ for simula-

tions with two flavors of light quarks (mI=0. 04) and either
nothing else (diamonds) or eight flavors of heavy quarks, of
mass mh =0.665 (octagons and squares) or 0.4 (crosses and

squares). The squares show data points from simulations with

At =0.02; all other data points used At =0.05.

FIG. 5. (a) Plot of the location of the confinement-
deconfinement transition at f3=0 as a function of quark mass for
several values of N&. (b) The same data, but now interpreted as
a function of the induced coupling inferred from the analytic ex-

pression. The line shows the location of the quenched
deconfinement transition.
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m =0.05. The induced coupling is proportional to the
flavor number and is independent of NT. The propor-
tionality constant is given by a simple one-loop formula.
It is amazing that the simple formula for a fermion-
induced shift in p works so well down to such small
quark mass, for degenerate mass fermions. From the
point of view of lattice simulations of QCD, our results
show that some dynamical quarks must be very light to
cause interesting effects. A finite temperature simulation
at some quark mass ought to show an induced p which is
not given by the one-loop formula, before one could
claim that a T =0 simulation at the same mass would be
sensitive to the effects of dynamical quarks. This is just
barely the case in contemporary dynamical fermion simu-
lations. For example, the spectroscopy of the High Ener-
gy Monte Carlo Grand Challenge (HEMCGC) simula-
tions at p=5. 6 with Nf =2 and m =0.025 and 0.01 has
been mapped onto quenched simulations at p= 5.935 and
5.95, respectively [14]. These comparisons correspond to
shifts per fiavor of hp=0. 1675 and 0.175, respectively, to
be contrasted with hp'""=0.20 and 0.25 and finite tem-
perature Monte Carlo shifts of about 0.20 and 0.21. Thus
they are in a regime where the sea quarks might be im-
portant for long distance dynamics.

We simulated systems with 2 light and 8 heavy flavors

to study the interaction of heavy and light quarks. For
light masses mI ~0. 1 we found no observable effect. For
ml =0.04 interaction with the heavy fermions as heavy as
m =0.665 can be observed in the finite temperature
phase transition. We found the Nf =8+2 transition is
very sharp and its location cannot be predicted from the
Nf =2 transition assuming that the effect of the heavy
flavors is described by an induced gauge coupling. These
results may have applications to technicolor models,
where one has to deal with the low energy effects of large
numbers of heavy fermions as well as a small number of
light fermions. Consequences of these results for Wilson
fermions remain an open problem.
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