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Heavy baryons as Skyrmions with 1/tnq corrections
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We take into account the 1/mq corrections up to 1/N, order in the heavy-meson-sohton bound-
state approach for heavy baryons. With these corrections, the mass spectra of baryons with c quark
as we11 as of those with b quark are well reproduced. For charmed baryons, however, the correction
to the mass spectra amounts to about 300 MeV, which is not small compared to the leading order
binding energy, ~ 800 MeV.
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I. INTRODUCTION

The bound-state approach advocated by Callan and
Klebanov (CK) [1] has been shown to work very well
for static properties [2] of strange baryons. In the CK
approach, strange baryons are described by properly
quantized states of the K-meson(s)-soliton bound sys-.
tem. Rho et al. [3] extended the CK approach further
to baryons containing a heavy flavor such as a charm or
bottom quark. In particular, the mass spectr'a and mag-
netic moments [4] for charmed baryons are found to be
strikingly close to the predictions of the quark model de-
scription. In these calculations, vector meson fields such
as K*, D', and B* are eliminated in favor of a combi-
nation of a background and corresponding pseudoscalar
fields, K, D, and B. This approximation is valid only
when vector mesons are suKciently heavier than corre-
sponding pseudoscalar mesons as in the case of p and

(m = 770 MeV, m, = 135 MeV: m, /m = 0.18).
For charmed mesons or bottom flavored mesons, however,
vector mesons are only a few percent heavier than the
corresponding pseudoscalar mesons: m~. ——892 MeV,
rn&, ——498 MeV (m~, /m1t. ——0.56), m&. ——2010 MeV,
mD, ——1865 MeV (m~, /m~. ——0.93), and mt'.
5325 MeV, m~, ——5279 MeV (m~, /ms. ——0.99). Thus
we need to treat heavy vector mesons correctly on the
same footing as heavy pseudoscalar xnesons.

Heavy quark symmetry is a new spin and flavor sym-
metry of /CD in the limit of in6nite heavy quark masses.
As a heavy quark becomes infinitely heavy, the dynaxnics
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of a heavy quark in /CD depend only on its velocity and
is independent of its mass and spin. This symmetry can
be seen in weak semileptonic decays [5], mass splittings,
and partial decay widths [6] of heavy mesons and heavy
baryons, whose masses are much bigger than the /CD
scale, AcD. Recently, efFective heavy meson Lagrangians
which have both chiral symmetry and heavy quark sym-
metry have been constructed by several authors [7—9).
Also, a lot of work on heavy baryons as Skyrmions in
the manner of Callan and Klebanov has been reported
[10—13]. In a series of papers [10], Senkins et aL investi-
gated the binding of a heavy meson with a soliton using
such an effective Lagrangian. Nowak et aL [12] studied
the heavy quark symmetry in heavy baryon mass spec-
tra in connection with Berry's phase. Gupta et al. [13)
discussed the roles of light vector-meson degrees of free-
dom such as cu and p. In these works, however, only
the leading-order terms in the inverse of the heavy quark
mass have been considered. Also, bound heavy mesons
are assumed to sit at the center of the soliton with their
wave functions taken as b functions. As a result, heavy
mesons appear to be too deeply bound and Zg and Zq
are degenerate in mass.

In order to investigate more realistic cases with hy-
perfine splittings, one needs to include next-to-leading-
order terms in 1/mg. In Ref. [10], mass corrections are
roughly estimated by including xnass difFerences between
heavy pseudoscalar mesons and heavy vector mesons,
while keeping the b-function-like wave functions. Al-
though it may work well for bottom flavored baryons, we
may have some doubts on the validity of such b-function-
like wave functions for charxned baryons: the finite mass
corrections need to be included in the wave functions
of heavy mesons, leading to difFerent radial functions,
though sharply peaked at the center of the soliton. In this
paper, we attexnpt to establish a "smooth" connection be-
tween the CK approach for light baryons and the heavy-
meson-soliton bound-state approach for heavy baryons
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by clarifying the above-mentioned problems. In our cal-
culation, heavy pseudoscalar mesons and heavy vector
mesons are treated on the same footing and the next-to-
leading-order terms in 1/mq are incorporated properly.

In the following section, we introduce a simple La-
grangian which is relevant to our purpose. Then, a
soliton-heavy-meson bound state is found in Sec. III by
solving the equations of motion for the classical eigen-
modes of heavy mesons moving in the soliton back-
ground. In Sec. IV, we discuss the mass formula for
heavy baryons containing a heavy quark. We also discuss
the heavy quark symmetry breaking by the Wess-Zumino
term in the heavy baryon mass spectra. Section V con-
tains a summary and conclusion.

II. MODEL LAGRANGIAN

In order to avoid any unnecessary complications, we
work with a simple Lagrangian for the interaction of
light Goldstone bosons with heavy mesons, which has the
SU(2)1, x SU(2)~ chiral symmetry and the heavy quark
symmetry in the heavy-mass limit. One may obtain
such a Lagrangian from the Skyrme model Lagrangian
by trimming away all the higher derivative terms or from
the heavy quark e8'ective Lagrangian by including the
next-to-leading-order terms in 1/mq.

Up to a single derivative on the Goldstone boson fields,
the most general chirally invariant Lagrangian density
can be written in a form of [9]

8 = ZM + (D„4)tD~4 —M24t4 —-'4't 4"""+ M @*t4*"

+f (@tA"4* + @*tA"4)+ goo"""-~(4*tA 4" + 4'*tAp@„* ),

where 4 and 4„' are the heavy pseudoscalar and the
heavy vector-meson doublets2 with masses M@ and M@.,
respectively. For example, in the case of charmed mesons,
we have

D~ = ~+ V~ C „'„=D„4„*—D„4„*. (jd)

Under SU(2) l. x SU(2)R chiral transformations, the fields
transform as

( m (' = L(ht = h(Rt (U m U' = LURt),
4 m 4' = 64, 4„* m 4„"= h@„*, (2)

The Lagrangian density for the Goldstone boson fields is

= —Tr(B„UtB"U) + Tr[UtB„U, Utoj„U],
326

(1a)

where L and R are global transformations in SU(2)g and
SU(2)~, respectively, and h is a special unitary matrix
depending on L, B, and the Goldstone fields. Further-
more, the Lagrangian is invariant under the parity oper-
ation

with

~ i (' ~o ~2~+1 l
(1b)

U(r, t) m PUP ' = Ut( —r, t),
C(r, t) ~ POT '= —C(—r, t),

-
4„'(r, t) m 'PC„'P ' = -C„"(-r,t)

A~ = 2(&'&~& —&&~&')

&~ = 2(&'~~&+ &~~&')
(1c)

and the covariant derivative D~ and the field strength
4„* are

and f being the pion-decay constant. The "Skyrme
term" with a dimensionless parameter e is included to
stabilize the soliton solution. Here f and g are the
4C'm and 4*4*sr coupling constants. The vector and
axial-vector potentials V„and A„are defined in terms of

as

Here, we have used the fact that pions and heavy mesons
(both pseudoscalar mesons and vector mesons) carry neg-
ative intrinsic parity.

We have four parameters in the Lagrangian to be fixed:
the pion-decay constant f, the Skyrme parameter e, and
the coupling constants fo and go. The pion-decay con-
stant f and the Skyrme parameter e are fixed by fitting
the nucleon and b, masses in the SU(2) sector [14]. As for
the heavy meson coupling constant fz and g, little has
been known except the upper bound [15]. Thus, we use
the heavy quark symmetry as a guide line. We use the
empirical masses for the heavy meson masses, M@ and
M@-. In the heavy-mass limit, we have M@ M@- with
the mass di6'erence being of order 1/mg at most and the
twa coupling constants fo and go became related to each
other by [9,16]

f = 2M@-g (4)
One may improve the model Lagrangian by including terms

with more derivatives on the Goldstone boson Selds and in-
corporating vector mesons such as p and u [13].

Here, we adept a different convention for C and C„ than
that of Ref. [9]. Our 4'(C'„') corresponds to their 4t(4~t).

due to the heavy-quark spin symmetry. Furthermore, g
approaches a universal constant g due to the heavy-quark
Bavor symmetry.

The nonrelativistic quark madel estimate of g (—0.75)
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[9] is consistent with the experimental value (~g~
+ 0.5)

measured via the D' decay width [15] and the D'+ ~
D+xs and D'+ ~ Dsvr+ branching ratios [17].

One may determine the two coupling constants fo and

g~ from a low-energy chiral theory. In Ref. [18], a La-
grangian for the interactions of K and K' mesons with
pions is derived on the basis of SU(3) chiral symmetry
along the hidden gauge symmetry scheme. Comparing it
with our Lagrangian, we get fo/2M~. = —~ —0.71,
which is very close to the nonrelativistic quark model pre-
diction. Although the C'4'vr term proportional to g is
missing in Ref. [18], one can find such a term among
the homogeneous solutions of the Wess-Zumino anomaly
equation. (See Ref. [16] for further details. ) Using the
vector-meson dominance hypothesis and the empirical
value on the grr. coupling constant ( 6), we obtain

go —0.7 from the chiral Lagrangian of Ref. [16].

III. SOLITON-HEAVY-MESON BOUND STATE

The Lagrangian density LM supports a stable SU(2)
soliton solution of "hedgehog"-type:

t'Jo(r) = exp[i' rF(r)],

with

F(0) = vr and F(r) ";0.

d3 yIC~ Ut Pt U Ut

sin F
r dr

7C 0 r (5b)

and a finite mass

The above solution carries a nontrivial winding number
due to its nontrivial topological structure identified as
the baryon number

(5c)

with Ft dE
dr

Now, our problem is to find the eigenmodes of the heavy mesons moving in the static potentials provided by the
8 = 1 soliton configuration (5) sitting at the origin, viz. ,

V& = (Vo, V) = (O, i@(r)r" x r ),
A" = (A, A) = (0, 2[ai(r)v+ a2(r)rr r]),

with

sin (F/2)
r

sin F sin F
and a2(r) = F'—

r (7)

The equations of motion can be read off from the Lagrangian (1):

(D„D"+ M@)4 = f~A"4'„', (8)

for the pseudoscalar-meson field 4 and

D 4'""+M 4'" = f A"@+g—s"""~A 4'
V 4 A pp (9)

for the vector-meson fields 4„'.
The conjugate xnomenta to the meson fields 4 and 4„' are

= (DsC)t,
8(C)

(OOto)t RJk@+tA
8(4;. )

(10)

respectively, and we get similar equations for Gt and G"t. Since IIO vanishes identically, the 4o cannot be an
independent dynamical variable. We eliminate the complementary 40 field by using Eq. (9)
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1
, (D,rt'*t+ ,'g—,"~"x,e;, ),

which results in a set of coupled equations

g' = —II' —g, A x 4*+, D(D. II't) + ', D[A. (D x 4*)],
II't = D x (D x 4*) + M .4*+f AC —g A x II*t —g A x (A x 4*)

2~ A x D D II't+g~A- D x@'

where D = V —V.
In order to express the equations of motion only in

terms of 4 and 4*, we use the fact that the 40 field is
of order 1/mq at most, viz. ,

C*
z

D;4" = O(1/M@ ).
M@2.

Keeping this leading-order term leads us to the equations
of motion

4* = —2g A x O' —D x (D x 4') —M@.4'
f~AC —+ D(D 4*). (14)

Because of the spin-isospin mixing in the hedgehog
configuration of the classical background, the equations
of motion (8) and (14) are invariant only under the ro-
tation by the grand spin K defined by K = S + I + L
with S(I) being the spin (isospin) of the heavy mesons
and L the orbital angular momentum. Thus, eigenmodes
are classified by the quantum numbers k, mi„and P [the
parity P equals (—1)r+i with E being the orbital angular
momentum] as

(16)

Here, yy is the isospin basis for the heavy meson dou-
blets: i.e. ,

(i~ &ol
x+ =

I o I
and x- =111~')

(17)

For vector mesons with spin 1, we can construct two dif-

ferent kP = — vector spherical harmonics [19]: viz. ,

, (r) = ryg,(1)
4x

, (r) = i (7 x r)yg.
—. ++- 8~

(18)

radial functions as p(r, t) and p*"(r, t).
From now on, we will restrict our consideration to

i+k =
2 states, which are expected to have at least one

bound state. Since pseudoscalar mesons do not carry
spin, we have only one spherical spinor harmonic with

2

pk, ,p(r t)+k, p, „(r)

c'(r, t) = ) vi, , „,p(& t)&i„p, .(r)
k,mg, P

4'(r, t) = (15)

Putting

4(r, t) = (p(p)e+' 'gi + ~i (r),

A;, mg, P, rc

where Ps p „and Pi, p „are the generalized spherical
spinor and vector harmonics, respectively, and K is an in-

dex to label the possible vector spherical harmonics with
the same k, mA, , and P. To avoid cumbersome notation,
we will suppress the trivial indices k, mj„and P of the

@*( t) =
V i( ) '"&'",

~ (r)

+V z(r)e'"&' ', (r)

into the equations of motion (8) and (14), we obtain three
coupled differential equations for the radial functions:

2, (, 2 2 l (' 2l f~(p" + —&p' +
I

ur —M@ ——
I

(p = 2v
I

v ——
I

(p + —(ai + az) pi-

&p;" + —p,"+
I
~ —M@. ——

I yi = —(ai + az) p + 2v y',

1 f aipz
g2

+~21 g arid ——v+v
I

lp2)
1

pz + „p2 +
I
~™e.—

& I
&—z = — aiv + ~214'g~ai —-"+"

I v»
E )

4
+

I

—~g (a, +az) ——v+4v
I pz.

)
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The wave functions are normalized such that each mode carries one corresponding heavy Havor number:

r'«(2~ lv I'+ Iv»l'+ Ivzl' +a, [(oi+ oz)l~zl' —v i(v»'~a+ ~z'~i)])
0

(22)

where we have kept terms up to the next-to-leading order
in 1/mq.

Near the origin, the equations of motion behave asymp-
totically as

II I+ p =0~r

r
2~2

(23)

They imply that we have three independent solution sets
as

(a) ~(r) = V(0)+O(")
;. (r) = O(r ),

(b) V (r) = O(r')
y,'. (r) = yb. (0) + 0(r ),

(c) p(r) = O(r ),
4 II

V,'(r) = 2~:,"(0)r'+ O(") (24)

with ~2&pi, i(0) = &pi,z(0) and p,'i'(0) = —~2','z (0). For
sufBciently large r(» 1/M@), the three equations decou-
ple from each other: for example,

[,( ) +,( )] - [—,( )] - F'(0) + 0( '),
v(r) —— F(0)-r +1 (27)

so that the equation of motion for (&pi
—~yz) is com-

pletely decoupled from those for &p and (yi + ~2&pe).
It would be interesting to compare our radial functions

with those of Ref. [3] and Ref. [10]. In Ref. [3], vector
mesons are assumed to be suKciently heavy and the fol-
lowing ansatz is made:

(28)

we give the radial functions y(r) and pi(r) for the D
and D' mesons (solid curve) and the B and B' mesons
(dashed curves). By comparing the two cases, one can
easily check that as the meson mass becomes larger, (1)
the radial function becomes more sharply peaked at the
origin and (2) the role of the vector mesons becomes im-
portant so that the radial function pi (r) becomes compa-
rable to rp(r) [see also the ratio &pi(0)/p(0)]. The radial
function &pz(r), though not shown in Fig. 1, is hardly
distinguishable from y 2@i(r). This can be understood
as follows: due to their heavy masses, heavy mesons are
localized in the region r+1/Mc„where

which implies that
(25(p" + —rp'+ ((u' —M~~. )p = 0.

r
Thus the bound-state solutions (ur ( M@) are

e M@—~
V(r =~)

—v -„rM~

Vi(r) =~i
r

&z(r) = ~z (26)

with three constants a, nq, and a2.
The lowest energy bound states are found numerically,

and the results are shown in Table I and Fig. l. In Ta-
ble I, the input parameters are listed together with the
numerical results on the lowest bound states. In Fig. 1,

1
&p;(r) = [oi(r) + oz(r)]p(r),

2M@.
1

p2 (r) M
oi (r) p(r) ' (29)

As ~2yi pz for heavy mesons due to Eq. (27),
we have only to compare rpi with &p in Eq. (29). In
the heavy-mass limit, both should play equally impor-
tant roles. But the ansatz strongly suppresses the role of
vector mesons by a factor of ref /M@. , since one ob-
tains F'(0) 2ef in th—e Skyrme-term-stabilized soli-
ton solution. For example, this factor amounts to 0.56,
0.25, and 0.09 for the cases of Mlr. (892 MeV), MD (2010
MeV), and M~. (5325 MeV), respectively. Therefore, the
ansatz of Eq. (28) is not valid unless the vector meson is

TABLE I. Summary on the input parameters and the numerical results on the bound state.

f
64.5
64.5

b

5.45
5.45

M@
1872
5275

M@.
2010
5325

fg
—3016
—7988

b

—0.75
—0.75

1481
4722

0.39
0.29

b

0.05
0.02

p; (0)/0 (0)
—0.828
—0.932

In MeV unit.
Dimensionless quantities.

'In fm unit.
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15

(6

10-

charm sector. This is one of the main results of this work.
In Ref. [10], the rms radii of the heavy ffavor current

in heavy baryons are essentially zero. Because of the
1/mg corrections, however, we have nonzero finite-size
rms radii in our calculation, viz. 0.3 fm for bottom
flavored baryons and 0.4 fm for charmed baryons. This
implies that the rms radii of heavy flavored baryons be-
come small as the masses become large. Because of this
eKect, the binding energy is smaller than the one obtained
with b-function-type solutions.

5.0
l

0.5 r (fm) 1.0
IV. HEAVY BBRRONS AND HYPERFINE

SPLITTINC S

FIG. l. y(r) and p;(r) for Q = c (solid) and 5 (dashed).
y2(~) is nearly equal to v 2()()i (r) for both cases.

1 1

@c (30)

where the radial function f(r), normalized as fr dr
I f I

1, is strongly peaked at the origin. It implies that

much heavier than the corresponding pseudoscalar me-
son.

The wave functions of Refs. [10,16] are obtained in the
heavy-mass limit, M+, M@. —+ oo and can be written in
our convention as

So far we have considered soliton-heavy-meson bound
states to the order N, with N, being the number of color.
The combined system of the soliton and a bound heavy
meson carries a baryon number and a heavy flavor num-
ber, but does not have the spin and isospin of a heavy
baryon. Up to order N, , the soliton-heavy-meson bound
state should be understood as a mixed state of three de-
generate heavy baryons containing a heavy quark Q; Eg,
Aq, and Z*, whose mass is M, ~ + u~. In order to give
the spin an5 isospin quantum numbers and the hyperfine
splittings, we have to go to the next order in 1/N„ i.e.,

O(N, ). This is done by quantizing the zero modes asso-
ciated with the simultaneous SU(2) rotation of the com-
bined system. A standard collective coordinate quantiza-
tion procedure leads us to the mass formula for a heavy
baryon with spin J and isospin I:

rp(r) = —pi(r) = — %2(r) z z~ f(r). (30a)
M = M, )+u)~

These radial functions satisfy the normalization condi-
tion of Eq. (22) in the leading order in I/mq, viz. ,

1 3
+—cJ(J + 1) + (1 —c)I(I+ 1) + —c(c —1)

2Z . 4

+O(1/M'). (31)
2~B r'«(I )PI' + Iv il' + Iv 2I') = 1.

0
(30b)

It is interesting to note that the pseudoscalar meson
and three vector mesons contribute equally to the bound
state.

Comparing our numerical results given in Table I with
the binding energy Es = —zg&F'(0) of Refs. [10,16],
which gives 800 MeV with the same input parame-
ters, one can see that the 1/mq corrections amount to

200 MeV in the bottom sector and 300 MeV in the
I

Here 2 is the moment of inertia of the soliton configura-
tion against the SU(2) collective rotation:

8x, . z, 1 ( „sin'F)X= — r drsin F f + —IF' +
(31a)

and c is the hyperfine splitting constant which can be
obtained by directly applying the techniques developed
in Ref. [18]:

OO

c= r'dr 2~~
I

lvl' Ivil' —-Iv21'
I

—-c»'(F/2) (lv I' —Ivil')
3 3 J 3

1 (, sin2F &, 2 1 sinF
gc I

+ llrrrcl (3coc++1)(pr rrc+rpc dr) ).3 ( r j 2 r

(31b)

We note that we have also kept terms of the next-
to-leading order in 1/mg. One can easily see that the
byperfine constant c is of order 1/mq. The leading-order
terms proportional to ~& vanish identically when the ra-

dial functions of Eq. (30a) are used.
According to the formula, the masses of heavy baryons

containing a single heavy quark have the following hyper-
fine splittings:
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3
Mg- —Mg = —c,

2X
'

1
Myo —M~o = —(1 —c).Q

(32)

By eliminating c from Eq. (32) we have a model-
independent relation

1 2—(2M'. + Mg ) —MA = —(M~ —M~).
Q Q Q

With the experimental values MP~ (= 2453 MeV),
M&"~ (= 2285 MeV), and M&"~ (= 5641 MeV), we pre-
dict the mass of Z, to be 2493 MeV and the averaged
mass M~, [= z~ (2M'; + Mg, )] 5836 MeV. Since c is of
order 1/mq, the masses of Zq and of Zq are degenerate
in the in6nite mass limit as the heavy quark symme-
try implies and Eq. (33) is reduced to Mgo —Mpo =
s(Ma —MN) as in Refs. [10—12].

Numerical results (Result I) on the heavy baryon
masses are shown in Table II. They are in rough agree-
ment with the experimental values. Result II is obtained
by taking the two coupling constants as &ee parameters.
To fit the experimental masses of A, and Z„one should
have fo/2M~ = —1.04 and go = —0.40, which implies
that the heavy quark symmetric relation (4) is strongly
broken in the charm sector. Note that as far as the two
coupling constants are related by Eq. (4), the hyperfine
constant is too small.

In order to improve the situation, one may consider
higher-order terms in the 1/mq expansion or higher
derivative terms of the pion 6elds. As a guide line, we
may use the Skyrme Lagrangian [18] with the vector
mesons included via the hidden gauge symmetry, since
in the strangeness sector the heavy quark symmetry be-

I

B"[4tD„4—(D 4)t@]. (34)

Here, N, is the number of color, f+ is the 4-meson de-
cay constant, and B„ is the topological baryon number
current. Although its role fades out in the heavy-mass
limit, the WZ term should not be disregarded in the case
of finite quark masses.

In addition, there are other contributions of order
1/mq to the binding potential. We introduce a typi-
cal A A potential in the Lagrangian as in CK approach,
which is next-to-leading order in the derivative of pion
fields and turns out to have non-negligible efFects in the
strangeness sector:

Z( )
———@tA A"4. (35)

Now we discuss the e8ects of the above terms in detail.
Let us write

bZ = Z~, + Z(2). (36)

This additional Lagrangian modi6es the equations of mo-
tion for the pseudoscalar-meson 6eld 4 as

(D„D"+ Mc, )4 = fo A"I „' — 2' B„D"4

(37)

while those for the vector-meson field 4' remain the same
as Eq. (14). Consequently, the radial function of the
k =

2 eigenmodes is altered as

comes no longer a good symmetry, but the SU(3) chiral
symmetry becomes rather a good symmetry.

Among many possible terms which will be discussed
below, the Wess-Zumino (WZ) term is known to play
the most important role in CK approach [1]:

)(2, /2
V +-V +

I
~ —Me ——,

I V
T r'&

f (az + —a2)gq — f ax/2 ——2(uA —2v
~

v —
l
+ (3ax + 2axa2 + as) p—1 1 ( 2 2

2 Q ry

(38)

where

Nc 1»n F
g

f2 8m2 r2

The WZ term contributes to the hyperfine splitting con-
stant c as

bc=2 r dr(y~ A,
0

(4o)

and to the normalization condition of Eq. (22) by the
same amount. Note that there is no direct contribution
&om l:~2) to this quantity.

TABLE II. Numerical results on the heavy baryon masses.

Exptb
I
II

Exptb
I

fo /2M'.

—0.75
—1.04

—0.75

—0.75
—0.40

—0.75

1481
1419

4722

0.05
0.14

0.02

MAQ

2285
2348
2287
5641
5589

M~Q
2453
2535
2454

5781

ME

2548
2497

5786

In MeV unit.
Particle Data Group [20].
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TABLE III. WZ term and strange baryon masses.

&~z
oK
off
on
on

Expt

ofF

on
o8'

on

389
291
191
109

C

0.098
0.148
0.717
0.791

M~
1257
1160
1095
1022
1116

Mg
1433
1326
1151
1063
1192

Mg-
1462
1369
1361
1295
1385

0.62
0.56
0.41
0.39

In Mev unit.
In fm unit.

We begin with the role of bC in the strangeness sector,
where the above model Lagrangian does not work well as
expected in this sector. In Table III, we show the numer-
ical results for strange baryons obtained with the input
parameters f = 64.5 MeV, e = 5.45, MIc = 495 MeV,
Ma. . = 892 MeV, and fo/2M'. = —~ ——go. Note
that the role of l'.

~2~ in the binding energy is important

( 80 MeV), while its effect on the hyperfine constant c
is rather small. The Wess-Zumino term plays a crucial
role in the hyperfine constant c, of which more than 80'%%uo

comes from the WZ term. As shown in Fig. 2, the ef-
fect of the WZ term on the radial wave function is also
remarkable; with the WZ term, the vector-meson contri-
bution to the bound states is much suppressed compared
with that of the pseudoscalar meson.

In the charm sector the role of the Wess-Zumino term
in the heavy-mass limit is weakened as discussed in Ref.
[11]. This results from the fact that the role of vec-
tor mesons balances that of pseudoscalar mesons in the
heavy-mass limit. The decoupling of the WZ term in the
heavy-mass limit is originally argued in Refs. [21,22]. In
the chiral limit where pseudoscalar mesons predominate,
the WZ term is entirely expressed in terms of these pseu-
doscalar mesons. To take into account the WZ term in
the 6nite mass region, we consider the most characteris-
tic expression of the WZ term [1,18] constructed in terms
of pseudoscalar mesons and an adjustable parameter p.
The parameter p contains the trace of cancellation be-
tween contributions of the vector and of the pseudoscalar
mesons and should depend on 1/mq. That is, we take

bC' = PCwz + eZ(2) (41)

with the same Zwz and l:(2) as given by Eqs. (34) and
(35). The parameter e has the role of turning on and
off the eKect of Z(2). Here, f@ is the D-meson decay
constant fD, which is known to be 1.8 times larger than
the pion-decay constant f Alth. ough the Z(q) plays a
minor role for the heavy Qavors such as charm, we keep
it to compare its effects in the charm sector with those
in the strangeness sector. In Fig. 3, we present cu& and c
as a function of the mitigating factor p. The role of 8~2~
is shown as narrow stripes, with 30 MeV effect on the
energy and 0.04 on the hyper6ne constant. However,
as we can see in Fig. 3, the dependence of the mass
spectrum on the parameter p is not negligible. In order
to fit the charmed baryon masses, we need to have ~& ——

1416 MeV and c = 0.16. Then we have

M~. ——2285 MeV,
Mg, ——2449 MeV,
Mg« ——2495 MeV.

(42)

Also &om Fig. 3, one can estimate the mitigating factors
as p 0.25 and e = 1, which reproduce the above mass
spectra and then we have g(r2), = 0.37 fm. It implies
that the increase in f@ alone is not enough to take fully
into account the role of the Wess-Zumino term in the
charm sector.

The dependence of p on meson masses can be derived
by showing how the Wess-Zumino term scales out as the
mass increases. We are not in a position to illustrate

5 s ~ s s ~ s ~ ~ ~1
a

10- i b

5—

0 ~e+

/
/

l
I gy—10—

v W

~ s ~ s I ~ s ~ ~

6.0 0.5,f, 1.0 0.0

(a)

~ s ~ ~ I ~ ~ ~ ~

0.5
(f )

1.0 0.0
s s s ~ l ~ s ~ ~

0 5 (f )
1 0

F1G. 2. y(r) and &pi(r) for (a) B and B', (b) D and D', (c) K and K' with (solid) and without (dashed) the Wess-Zumino

term. Each field is normalized as f drr ]y~ = 1.
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FIG. 3. ~& and c vs p obtained for charmed baryons.
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we have worked with the heavy meson Lagrangian of Ref.
[9] which includes the I/mq order terms. The large bind-

ing energy obtained in the infinite mass limit is lowered
by introducing I/mg corrections. The binding energy
is changed from ~ 800 MeV to ~ 500 MeV for D(D')
mesons and to 600 MeV for the B(B'). The effect
may be crucial for the loosely bound exotic states such
as "pentaquark" baryons [23,24]. However, due to the
realization of the heavy quark symmetry, the hyperfine
splitting constant comes out too small compared with
the experimental one. For example, we get c = 0.05 for
charmed baryons while it should be 0.14 to reproduce
the experimental masses. To resolve this problem, we in-
troduce the WZ term in a mitigated form, which is known
to have a crucial role in the strangeness sector. To repro-
duce the experimental masses for charmed baryons, its
strength should be weakened by a factor of 4.

this dependence yet. However, if we assume the depen-
dence to be inversely proportional to the m@, , we 6nd
p ~ 0.5 GeV/m~. Note the coincidence of the p factor
( 0.25) with the meson mass ratio m~/m~.

V. SUMMARY AND CONCLUSION

In this work, we have investigated the mass spectrum
of heavy baryons containing a single heavy quark in the
bound-state approach of the Skyrme model. To this end,
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