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Analysis of the photon spectrum in inclusive H; K, p decays
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Using a combination of the operator product and heavy quark expansions, we resum the leading
nonperturbative contributions to the inclusive photon spectrum in B + X, p decays. The shape
of the spectrum is determined by a universal structure function, which describes the distribution
of the light-cone momentum of the 6 quark inside the B meson. The moments of this function are
proportional to forward matrix elements of higher-dimension operators. As a by-product, we obtain
the bound Az ( 0 for one of the parameters of the heavy quark effective theory. An integral over the
B -+ X, p structure function is related to the shape function that governs the fall off of the lepton
spectrum close to the end point in B -+ X„Ev decays. A measurement of the photon spectrum in
rare B decays can therefore help to obtain a model-independent determination of V &.

PACS number(s): 13.40.Hq, 12.39.Hg, 14.40.Nd

I. INTRODUCTION

The rare decays of B mesons are of great importance,
since they are sensitive probes of new physics beyond the
standard model (see, e.g., Refs. [1,2]). Such processes
are induced by the exchange of heavy particles, which
manifests itself at low energies in the appearance of local
operators multiplied by small coefficient functions. These
coefficients depend on the masses and quantum numbers
of the heavy particles. In the standard model, rare decays
of the type 5 ~ sp are induced by penguin diagrams
with virtual top or charm quark exchange. Recently, the
first such decay mode, B m K'p, has been observed
by the CLEO Collaboration. The reported branching
ratio is (4.5 + 1.9 6 0.9)%%uo [3]. The interpretation of this
result is difficult, however, due to the lack of reliable
theoretical methods to calculate the low-energy hadronic
matrix element of the penguin operator between meson
states. Existing estimates of this matrix element rely on
quark models [4, 5] or QCD sum rules [6—8] and are thus
model dependent.

For several reasons, one expects that the theoretical
analysis is more reliable for inclusive B ~ X, p decays,
where one sums over all possible 6nal states containing a
strange particle. Assuming quark-hadron duality, the in-
clusive decay rate was traditionally calculated using the
Bee quark decay model and including short-distance cor-
rections from virtual and real gluons [9—17]. Recently,
however, it has been observed that inclusive decays of
hadrons containing a heavy quark q allow for a system-
atic expansion in powers of A/mg, where A is a charac-
teristic low energy scale of the strong interactions [18—23].
The parton model emerges as the leading term in this
QCD-based expansion, and the nonperturbative correc-
tions to it are suppressed by a factor A2/m&2. The fact
that there are no 6rst-order power corrections relies on a
particular de6nition of mg, which is provided in a natu-
ral way by requiring that there be no residual mass term
for the heavy quark in the heavy quark effective theory
[24, 25]. This definition is unique and can be regarded as
a nonperturbative generalization of the concept of a pole

xIlass.
The availability of a systematic expansion of the inclu-

sive B ~ X, p decay rate raises the hope for a better
understanding of rare decays, which is necessary to in-
crease the sensitivity to new physics. For practical rea-
sons, however, it is not sufhcient to have a reliable cal-
culation of the total decay rate. In fact, the distribution
of the photon energy will be adFected by various exper-
imental cuts, and it is thus the spectrum dI'/dE~ that
needs to be calculated. In the free quark decay model,
the photon in b -+ s p decays is monochromatic. Correc-
tions to this simple picture arise from two sources: Real
gluon emission produces three-body final states, leading
to a continuous energy spectrum. These efFects have been
calculated in perturbation theory [17]; they will not be
discussed here. In addition, bound-state corrections in
the initial state, in particular the "Fermi motion" of the
6 quark, lead to a dispersion of the spectrum. These non-
perturbative efFects can Doppler shift the spectrum above
the parton model end point. So far, such eKects have
been estimated [26] using the phenomenological model of
Altarelli et al. [27].

In this paper, we present a more rigorous treatment of
bound-state corrections to the free quark decay model. In
particular, we show that QCD provides a natural frame-
work to account for the "Fermi motion. " Extending our
previous analysis of the end point region of the lepton
spectrum in B -+ X„EP decays [28], we resum the lead-
ing nonperturbative contributions to the photon spec-
trum in B ~ X, p decays to all orders in the 1/ms ex-
pansion. We show that the spectrum is determined by
a fundamental structure function, which describes the
light-cone residual moment»m distribution of the heavy
quark inside the B meson. Quite remarkably, an inte-
gral over this structure function is related to the shape
function that governs the end point region of the lep-
ton spectrum in B + X„/v decays. In Sec. II, we
generalize the results of Refs. [19,22] and construct the
operator product expansion for the photon spectr»m in
B -+ X, p decays, including the leading nonperturbative
corrections. In Sec. III, we perform a res»mmation of the
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most singular terms in the photon spectrum to all orders
in 1/ms. The moments of the spectrum are related to
forward matrix elements of local, higher-dimension oper-
ators in the heavy quark efFective theory. We show that
the characteristic width of the spectrum is determined
by the kinetic energy of the b quark inside the B meson.
Prom this relation, we derive the bound Aq & 0 for one
of the parameters of the efFective theory. - In Sec. IV, we
illustrate our results using a toy model, which is a sim-
plified version of the approach of Ref. [27]. In Sec. V, we
derive the relation between the photon spectrum and the
6-quark structure function of the B meson, and we relate
the Fourier transform of the spectrum to the forward ma-
trix element of a gauge-invariant, bilocal operator. Sec-
tion VI is devoted to a discussion of the connection be-
tween rare B decays and inclusive semileptonic decays.
We show that the shape function [28], which describes
the fallofF of the lepton spectrum close to the end point
in B ~ X„Ev decays, is given by an integral over the
photon spectrum in rare B ~ X, p decays, up to correc-
tions of order 1/ms. This connection inay help to obtain
a model-independent determination of V„b. In Sec. VII,
we summarize our results and give some conclusions.

(B( )IB( )) = '(2 )'b'(O) (3)

where v is the four-velocity of the B meson. The de-
cay rate can be written in terms of the imaginary part
of a correlator of two local currents, which contains all
dependence on hadronic dynamics. We de6ne

T(v, pe) = —e j dee'~

x(B(v)l T (J"(z), Jt(o)) IB(v)),

where

J"(z) = b, (z) [p"„y' ] (mg Pr, + m, P ) s(z),

b„(z) = e* '" *b(z) .

(4)

(5)

This leads to

"I'=
(2 is2E 8 . IVisVi'. I'lc~(ms)l'Im&(v, p, )

(6)

of the photon. We use a mass-independent normalization
of states such that

II. OPERATOR PRODUCT EXPANSION

x P.(px) ~(p~) I &.ir IB(v)) (2)

where we s»~ over the two transverse polarization states

In this section, we discuss the application of the op-
erator product expansion to the inclusive rare decays
B ~ X,p. We derive expressions for the photon spec-
trum and the total decay rate, to order 1/m&~ in the
heavy quark expansion and to leading logarithmic order
in o;, (ms). In the limit where the mass of the strange
quark is neglected, the total decay rate and the average
photon energy have been calculated in Refs. [19,22]. We
will generalize the results presented there.

In leading logarithmic approximation, the rare decays
of interest are mediated by an effective Hamiltonian con-
taining a local penguin operator:

4GF'R,R = — VisV;, c7(ms)
2

x a cr"" (ms PR + m, PL, ) b F„„,16+2

where Pg =
2 (1 —ps) and PR = 2(1+ ps) are left- and

right-handed projection operators, and F„„is the elec-
tromagnetic Beld strength tensor. The Wilson coeKcient
cy(ms) describes the evolution from high-energy scales

p mi or m~ to low-energy scales p, ms [9—17]. It
is sensitive to the mass of the top quark and, more gen-
erally, to any kind of new physics beyond the standard
model.

In terms of the efFective Hamiltonian, the inclusive dif-
ferential decay rate is given by

d3 ) (2~) b (mdiv —p~ —px)
~ X.,pol

Note that the Fourier components of the rescaled heavy
quark field b„(z) in (5) contain the "residual" momentum
k = pp —mdiv. In contrast with the full heavy quark
momentum p~, the residual momentum is of order A. It
is then appropriate to construct an expansion in powers
of k/ms.

To this end, it is convenient to introduce dimensionless
variables

p= p',
mQ

msm=~p=
mQ

2E~g=2v'p=
m$

(7)
where E~ denotes the photon energy in the rest frame
of the B meson. Single v2 = 1 and p2 = 0, the func-
tion T(v, p~) only depends on the kinematic variable y.
The correlator T(y) is analytic in the complex y plane,
with discontinuities on the real axis. The physical region
corresponding to the decay B + X, p is

O&y&
m& t, m2a)

(8)

where we have assumed mg 4.7 GeV for the purpose
of illustration. In addition, there is a cut starting at
y 4.16 corresponding to the process p+ B ~ X,gg,

where X,&p contains two 6 quarks and an 8 quark. This
unphysical cut is separated &om the physical one by a
large energy gap bE~ = mR (1+mrs. /mR) 7.2 GeV.
Because of this analytic structure, phase-space integrals
of T(y) with smooth weight functions can be deformed
from the physical region into contour integrals far away
from the physical singularities. It is then possible to con-
struct an operator product expansion of the correlator in
terms of local operators 0;, which contain the b-quark
fields and have dimension d ) 3 [18—23]. These opera-
tors are multiplied by short-distance coefEcient functions

C;(y), which can be computed in perturbation theory
using &ee quark states. The leading contributions in a,
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]—g+m )

mph'

S

,.@ (P I/+ -m)
(9)

mph'

where

come &om a tree diagram with an intermediate s quark
carrying the momentum (ps —p~) = (mdiv+ k —p~). The
operator product expansion is obtained by replacing the
residual momentum A: by a covariant derivative iD. This
gives the propagator in the background Beld of the light
degrees of &eedom in the decaying B meson. Next, one
expands the propagator in powers of iD/mi, . This gives

1

ms(P —g —m+ ie) +i@

(13)

T'(y) =—

A~
Kg ———,m~. —m~ = 4A2.

2m/

Using these results, we find

4m& (1+p) y~ Ai ) 2y 7y

2m,' (
with b, as given in (10). In the limit p = 0, this agrees
with Ref. [22]. For the inclusive photon spectrum, we
obtain from (6)

v, v;, I lc„(m)I

x(1+p)(1 —p) ass(y, p), (15)
b, = (v —p) —m +ie = 1 —y —p+ie. (10) where

Once the Wilson coefficients have been determined,
one has to evaluate the forward matrix elements of the
local operators 6; between B-meson states. The leading
operators have dimension 3 and can be related to ma-
trix elements of vector and axial vector currents. The
vector current matrix element is normalized by current
conservation,

(B(v)lb. ~"b- IB(v)) = v"

whereas the matrix element of the axial vector current
vanishes by parity invariance. These leading-order con-
tributions reproduce the parton model. The nonper-
turbative corrections to it are described by the matrix
elements of higher-dimension operators. They can be
evaluated using the powerful formalism of the heavy
quark effective theory [29]. The heavy quark field b„
is split into "large" and "small" two-component spinors
h„= 2(1+ P) b and H„= 2(1 —g) b„, and the field

H„ is integrated out to obtain an effective Lagrangian
[30—32]. Any operator in the full theory has an expan-
sion in terms of operators in the effective theory, which

only contain the field h„. Using techniques [21, 22, 33]
that are standard by now, we obtain, to leading order in
1 mb)

(B(v) I b. I'iD" b. IB(v))

Ag + 3A2
Tr F p" + v" —5v"P+

12m/

(B(v) I
b„ I'iD" iD" b IB(v))

(12)

where P+ ——2(1+P), and I' denotes an arbitrary combi-
nation of Dirac matrices. The low-energy parameters A~

and A2 are related to the kinetic energy K~ of the heavy
quark inside the B meson, and to the mass splitting be-
tween B and B' mesons. They are defined as [33]

Ag —9K,A2 3+ 5p+0(m, ),
2m/ 3 —3p

The spectral function s(y, p) is given by

Ag + 3~A2
s(y p) =b(1 y p-) --(1 p) -b'(1 y p)--

2m/

—(1 —p) 2
b"(1 —y —p) + O(m& ) . (17)

6m~2

The interpretation of the singular structure of this func-
tion is the main subject of this paper. Recall that the
operator product expansion, which leads to (15), is only
justified when the spectrum is integrated with a smooth
weight function. Hence, one should understand the sin-
gular expression (17) in the sense of distributions. In-
tegrated quantities such as the total decay rate and the
average photon energy obey a well-defined 1/ms expan-
sion. We find

, ' I&~s&e:I'lcr(ms)I'(1+ p)(1 p)'n»—

In the limit p = 0, we confirm the results of Refs. [19,
22].

In order to obtain an estimate of the magnitude of
the nonperturbative corrections, we use the quark masses
ms = 4.7 GeV and m, = 0.2 GeV, corresponding to
p 2 x 10 . Prom the observed value of the B'-B mass
splitting, one obtains A2 0.12 GeV . The parameter Aq

is not directly related to an observable. The field-theory
analogue of the virial theorem relates the kinetic energy
of a heavy quark inside a hadron (and thus Ai) to a ma-
trix element of the gluon field strength tensor [34]. This
theorem makes explicit an "intrinsic smallness" of Aq,
which was not taken into account in existing /CD s»m
rule calculations of this parameter [35—37]. As a conse-
quence, we expect that (—Ai) is smaller than predicted in
these analyses. Here we shall use the range —Az ——0.1—
0.3 GeV . We then obtain gg ~ 0.97, corresponding to a
3% decrease of the parton model decay rate. The correc-
tion to the average photon energy is below 1%.
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III. RESUMMATION
OF THE MOST SINGULAR TERMS

Ag + 3K%2
M, (p) = -(1 —p)

M2(~) = -(1 —~) 3 2
6

(22)

The numerical analysis presented above shows that the
nonperturbative corrections to integrated quantities such
as the total decay rate are very small. Were it just for
these corrections, one could say that the most important
result of the formalism presented in the previous section
would be to give a theoretical justification for the parton
model. However, in this section we will show that much
more interesting information can be extracted from this
analysis. This information is encoded in the coeKcients
of the singular terms in the spectral function s(y, p).

The singularities at y = 1 —p in (17) arise Rom the
fact that the operator product expansion becomes singu-
lar when the s-quark propagator is almost on shell [22].
Although it is legitimate to evaluate phase-space aver-
ages of smooth functions using the singular theoretical
expression, one cannot trust the shape of the spectrum
as given in (17). The true spectrum will be difFerent.
A similar situation is encountered in inclusive semilep-
tonic 8 —i X„Ev decays, where the lepton spectrum
obtained from the operator product expansion becomes
singular when the lepton energy approaches the parton
model end point [19—21]. In Ref. [28], we have suggested
that the deviation of the true lepton spectrum Rom the
parton model prediction could be described by a shape
function S(y), which has a support only in a small region
close to the end point. The singularities in the theoreti-
cal spectrum can be identified with the first few terms in
a moment expansion of the shape function.

We can adopt a similar point of view in the case of
B ~ X, p decays. Let us identify the function s(y, p) in
(15) with the physical photon spectrum subject to the
normalization condition

~

~

dys(y, p) = 1, (19)
0

so that the total rate is given by the first equation in (18).
We will show below that the characteristic width cr of
the spectrum is proportional to 1/ms. When integrated
with a smooth function that is slowly varying on scales of
order 1/ms, the spectral function s(y, p) can be replaced
by a singular expansion [28]:

(~ ~) =): ", b'"'(1-~-~). (20)
m=0

The moments M„(p) are defined as

M„(p) = dy (y —1+p)" s(y, p) .
0

By definition, Mo(p) = 1. We can now identify the sin-
gular expression in (17) with the first few terms in this
expansion and relate the moments M„(p) to nonpertur-
bative parameters. Neglecting terms of order 1/m&s, we
obtain

From dimensional analysis, it follows that the moments
obey an expansion of the form

a-(~) + b-(~) +m~ m~+~m$ mg
(23)

f
OO n

dE~ 2E~ —ms (1 —p) s(E~, p)
0

= a„(p)+ " +, (24)
b-(~)

mQ

where s(E~,p)—: (2/ms) s(y, p), such that
J'0 dE~ s(E~, p) = 1. These moments are all equally im-
portant in the limit mg m oo. Hence, it is necessary to
resuln the operator product expansion. However, with
the exception of the first moment, for which the coef-
ficient ai(p) vanishes, one may argue that it is a good
approximation to keep the leading coefficient a„(p) for
each moment. The corrections involving b„(p) change
the moments by small amounts.

The aim is thus to construct a partial resummation of
the operator product expansion, in which one keeps the
leading term in each moment but neglects 1/ms correc-
tions. A crucial observation is that, at any order in the
1/ms expansion, the coefficient a (p) receives contribu-
tions only &om the most singular terms in the theoretical
expression for s(y, p). For instance, at order 1jm~&the co-
efficient of the h" function in (17) determines a2(p); the
coeKcient of the b' function, however, determines bi(p).
A resummation of the most singular terms can be con-
structed by using the following alternative way of writing
the s-quark propagator in (9):

with coeKcients a (p) and b„(p) that are independent of
mi (up to logarithms arising from radiative corrections).
Hence, the @CD prediction that Mi(p) is of ordei 1/m, 2s

indicates a nontrivial cancellation: The shift in the aver-
age value of y due to bound-state effects is of order 1/m&2,
corresponding to a shift of order A2/ms in the average
photon energy. Naively, one would expect this shift to be
of order A.

The second moment is a measure of the width of
the photon spectrum. As stated above, we find that
o„oc 1/ms. In Ref. [28], we showed that the quantity
o.

& evaluated for p = 0 describes the width of the end
point region of the lepton spectrum in B ~ X„Ev de-
cays. The connection between these two cases will be
discussed in more detail in Sec. VI. Note that the width
is determined by the parameter (—Ai), which is propor-
tional to the kinetic energy of the b quark inside the B
meson [see (13)]. Since, by definition, the second mo-
ment is positive, we obtain the bound A~ & 0. Although
this result is certainly not surprising, it is not trivial,
since operator renormalizations could spoil the positive
definiteness of the kinetic energy operator that defines
(-X,) [38].

For an understanding of the properties of the spectrum
close to the end point, it is not sufEcient to truncate the
1/ms expansion at order 1/m2s[28]. What is relevant are
the rescaled moments
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)-(~ y =)
ms(g —g —m+ ie) +i@ ms', + 2(v —p) iD ms', + 2(v —y) iD (25)

Note that all terms but the first one are multiplied by a
factor b, = (g —g+m) (P —g—m). Since 6 vanishes at the
end point, it follows that the first term is more singular
than the other ones. Hence, the leading singularities can.
be res»»)med by using the replacement

+ less singular terms, (27)

where we define the expectation value of an operator 8
as

{B(v)ih„G h„ iB(v))
{B(v)I

h 6, ]B(v))
(2S)

Here, h, is the velocity-dependent heavy quark field
in the heavy quark effective theory [31, 32], and the
states are the eigenstates of the corresponding efFective
Lagrangian. i Equation (27) is a formal definition of the
spectral function, which is valid to all orders in the 1/ms
expansion. The "less singular terms" omitted here do not
contribute to the leading-order coefficients in the expan-
sion of the moments. Expanding our result in powers of
1/ms, and comparing with (20), we find

~ (p) = ( ~(" p)''D ) (29)

In order to extract further information &om this re-
lation, it is necessary to investigate the structure of for-
ward matrix elements of higher-dimension operators in
the heavy quark effective theory. Using the equation of
motion, iv D Ii„=0, one can show that [28]

{iD")= 0,
(iD" iD" ) = A2 (v"v" —g""),
(iD" iD" iD ) = As (v"v —g" ) v",
{iD"' iD"") = A„v"' - . . v"" + terms with g"'"~,

(30)

where A2 ———Ai/3 [33]. For n & 4, the matrix ele-
ments can no longer be parametrized by a single param-
eter A . However, terms involving the metric tensor give
only small contributions, of order p, to the coefBcients

(26)
ms(g —g —m+ ie) +i@ ms' + 2(v —J)) iD

for the 8-quark propagator. The imaginary part of this
expression is given by a h function, and it is straightfor-
ward to find that

I

a„(p) in (29). Hence, we obtain ao(p) = 1, ai(p) = 0, as
well as

o~(p) = —(1 —p)'—
&s(p) = (1 —p) (1+p) As

a„(p) = A„+ O(p), n & 4 (31)

Let us summarize the main results of this section:
Apart from radiative corrections, the inclusive photon
spectrum in B ~ X, p decays can be described by a
spectral function s(y, p), which is a genuinely nonpertur-
bative form factor that accounts for bound-state efFects
in the decaying meson. The moments of this function
obey a well-defined 1/ms expansion. The leading terms
in this expansion are related to forward matrix elements
of higher-dimension operators in the heavy quark efFec-

tive theory. In the limit p = 0, these matrix elements are
described by a set of fundamental parameters A„. Since
the even moments of the spectral function are positive, it
follows that As & 0. In particular, this gives the bound
Ag &0.

IV. TOY MODEL

(32)

where p~)
——ps . p~/jp~~ denotes the component of the

6-quark momentum in the photon direction. The matrix
elements in (27) and (29) are replaced by integrals over
the momentii~ distribution of the heavy quark. In the
ACM model, one assumes a Gaussian momentum distri-
bution:

Before we discuss in more detail the physics of the re-
sults derived in the previous section, we find it instructive
to illustrate them in the framework of a toy model, which
is a simplified version of the phenomenological approach
of Altarelli et ai. (ACM) [27]. In the ACM model, the
validity of the parton model is assumed, and bound-state
effects are incorporated by assigning a momentum distri-
bution P(~ps~) to the heavy quark. In addition, the heavy
quark mass is treated as a momentum-dependent param-
eter ms(~ps~). For simplicity, we shall not consider this
aspect of the model. It is then appropriate to replace
the covariant derivative by the spatial components of the
heavy quark moment»m pi, . The gluon field and the time
component of the covariant derivative are neglected. Ac-
cordingly, in the rest kame of the B meson, one makes
the replacement

It is sufBcient to evaluate the matrix elements in the ef-
fective theory, since we are not interested in the higher-order
corrections in (23).

+(Ipsl) =, exp I—4 ( /ps f21

pF ( pF
(33)



4628 MA L I'BIAS NEUBERT

where p~ is the Fermi momentum. It is straightforward
to calculate the hadronic matrix elements a„(p) in this
toy xnodel. We find

(1 —p)" "p&, n even,

0 ) D Odd.

Comparing (34) with (31) for n = 2, one obtains the
relation —Aq

——
& p& between the low-energy parameter

Aq and the Fermi momentum. Finally, it is possible to
calculate the leading term in the spectral function s(y, p)
in (27). The result is again a Gaussian distribution:

LCG
&-(0) =& =((iD+)") = ((i&+)"). (37)

This is the correct generalization of (34). Note that i 8+
is the operator corresponding to the light-cone residual
momentuxn k+ of the b quark in the B meson.

Using this notation, the spectral function s(y)
s(y, 0) in (27) takes the form

iD+I
s(y) = bI 1 —y+ I

+ less singular terms
mg )

dk+ 1 —y+ k+ +0 1 mg
( k+)

ms)
(38)

where

1 (y —1+p)'
squiz(y, p) = exp

2' Oy

The width 0'„has been defined in (22).
At this point, we have to stress that our toy model

is presented for pedagogical purposes only; we do not
claim that it provides a realistic description of the spec-
tral function. In fact, this simple model of the "Fermi mo-
tion" is inconsistent with QCD. Note that the vanishing
of the odd moments of the distribution function, which
implies the symmetry of the spectral function around

y = 1 —p, is a consequence of rotational invariance. As
such, it is unavoidable in a model where the time com-
ponent of the heavy quark momentum is neglected. In
QCD, however, there is no reason why any of the coef-
ficients a„(except aq) should vanish. Hence, we expect
that the physical spectral function is asymmetric. In the
following section, we shall discuss in xnore detail the cor-
rect generalization of the toy model in the context of
QCD. This will lead us to the concept of a universal light-
cone structure function, which replaces the distribution
function P(Ipt, I).

V. LIGHT-CONE STRUCTURE FUNCTION

The alert reader will have realized the close analogy of
our discussion in Sec. III with deep inelastic scattering.
In this section, ,we will exploit this relationship. From
now on, we will neglect the mass of the strange quark
and set p = 0. We expect this to be an excellent approx-
imation. For instance, the coefEcients a2(p) and as(p) in
(31) change by less than 1.5%%uo when m, is varied between
0 and 0.4 GeV.

For p = 0, the vector

n„= 2(v —p)„ y=1
(36)

is a null vector on the forward light cone satisfying n2 = 0
and n - e = 1. I.et us denote the scalar product of a four-
vector p with n by n - p =—p+. In the rest &a~e of the B
meson, we are free to choose n„= (1,0, 0, 1), such that
p+ ——p + p . Moreover, we can simplify expressions by
using the light-cone gauge (I CG) n . A = 0. From (29)
and (31), it then follows that

A„= dk+ k+ k+ (40)

The corresponding moment expansion reads

f(k+) =), A„h~"l(k+)
n=O

= 8(k+) ——' b"(k+) — h'"(k+) +
6 6

Equation (38) shows very nicely the structure of the
1/ms expansion proposed in this paper: The photon
spectrum is a convolution of the free quark decay spec-
trum (i.e., a b function) with a nonperturbative distribu-
tion function. The leading term in the 1/mg expansion
of this function is given by the universal structure func-
tion f(k+). This is the correct generalization of the toy
model discussed in the previous section. The important
distinction is that the light-cone momentum k+ contains
the tixne component of the residual momentum k. Thus,
the odd moxnents of the structure function are not forced
to vanish by rotational invariance, and f (k+) is in general
not symmetric around k+ ——0.

One can consider (38) as the recipe for a systematic
and consistent implementation of the leading bound-state
corrections, even when one goes beyond the leading or-
der in perturbation theory. Needless to say, however, the
structure function f(k+) cannot be calculated from Srst
principles. One option is to extract this universal func-
tion &om experimental data. The photon spectrum in
rare B + X, p decays is an ideal place for this purpose.
Alternatively, one may try to obtain a QCD-based pre-
diction for f (k+) using nonperturbative techniques such
as lattice gauge theory or QCD sum rules. To this end,
it may be useful to relate the structure function to a

f(k+) =(~( D+ —k+))
(B(v) I h„b(iD+ —k+) h„ IB(v))

(B(v) Ik- h. IB(v))

is a universal structure function, which determines the
probability to Bnd a b quark with light-cone residual mo-
mentum k+ inside the B meson. Since this function is
defined in terms of a matrix element in the heavy quark
effective theory, it is independent of the b-quark mass.
The moments of f(k+) are given directly in terms of the
hadronic matrix elements A„defined in (30):
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forward matrix element of a gauge-invariant, bilocal op-
erator. Let us define the Fourier transform of f (k~) as

f(t) = f dk f(k ) e '~+'.

It then follows that

(42)

(ps)+ ms + k+

(pg)+ mg
(44)

and hence

ks(x)de = (f(k+)+O(1/mq))dk+, k~ = m~x —mq.

(45)

From the requirement that 0 & z & 1, it follows that
the allowed range for the light-cone residual momentum
is —mg & k+ & m~ —mg. In the limit mg -+ oo, this
becomes

—oo&k+&A, (46)

where A denotes the asymptotic value of the mass dif-
ference m~ —ms and can be identified with the effective
mass of the light degrees of freedom in the B meson [24,
25]. An interesting consequence of (46) is that it deter-
mines the kinematic end point for the photon energy in
B ~ X, p decays. From (38), we find that

y = 1+ +O(ms ) = +O(ms ). (47)
mQ m$

This is in fact consistent with the physical endpoint given
in (8).

Knowing the moments of f(k+), it is straightforward
to calculate the moments of the structure function b~(z).
We find

1

dz (1 —z)"b~(z)
0

„&nl„) (—1)"
~ k ~

A&A" "+0( " '). (48)
& a=o

In particular, this leads to the sum rules

(B(v)
~
h (0) P exp[—i fz' dz„Af" (z)] h„(z) ~B(v))

(B(v) I
h (0) h. (0) IB(v))

(43)

where z = t n is a four-vector on the light cone satisfying
z2 = 0 and z ~ v = t, P denotes path ordering, and the
integral is along a straight line. In light-cone gauge, the
phase factor equals unity. The function f(t) describes the
spatial distribution of the b quark inside the B meson.

Finally, we note that the residual moment»m struc-
ture function f (k+) obeys a simple relation to the usual
structure function b~(z), which determines the probabil-
ity to find in the B meson a b quark with total light-cone
momentum fraction z. Using that ps = mdiv + k and
n e =1, we have

1

dzbgg(z) = 1,
0

f
1

dz(1 —z) b~(z) = +O(m~ ),
0 mg

1 (-, Ag&
d*(1 z—)'b~(z) =,

~

A' ——~+O(m~').
o ma & 3)

(49)

The second relation has been derived previously, in a
different context, in Refs. [39,40]. Note that it implies the
lower bound A & 0, which in view of the recent criticism
[38] of the Gural»ik-Manohar bound A & 237 MeV [41]
seems less trivial than one may think.

VI. RELATION TO B m X„EP DECAYS

In this section, we discuss an interesting relation be-
tween the leading nonperturbative corrections in rare and
semileptonic inclusive B decays. This connection may
help to obtain a model-independent determination of the
element V„s of the Kobayashi-Maskawa matrix. In the
limit m„= mr = 0, the inclusive lepton spectrum in
B m X„Ev decays can be written as

azIVsI'
dy 96+3 ms F(y) O(1 —y) + F(1)S(y)

y = '. (50)

In this case, the kinematic variable y denotes the rescaled
lepton energy, and F(y) is a slowly varying function of
y. Apart &om small nonperturbative corrections of or-
der 1/ms2[19—21], it is given by parton model kinematics:
F(y) yz(3 —2y). Close to the end point, one can re-
place F(y) F(1) 1, up to corrections of order 1/mzs.
The shape function S(y), on the other hand, is a rapidly
varying, genuinely nonperturbative object [28]. It is non-
zero only in a small region around the end point of the
spectrum. Using the resummation teel)»kque developed
in Sec. III, we find that

o-(1 —y) + S(y)

in Dl0 1 —y+ + less singular terms
ms

dk+0 1 —y+ k+ +01 mg
ms)

Here, n = 2(v —pg/ms) is again a null vector when y = 1,
and hence f(k+) coincides with the universal function
defined in (39). We observe that, close to the end point
region, the lepton spectrum in semi&eptonic B ~ X„lv
decays can again be written as a convolution of the &ee
quark decay distribution (i.e., a step function) with the
structure function f(k+) Comparing .the above relation
with (38), we obtain

s(y) = ——O(1 —y) + S(y) + less singular terms.
Bg

(52)
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Let us integrate this equation to obtain

e(1 —„)+ („)= "„' („')
u

OO OO

dy' O(1 —y') + S(y') dy' (y' —y) s(y') .
JJ 'JJ

(53)

These relations are exact up to corrections of order 1/mb
or ae.

The main goal of the study of B ~ X„Ev decays is
to extract the element V„b of the Kobayashi-Maskawa
matrix. The experimental analysis is very complicated,
as there is only a small window close to the end point
region where the signal is not overshadowed by the large
background &om B decays into charmed particles. What
can be measured is an integral over the end point region:

dI'(B + X„Ev)

&0 de (54)

I', (E())—: dE» (E» —E())
mg g, dE»

(55)

where Ep is above the kinematic end point for B m D 8 v
transitions, i.e., Ep ) 2.3 GeV. The traditional way to
extract a value of V„b from such a measurement is to
compare I'„(Ep) with the predictions of various quark
models. Since the end point region of the lepton spec-
trum is strongly affected by nonperturbative eKects, this
procedure suffers from a considerable amount of model
dependence. Currently, the value of V„b obtained follow-

ing this strategy has a theoretical uncertainty of at least
a factor 2 [42, 43].

Based on the results obtained in this paper and in
Ref. [28], we propose a new strategy to extract V„b with
little model dependence. The idea is to use the sec-
ond equation in (53) to relate the integral I'„(Ep) to a
weighted integral over the photon spectrum in rare de-
cays. Defining

and using that
( VqbV~;( ( V,b ~, we find the remarkable

relation

2 2
V„b V„b

Veb VgbV, ;3a, I'„(E()) ( A ')= —~c)(mb)[ )7qcD
" + O~

vr I' (Ep) (mb j
(56)

where gggD contains radiative corrections, which have
so far been neglected in this paper. The Wilson coefB-
cient cy(mb) can be calculated in perturbation theory. In
the standard model, it is known to leading logarithmic
accuracy [15,16]. Hence, from a measurement of the inte-
grated quantities I'„(Ep) and I', (Ep) one obtains a direct
determination of jV„b/V, b~. The fact that the right-hand
side in (56) must be independent of Ep provides a con-
straint, which can help in the analysis of the data. By
taking the ratio of the integrated decay rates, we are able
to reduce hadronic uncertainties to the level of power
corrections, the leading ones being of order A/mb 0.1,
where we take A 500 MeV as a typical low-energy
scale of the strong interactions. It is thus not incon-
ceivable that the theoretical uncertainties in (56) can be
controlled to a level of, say, 10—30%%, corresponding to
an uncertainty in ~V„b/V, b~ of 5—15'%%uo. This would be a
major improvement over the present situation.

To achieve such an accuracy, it is necessary to study
in detail the /CD correction factor )7qcD in (56), which
arises when radiative corrections are included in the op-
erator product expansion of the inclusive decay rates.
We shall briefiy discuss the qualitative structure of these
corrections; a more complete treatment will be presented
elsewhere [44]. In the free quark decay model, the one-
loop radiative corrections to B ~ X, p and 8 -+ X„fv
decays have been investigated by several authors [17,
45—47]. For the integrated quantities I';(Ep), they have
the general structure (i = u or s)

W

F,. '
(Eo) oc (1 —yo) O(1 —yo) (1 — ' lrP(1 —yo) + a; ln(1 —yo) + b+0 (1 —yo),3x .

(57)

where yp = 2Ep/mb. The Sudakov-type double logarithms are universal and enter both quantities with the same

coefficient. This statement is true to all orders in perturbation theory [48, 49]. Note that the result for I', (yp) is still
of this form when one takes into account the finite strange-quark mass. This effect is known to modify the end point
behavior of the spectrum in the region 1 —yp p = O(1/mb) [17]. However, since the integral in (55) extends over
a larger region of order 1/mb, the corrections induced by p g 0 are subleading. They are of the same magnitude as
terms of order (1 —yp), which we neglect in (57).

Since integrations over y and Ic+ commute, we can incorporate bound-state corrections by convoluting the parton
model result (57) with the structure function f (k+), as we did for the tree-level expressions in (38) and (51). When
we then take the ratio of I'„(Ep) and I', (Ep), the large double-logarithmic corrections cancel. We find

e
)7qcD = 1 — ' (a„—a, ) ln) + (5„—5, )3%

Here

(58)
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lnr =
(gag+ f (y+) ~

]. —yp +
~

ln
~

1 —yp +( k+) ( k+)
g(yo —i) ( m& )

( k~)
dk+ f(&+) I

1 —yp+
my, (yp —1) ms)

is a nonperturbative parameter of order A/ms. Using
the fact that the logarithm is a monotonic function over
the range of integration, and that 1 —yp + A/ms = 1—
2Ep/mph' up to corrections of order 1/m&2, we find the
bound

theoretical uncertainties will be of order 1/m, instead of
1/ms. We thus believe that our new approach, based
on a comparison of inclusive decay spectra, is preferable
from the point of view of both theoretical uncertainty
and experimental feasibility.

2Ep l—lnr) —1n~ 1—m&)' (60) VII. SUMMARY AND CONCLUSIONS

A precise calculation of lnr, however, requires some
knowledge of the nonperturbative structure function
f(k+). The coefficients a, and b, in (58) can be ex-
tracted from the analysis of Ali and Greub [17]. We
obtain a, = 3/2 and b, = 2z'z/3+ l. In b„we have
neglected small contributions from operators other than
Or in the short-distance expansion of the effective Hamil-
tonian (1). Unfortunately, the existing analytical calcu-
lations of the radiative corrections to the lepton spectrum
in B ~ X„fv decays disagree on the value of b„. We
find a„= 19/6 and b„= 7rz —23/12 + b, where h = 0
according to Jezabek and Kuhn [47], while b 3/8 ac-
cording to Corbo [46]. For the correction factor gqcD,
we find

2o., 6, 35'I
gqcD=1 —

~

5»r+m +3b-
9z g 4)(rj ae1+ 2.31 —1.11 ln

~
~

—0.67h
g0.1y vr

(61)

Since the controversial quantity h enters with a small co-
efficient, the corresponding uncertainty in rIqcD is small.
Using a, /w 0.08 and r 0.1, we expect riqcD 1.18.
We conclude that the perturbative corrections are not
unexpectedly large, but they deserve further investiga-
tion. In particular, the nature of the single-logarithmic
corrections should be clarified. It is tempting to inter-
pret the lnr term in (58) as a renormalization-group log-
arithm arising &om the scaling from large scales p m&
down to smaller scales p2 m2&(1 —yp) mg A, which
are characteristic of the end point region. If this inter-
pretation is correct, it should be possible to resum these
logarithms using renormalization-group tec»piques. At
present, however, we cannot prove this assertion.

Let us finally compare our new strategy to alternative
model-independent determinations of V„g &om exclusive
B decays. Using heavy quark Savor symmetry, one can
in principle extract V„g &om a comparison of exclusive
decays B -+ hE v and D —+ hZ v, where h is a light
hadron such as n. or p (see, e.g. , Refs. [50—52]). The
problem is that the comparison must be done close to
the zero recoil limit. Thus, one is restricted to a small
fraction of phase space. Presently, there is no convincing
experimental evidence for exclusive charmless B decays.
But even if such an analysis becomes feasible as high-
statistics data &om a B factory become available, the

We have presented a systematic, /CD-based analysis
of bound-state corrections to the photon spectr»m in in-
clusive B ~ X, p decays. Using the operator product
expansion and the heavy quark efFective theory, we are
able to res»T» the leading nonperturbative efFects into a
universal structure function f(k~), which describes the
distribution of the light-cone residual moment»m of the
b quark inside the B meson. This formalism provides
the generalization of the phenomenological concept of the
"Fermi motion" in the context of /CD. We find that the
moments of the structure function are given by a set of
universal forward matrix elements of higher-dimension
operators. The characteristic width of the photon spec-
trum is related to the expectation value of the kinetic
energy of the heavy quark inside the B meson. As a
by-product, we obtain the bound Ai ( 0 for one of the
parameters of the heavy quark e8'ective theory.

The formalism presented here is rather general. So far,
it has been applied to the photon spectr»m in rare decays
and to the lepton spectr»m in B -+ X„lv transitions
[28]. Applications to other processes such as B ~ X,E P
[53] or purely hadronic decays are possible, too. The fact
that the leading nonperturbative corrections to inclusive
decay spectra can be traced back to a universal structure
function leads to interesting relations between different
processes. In Sec. VI, we have shown that a weighted
integral over the photon spectrum in B +X, p decays -is
related to an. integral over the end point region of the lep-
ton spectr»m in B ~ X„EP decays. Based on this con-
nection, we have proposed a model-independent way to
extract the ratio ~V„s/V, s~ of elements of the Kobayashi-
Maskawa matrix. Hadronic uncertainties enter this de-
termination only at the level of 1/ms corrections. We
estimate that using this method one could extract V„g
with a theoretical uncertainty of about 20%%, which is an
order of magnitude better than the present theoretical
uncertainty in this parameter.

Since the b-quark structure function is a rather funda-
mental object, one should try to calculate it using non-
perturbative tec~~Iques such as lattice gauge theory or
/CD sum rules. We believe that the relations derived
in Sec. IV will be helpful for such calculations. In par-
ticular, it may be of advantage to calculate the Fourier
transform of the structure function, which is given by the
forward matrix element of a bilocal operator. Any theo-
retical insight into the behavior of the structure function
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and its moments will have a direct impact on the anal-
ysis of inclusive decay spectra, &om which one hopes to
extract accurate values for some standard model parame-
ters or, in the case of rare decays, even indications for new

physics beyond the standard model. On the other hand,
we would like to emphasize that a measurement of some
of the moments of the shape function in semileptonic de-
cays [28], or of the photon spectrum in rare decays, would
provide us with some fundamental @CD matrix elements
and is thus interesting in its own right.

Finally, we mention that before the formalism devel-
oped here can be applied to the analysis of data, it is
necessary to include /CD radiative corrections. This
can be done by calculating virtual and real gluon cor-
rections in the kee quark decay model, and convoluting

the result with the structure function f(A:+). This pro-
cedure has its subtleties, however, due to the presence
of end point singularities in the perturbative expansion.
We have indicated this for the important case of the ra-
tio of integrated decay rates in (56). A more complete
discussion will be given elsewhere [44].
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