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Angular distribution functions in the decays of tft', f"
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We calculate the angular distribution of the two y photons produced in the processes

pp~f', Q"~ys+y, +/+-y, +y2 (J=0,1,2), and pp~l'Dg~l 'P, +y, ~l 'Sp+y, +y2 &n terms of
the helicity amplitudes of the individual processes. There is enough information in the angular distribu-

tions, even when p and p are unpolarized, to extract the magnitudes of all the helicity amplitudes as well

as the cosine of the relative phases of the helicity amplitudes or equivalently the multipole amplitudes in

the processes f' or f"~y~+y (J=0, 1,2) and 1'D2~1 'P, +y. Finally we also derive the combined

angular distribution of the electron and the photon in the cascade process

pp~1 D2~1 S]+g~e++e +y in terms of the helicity amplitudes of the individual processes.

Here again, even when p and p are unpolarized there is enough information in the angular distribution to
determine the magnitudes of all the helicity amplitudes as well as the cosine of the relative phases of the

helicity amplitudes or equivalently radiation multipole amplitudes in the parity-conserving one-photon

radiative transitions 1 'D2(2 +)~1'S&(1 )+y.

PACS number(s): 13.40.Hq, 12.39.Pn, 14.40.Gx

I. INTRODUCTION

Recently, the singlet and triplet P states of charmoni-
um have been directly produced in pp collisions and their
decays have been studied [1]. It is quite possible that in

the near future the g'(2 S, }, 1("(1 D, }, and 1'D2 states
of charmonium will also be produced in pp collision ex-

periments at Fermilab. In potential models [2] the mass
of the 'D2 state is predicted to be around 3822 MeV.
Even though this state is above the charm threshold, its
strong decay into Do+Do is forbidden by parity conser-
vation and its decay into D+D* or D+D' is forbidden

by energy conservation as long as the mass of the 1 'D2

state does not exceed 3870 MeV. Estimates of the radia-
tive decay widths of the 1 'D2 state in potential models

[2] give the results I'(1'D2~1'P, +y)=600—700 keV
and I'(1'D2~1 S&+y)=60 keV. If we assume that the
strong decay widths of the 1 'Dz state in the Okubo-
Zweig-Iizuka- (OZI-) violating channels are of the same
order of magnitude as those of the 1S, 2S, and 1P states,
the radiative decays of the 1 'D2 state will have
significant branching ratios and it may be possible to
study such decays in pp collisions.

The angular distribution functions of the decay prod-
ucts of the triplet P states [gz (J=0,1,2)] directly pro-
duced in unpolarized as well as polarized pp collisions
have been discussed before in the literature [3—5]. The
model-independent angular distribution functions in
terms of the helicity amplitudes are important not only to
extract the helicity amplitudes from the experimentally
measured angular distributions of the decay products, but
also to establish the J quantum numbers of the postu-
lated resonance in the pp channel. In this paper we

derive and discuss the angular distributions of the two y
photons in the two cascade processes

or

and

Xg(J++)+y i st(1 }+yi+yz

pp~l 'D2(2 +)~l 'P, (1+ )+y)
1'S,(0 +}y+-yi+y2.

1 D2~1 S)+y .

From angular momentum and parity conservation, the
first two radiative processes are expected to have only the
E1, M2, and E3 multimode amplitudes whereas in the

e also derive the combined angular distribution of the
photon and electron in the cascade process

pp~l 'Dz(2 +)~l S&(1 )+y~e++e +y .

In each case we assume that the incident proton (p} and
antiproton (p ) are unpolarized. Even in this case there is

enough information in the angular distribution to calcu-
late the magnitudes of all the helicity amplitudes in the
individual processes. There is also enough information to
calculate the cosine of the relative phase of the helicity or
equivalently multipole amplitudes in the middle process-
es:

Q' or f"~y~+y, 1'D2~1'P, +y

and
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last radiative process the M1, E2, and M3 amplitudes are
expected to be present.

The format of the rest of the paper is as follows. In
Sec. II we discuss and derive the angular distribution
function of the two photons in the cascade process

pp~Q or f ~XJ+y)~Q+y)+y2 (& =0, 1,2)

A 1

d s~(8) =D sg(0, 8,0),
(2b)

(2c)

and 8 is a transition operator. By charge-conjugation in-
variance [6],

In Sec. III we do the same thing for the process

p~1 D2~1 P1+y1—+1 So+y1+y2
By parity invariance [5], we get

(4)
and in Sec. IV we discuss the combined angular distribu-
tion of the photon and electron in the process

pp 1'D2 1 S1+y—+e++e +y .

Finally, in Sec. V we make some concluding remarks.

H. pp ~tP' OR f"~yg+y, ~Q+y(+yg (1=0,1,2)

The probability amplitude for the process

p(A, &)+p(A2)~X(5)~X&(v)+y &(ju)

4(~)+y2(~)+yi(i »
where X is 1t' or p" (J~ =1 ) and A. „A.2, 5, v, IM, 0,
and ~ are the particle helicities, can be written as the
product of the amplitudes of three sequential events:

3

4m
(Sa)

where

p=+1, v= —J, —J+1,. . . ,0, . . . , +J . (5b)

In Eq. (5a),

Ds „„(0,0,0)=5s „„. (5c)

Because of parity invariance [6], the helicity amplitude
A „satisfies the condition

Next, we consider the decay X(5}—+X&(v}+y&(p). Since

yJ and y1 move in the +z and —z directions, respective-
ly, we can write the matrix element for this process as

1/2

(00;v@~A~15)= D', „(0,0,0)A„„,

and

p(A&)+p(A2)~X(5), X(5)~XI(v)+y&(p),
A,„=A, „(—1) (6)

Xz(v)~P(cr )+y2(z) .

We will work in the X rest frame or the c.m. frame of pp
with the positive z axis taken to be along the momentum
of Xz and y, along the negative z axis. We assume the
momentum of p, namely, p is in the xz plane making an
angle 8 with the z axis. The y and x axes are, respective-
ly, defined by the unit vectors

kXp A A Aj= and i=j Xk . (1)
/exp/

If ~p, e, p;A, ,A2) represents a two-particle helicity state in
the zero momentum (c.m. } frame where p is the magni-
tude of either particle's momentum and the angles (8,$)
represent the direction of the first particle's momentum
and A, „A,z the helicities of the two particles, then using
the expansion of the two-particle helicity states in terms
of the angular momentum states we can write [4) the ma-
trix element for the first process p(A, , )+p(A2}~X(5) as

' 1/2

(15~Bop,8,0;A, ,A2) = B& z ds&(8), (2a)

where

(7a)

where

~=+1 and cr= —1,0, +1 . (7b)

By parity invariance the helicity amplitude C „satisfies
the constraint

C.'.=( —1)'C' . .
C invariance is trivially satisfied in this process.

The amplitude Tz "g for the cascade process to

go from the initial state p(A, , )p(A, 2) to the final state
g(a )+y, (p)+ yz(» } through all possible helicity states 5
of X and v of gJ is given by

The charge-conjugation invariance [6] is trivially satisfied
in this process.

Assuming the direction of the final y2 in the rest frame
of Xz is given by (8', p'} in our coordinate system (defined

earlier), the matrix element for the process
X~(v)~f(cr )+y2(K) can be written as

' 1/2

&~~,ey ~C~~v&= D'„„.(y', 8', y')CJ. , —
4m

+1 +J
T~f, = X

' 1/2
2J+1

4m.

0')d s, x, ),(8)C—
(9a)
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where

v((M)= —J, —J+1, . . . , 0 ((M= —1)

=0, 1,...,J (@=+1).

When p and p are unpolarized, the normalized angular distribution function for the two photons is given by

—1,O+1 +1

X X 7'2."t.'T)."0'

(9b}

(10)

where NJ is a normalization constant, which will make

f W(8;8', g')dQdQ'=1 .

Using Eqs. (9), Eq. (10) can be rewritten as

%1
W(8;8', y') =N g IB,z., l'&IC'..I'g g [D'„,. .(0',—8', 8')d—,' „, , )„,(8)-~'.„]

p, v(p, )v'(p)

X[D „(y',8', —P')d' „„„(8}A„]', (12)

where Nz is another normalization constant. Using the Clebsch-Gordan series for the D functions [7] and the fact that
' 1/2

DM0(4 8 —4)= 4m

21. +1 I'L,M(8 0»

we can express the right-hand side of Eq. (12) entirely in terms of the spherical harmonics. The techniques used are the
same as we employed in a recent paper [5]. In terms of spherical harmonics, we finally get the normalized angular dis-
tribution function as

0,2, ... ,2J Min( J,L')

g Ci'. .s[~z, s(8' 0')+ &as(8' 0')]&.x(s)(8 o»
L' 5=0, 1 45)

(14a)

where

0, 2 when 5 is even,
2 when 5 is odd, (14b)

B +B =1
J

z=l
v=0

(16)

and

0 when t) is even,
1 when 5 is odd . (14c)

The coefficients CL „s are expressed in terms of the helici-

ty amplitudes A,„, B„, and C„, which are defined in
terms of the previously introduced helicity amplitudes
B „,A„„,and C „as

1 2

J
y Ic', I'=1.
/=0

In terms of the helicity amplitudes defined by Eqs. (15)
and (16},the nonvanishing C coefficients of Eq. (14a) are
given below.

J=O:

(17)

B)=V2B+ =v 2B ~=B

B()=~2B++=~2B (15}

Cozo=
*

V-5

where v is the helicity of yJ and can vary from zero to J:
Cg=&2C „,

where

g=o —)(. varies from 0 to J .
These newly defined helicity amplitudes satisfy the nor-
malization conditions

&000 = 1

C020 (I A0I' —2I x, I'),
5

(1—-,'lc, I')
(2I& I' —I& I'),

5

czz() =——', (1—
—,
'

I c, I')(1—-', IB, I')( I &01'+ I & ) I'},

Czz, =——', (1——', IC, I )Re(A) 2() )(1——', IB) I } .
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J=2:
Cooo =

&

( —,'IB) I

—1)
[IAoI —2IA I +IA

5

(1—-'Ic, I' —2lc, I')

plitudes, one can construct the radiative multipole ampli-
tudes as appropriate linear combinations [3,4,8].

III. PP~1'DP ~l 'Pl +y, ~l 'So +y, +y~

He«, by parity and C invariance [6], the 8 helicity am-
plitudes in the process

P(a))p(X, ) 1'D, (v)

x(2I A() I
+ I A I

—2I A

c„,=-', (-,' la) I' —1)(1—
—,
'

I c, I' —2lc, I')

x(l Aol' —
I A, I' —

I A, I'),

(-,' I&) I' —l )(1—
—,
'

I c, I' —21c, I')

satisfy the conditions

B„z =8)„), (C invariance),
1 2 2 1

Bz ) = —8 z z (P invariance),
1 2 1 2

and so

(21)

C2O2
=

X [Re( A, A 0 )—~6 Re( A z A «) )],
4v

(-', I&) I' —ll(1 —
—,
' IC) I' —2IC I')

B,=B, =B,= —B, =O

and we de6ne

Bo=B++= —B

(22)

(23)
XRe(A2A0 )

c»z =+-', (-', I&) I' —l )(1—
—,
'

I C) I' —2lc~ I')

XRe(A~A() ),
(19)

Because of parity invariance [6], the A helicity ampli-
tudes in the process 1 'Dz(v)-+1'P)(o )+y)(p) satisfy
the relations

c~=—,', (3—5lc, I' ——,'Ic, l')

x(6I A, I' —4l A, I'+
I A, I'),

A~„= A

We define

A —~+i, &
~

(24)

(25)

x(61 A() I'+sl A, I'+
I A, I'),

c,» —— (-,' la, I' —l )(3—5lc, I' —&
I c, I')

X f /6 Re( A ) A() )+Re( Az A ) )],

c~,=+ (-', l~) I' —»(3—5lc) I' ——,
' IC, I')

XRe(AzA() ),

c,» ——— (-, la) I' —l)(3—5lc, I' ——', Ic, I')2 2

(8',y', ~olcl 1~)=
4m

(26)

where O', P' represent the direction of yz in the 'P, rest
frame. The 'P& moves along the positive z axis, and the
momentum vector ofp is in the xz plane, making an angle
8 with the positive z axis. By parity invariance the helici-
ty amplitudes C„()(=61) satisfy

There are three independent helicity amplitudes A p

and A2.
The C helicity amplitude in the process

1 'P ( ))(7~1 'So+ yz()() is defined by the matrix element
' 1/2

D '„(O',P')C„()(=+1),

XRe(A~A() ) .
C„=C (27)

From Eqs. (14)-(19), it is clear that a measurement of
the angular distribution of the two photons will enable us
to calculate the magnitudes of all the helicity amplitudes
A, B, and C as well as the cosine of the relative phase
among the A helicity amplitudes of the decay 1(' or
1("~y~+y (J=0, 1,2). Prom the A and C helicity am-

We de6ne

C=C, =C, ~ (28)

The normalized angular distribution function of the two
photons is now given by the expression

0,2 Min{2, L')
W(8;8'~Q')= g g g CL.„s[YL s(8', Q')+ Yl. s(8', P')]Y„',)v(s)

I.' 5=0 1 «(5)
(29a)

where

)((5)= [1—( —1) ],[1—( —1) ]+2, . . . , 4,
0 when 5 is even,

%5 ='
1 when 5 is odd . (29b)

I

%'e use the normalizations

(30a)
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v=o
(30b)

By parity invariance of the A transition operator,

A „=—A (33)

The expressions for the nonzero coeScients CL.„5 in
terms of the helicity amplitudes Ao, A1, and A2 are

By angular momentum conservation along the z axis,

V=CT P (34)

C020 [21 A() I'+
I A) I' —21 A~l'],

We can define the three independent helicity amplitudes
to be

Co4o =-,) [61 A, I' —41 A, I'+
I A, I'],

[I Aol' —21 A) I'+
I Apl'],1

2 5

c„,——,
' [ I A, I' —

I A, I' —
I A, I'],

[61 A() I'+81 A) I'+
I Apl']

1

14 5
(31)

Ao A —1—1 A 11

A1= Ao 1= A01

A2 —A1 1
——A

(35)

The C helicity amplitudes in the process
f(o }~e (K) )+e (K2), with e momentum in the direc-
tion (O', P') in the rest frame of )t(, are defined by the
equation

221
3

[Re(A) A() ) —v 6Re(A~A) )],
' 1/2

(8,$;K)K21CI lo ) = D' „„(8',(I)')C„„

C241

C222 =
—,
' Re( A 2 A 0 }

6
C~42

= — Re( A 2 A () } .
7v5

7
[V6Re(A, Ao )+Re(A2A ) }],

1
Czo2= Re(AzAo }v'5 By charge-conjugation invariance [6],

C" ~12 21

By parity invariance [5],

(36)

(37)

From Eqs. (29)-(31), it is clear that we can determine the
magnitudes of all the helicity amplitudes Ao, A1, and

A2, as well as the cosine of their relative phases, once the
angular distributions of the two photons are measured.
From Ao, A1, and A2, we can construct the E1, M2,
and E3 multiple amplitudes in 'D2'P1+ y.

IV. pp ~1 'D2~1'S, +y~~++~ +y

As in the previous case, the B, helicity amplitude in
the production process pp ~1 'D2 vanishes by parity and
charge-conjugation invariance. Only Bo is nonzero. The
A helicity amplitudes of the 1 'D(z") ~1 S() )+y()(4) or
2 +—+1 +y are defined by the matrix element

' 1/2

&p00;(apl A 12v) = Sv, (r I4A „—. (32)
5

C-. —.~

1 2 1 2
(38)

and (39)

C1=C+ =C

%'e also have the normalizations

2

1&ol =1, g IA, I
=1, and C~~+C2) =1 . (40)

v=o

The normalized angular distribution function of the
final photon and electron in the cascade process is now
given by

We can define two independent helicity amplitudes CO
and C, tobe

C() =v 2C++ =v 2C

0,2 Min(L', 2)
W(8;8', (I}')= g g g CL „s[YL*.s(8', p')+ Yl s(8', p'}]Y„N(s)(8),

L' 5=0, 1 +5)
(41)

7
(21 Aol'+ I A) I' —21 A21'},

Co4o=-,'(61 Aol' —41 A) I'+
I A21'},

C020

where K(5) and N(5) are given by Eqs. (29b). The expres-
sions for the nonzero coefBcients CL.„& in terms of the hel-
icity amplitudes are

Cooo =1

(42)

C22 (31C, I

~ —2 }[Re(A, A o ) —v 6 Re( A 2 A; )],

Cqoo
= (31C, I' —2)( I A, I' —21 A, I'+

I A, I'),
2 5

C„,=-,'(3IC, I' —»(I Aol' —
I A) I'—

I A21'},

cp4o= (3lc) I' —2)(61 Aol'+81 A) I'+
I A21'}

14 5
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Cz4, = (3IC, I

—2)[&6Re(A, Ao )+Re(A2A,*)],241

C202 —(31ci I' —2)Re( A 2 A 0 }
5

Cipi =—', (3 I Ci I

—2)Re( A g A o ),
6

C,4, = — (31C, I' —2)Re(A, Ao ) .
7 5

From Eqs. (41) and (42), it is clear that we can deter-
mine the magnitudes of all the A helicity amplitudes as
well as the cosine of their relative phases once the angu-
lar distributions of the photon and electron are measured.
We can also determine the Co helicity amplitude in the
process P~e +e+. If the e+e system is produced by
the process qq~y~e e+, Co is of the order of
m/E=3. 3X10, and with our normalization of Eq.
(40), Co should turn out to be extremely small compared
to 1.

We should also mention that the angles (O', P'} are
defined in the g rest frame where as 8 is measured in the
'D2 reSt frame.

V. CONCLUDING REMARKS

We have derived the angular distribution functions of
the decay products of the charmonium states produced in
unpolarized pp collisions. In particular, we considered
the three processes

(i) Pp 0' «0" X~+yi 0+yi+y2,
(ii) pp ~ 1 'D2 +1 'P, +yi ~— 1 'So+yi+y2,

cesses discussed above. In comparing Eqs. (14), (29), and
(41) with experiment, we should point out an important
point. The angles (8', ((}'}are defined in the rest frame of
the final decaying particle where as 0 is measured in the

pp c.m. frame. These two frames are never identical. In
the pp c.m. frame, the final decaying particle has a
significant velocity (u/c=0. 15—0.2). Since the helicity
amplitudes are Lorentz invariant, all we have to do is to
reexpress the angles O', P' in Eqs. (14), (29), and (41) in
terms of the angles 8",((}" defined in the pp c.m. frame.
The relation between the two sets of angles is given by (to
first order in p= u /c )

cos8' =cos8"—P sin 8",
sin8' =sin8" +P sin8" cos8",

I II

(43)

v=0, 1,2 .

Equation (44) represents a real orthogonal transformation
between (Ao, A„A2) and (a„az,a3). So if the A's are
normalized, the a's will be too. That is,

where p is the velocity (in units of c) of the final decaying
particle in the pp c.m. frame.

Finally, the relationship between the helicity ampli-
tudes of the radiative transitions where J =1 state goes
into a J=2 state or vice versa is given by [3,4,8]

' 1/2
2k+1A„=g ak (k 1; l, v —1I2v&, (44)

sc 1

where

and 2 3

(45)
(iii) pp ~1 'D, ~ 1 'S, +y ~e++e +y . v=0 k=1

The expressions for the coeScients CL.„& in terms of
the relevant helicity amplitudes are identical in the angu-
lar distribution functions in cases (ii) and (iii) except for
an additional factor of (1—3I Co I ) for L'=2 in case (iii}.

Our expressions for the angular distributions should
prove to be useful to the experimentalists in extracting
the helicity or multipole amplitudes in the radiative pro-
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