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We compute the O(am?/m} ) corrections to H'—f in the minimal supersymmetric standard model.
The analytic expressions of such corrections to the decay rates are given. Numerical examples are
presented, which show that the corrections to the rates of H, A — ff typically imply a few percent reduc-

tion in the widths.
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I. INTRODUCTION

The standard model (SM) has been remarkably success-
ful. Nevertheless, there are a number of unsolved
theoretical puzzles which suggest that new physics
beyond the standard model must exist at an energy scale
of a few TeV or below. By far the most intensively stud-
ied class of theories as a possible candidate for new phys-
ics beyond the SM is supersymmetry (SUSY), especially
the minimal supersymmetric extension of the standard
model (MSSM) [1] in which two Higgs doublets are
necessary, giving masses separately to up- and down-type
fermions and assuring cancellation of anomalies. Three
neutral and charged Higgs bosons H,h, A,H *, of which
H and h are CP even and A is CP odd are introduced by
this extension of the Higgs sector. However, the four
masses my, my, m 4, and m+ are not independent. At

the tree level, because of the restrictions imposed by
SUSY, several relations between the Higgs-boson masses
and couplings exist [2] and the Higgs sector contains only
two free input parameters, conveniently chosen to be m ,
and tan8=v, /v,, so that the other three masses are cal-
culable in terms of them. These relations impose a strong
hierarchical structure on the mass spectrum [m, <m,
m 4 <mpy,and my <mg,+]. However, the large radiative

corrections to the Higgs-boson masses due to a heavy top
quark [3] may alter this situation significantly; these
corrections grow as the fourth power of the top quark
mass and can shift the upper limit of m, from m; to
~140 GeV. Therefore, the search for neutral and
charged Higgs bosons has a very high priority in the ex-
perimental program of present and future colliders. In
order to facilitate such experimental searches, it is neces-
sary to study not only the production mechanisms, but
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also all possible decay modes of the charged and neutral
Higgs bosons.

In the SM, as analyzed by Zerwas [4], up to masses of
140 GeV, the Higgs particle is very narrow: I'(H)<10
MeV. After opening the gauge boson channels, the state
becomes rapidly wider, reaching ~1 GeV at the ZZ
threshold. The width cannot be measured directly in the
intermediate mass range. Only above My >200 GeV
does it become wide enough to be resolved experimental-
ly. Moreover, it is pointed out in Ref. [5] that if the SM
Higgs-boson mass My exceeds the tf threshold, then the
Hit coupling may be experimentally accessible at the
CERN Large Hadron Collider (LHC) and the Supercon-
ducting Super Collider (SSC) if B(H —7)> 1072, where
B(H—#)~T(H—)/T(H—->&,ZZ,W*W~).  The
analysis of Ref. [5] has shown that this branching ratio
can be as large as 30% at m, ~ My /3, clearly warranting
further study of this mode.

In the MSSM, the widths of Higgs bosons H and 4 can
both be up to a few GeV for large Higgs-boson masses
[6]. If the Higgs bosons are heavy enough, such as
my,m 4>2m,, the decay channels H, A —tf open up.
Since the Htf and Aff couplings are proportional to
1/sinB and 1/tanB, respectively, such decay modes are
suppressed for large tanB and enhanced for small tanB.
For large Higgs-boson and top masses and small tanp,
H, A —tf are the dominant decay modes. For example,
with tan8=1.5, m, =140 GeV, and My , >300 GeV, the
branching ratios for H, A —tf are almost ~100% [6].
Thus, like the SM case analyzed in Ref. [5], these cou-
plings may be experimentally accessible at the LHC and
SSC. If such a decay mode is detected, we have to distin-
guish between the SM and the MSSM. Therefore, precise
calculations are needed for the Htf couplings both in the
SM and in the MSSM, and the radiative corrections to
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such couplings are important to theoretical predictions
for the width and the branching fraction of Higgs bosons,
although it may be difficult to detect these corrections at
future colliders, depending on the measuring accuracy.
The radiative corrections to H—ZZ,W+*W ™ in the
MSSM have been calculated [7,8], and the one-loop
SUSY QCD corrections to H'(H, A,h )— tf were given in
Ref. [9]. Also, Mendez and Pomarol [7] calculated the
O(am?/m}¥) corrections to the couplings H'tf, where
they worked in the two Higgs doublet model (2HDM)
and finally extended their work to the MSSM. But they
did not take into account the virtual effects of genuine
SUSY particles as well as the vertex corrections. Because
of the importance of the decay channels H, 4 — (7 in the
case of large Higgs-boson masses and small tanf, in this
paper we present the complete calculation of
O(am?/m},) corrections to them in the MSSM to com-
plement the previous work. Such corrections arise from
the virtual effects of the third family (top and bottom)
quarks and squarks, charginos, and neutralinos, charged
and neutral Higgs bosons, as well as the Goldstone bo-
sons.

The structure of this paper is as follows. In Sec. II we
give the analytic results in terms of the well-known stan-
dard notation of one-loop integrals. In Sec. III we
present some numerical examples with a brief discussion.
The lengthy expression for the vertex corrections is given
in Appendix A, and the factors we use in the analytic re-
sults are summarized in Appendix B.

II. CALCULATIONS

We perform the calculation in the ’t Hooft-Feynman
gauge and use dimensional regularization to regulate all
the ultraviolet divergences in the virtual loop corrections
utilizing the on-mass-shell renormalization scheme [10],
in which the fine-structure constant a and the physical
masses are chosen to be the renormalized parameters,
and the finite parts of the counterterms are fixed by the
renormalization conditions. As far as the parameters [
and a, for the MSSM we are considering, they have to be
renormalized, too. In the MSSM they are not indepen-
dent. Nevertheless, we follow the approach of Mendez
and Pomarol [7] in which we consider them as indepen-
dent renormalized parameters and fix the corresponding
renormalization constants by a renormalization condition
that the on-mass shell H *Tv, and h°l couplings keep the
forms of Eq. (3) of Ref. [7] to all orders of perturbation
theory. For simplicity we consider the case of unmixed
squarks, i.e., the mixing angle between left- and right-
handed squarks 0=0, and we assume the different mass
eigenstates of squarks have the same mass value.

The relevant Feynman diagrams are shown in Fig. 1.
The renormalized amplitudes can be expressed as

M, (H—tT)=My(H—tF)(1+AH+5TH) (1)
and

M, (A —1F)=My(A )1+ A2+8T4), )

respectively. Here, 8T'#> 4 are the vertex corrections and

AHZ 1 are the counterterms whose explicit expressions are
given by
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FIG. 1. Feynman diagrams contributing to O(am?/m})
corrections in the MSSM: (a)-(g) vertex diagrams; (h)—(u) self-
energy diagrams. The H? represent H, h, A, and G°. The H*
represent HT and G*.
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where the renormalization constants are defined as
ep=e+8e, miyy=md+émi ,
m3o=m2+8m2, ml=m,+8m, ,
tanB,=(1+68Zg)tanB , sinay,=(1+86Z,)sina ,
Hy=(1+8Zy)'?H+Z}}*h ,
ho=(1+8Z,)"*h +Z}*H , (5
A4o=(1+8Z)'?, Hy=(1+8Z,.)'"?H",
Wt =Zy*WH+iZ g H* |
Zy=2z)?zr+7V2%4 4 ,
Yio=(1+8ZEPy +8Z}P ) ?y, .
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The renormalized decay rates are then obtained from
TEAq)=Tf4a)(1+2ReA 41+2RedTH4) |

i (6a)
in the so-called a scheme, and
TEAGp)=TEAGp)(1+2ReA 4+ 2 Re8TH4—Ar) ,

(6b)

in the so-called Gp scheme, respectively. Here Ar de-
pends on all the parameters of the model, especially on
J
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the mass of the top quark. Since the additional contribu-
tions to Ar in the MSSM contain no O(am?/m} ) terms,
Ar is given by [11]

aNcchm?

167%sy,mb,
for heavy top quark. The vertex corrections are present-

ed in Appendix A. The renormalization constants are
given by

Ar~— ) )]

5"1;24/:“‘{%4%2& 2,2 A+F(1Wtb)___Fthb) , @)
S =_1/§GFNC 2, oA F&Y o)
z 4‘”’2 z t 2 2 ’
H2 | _ A | a2 (H o, 2 (o (HE 2~ (HEE)
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Here, A=1/€—y g +1Ind4m. The factors appearing in the
above are presented in Appendix B. A4,, u, a, and B are
SUSY parameters. The functions 4, F,,, and G, are
defined as

2

m
l—ln—ﬂT

(i, j, k) —
F,brY=F,(m;,m;,m;)

Ay(m)=m?

b

m,~2x2-—(m,-2+mj2—m,f)x +m}?

2 b

= fldx x"In
0

(20)

oF,(p,m;,m,;)

Gi= =2

III. NUMERICAL EXAMPLES AND CONCLUSION

Here we present some numerical examples. Note that
all these numerical results are given in the a scheme and
the Gy scheme. The difference between the a scheme and
the Gy scheme is shown in Egs. (6a) and (6b) from which
it is simple to transfer the results in the a scheme to the
Gr scheme. In the numerical calculation, a, Gg, M,
and the masses of physical Higgs bosons and top quarks
are used as input parameters whose values can be found
in Ref. [12] and my, is determined through [13]

mp,
M2

2 — ma 1
V2G, 1—Ar’

le

(21)

where Ar is given in Eq. (7). As far as the parameters
tanf and sina are concerned, as pointed out in Ref. [7],
their experimental values used as input for numerical cal-
culation are different from the renormalized parameters
tanB and sina appearing in the above. The relations be-
tween tanfS and tanp, sina and sin& are given by [7]

— NCGFth m%V
tanB=tanf [1— (22)
16V2m* Mi—m},

8
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FIG. 2. T'/Ty(H—>tf) versus squark mass with m,=150
GeV, m =350 GeV, and tanf=2 in the a scheme and the G
scheme.
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16V272 Mi—md |’

miy

sina=sin@ |1 —cos’B (23)
respectively. Moreover, we use the relations [14] between
the Higgs-boson masses m , , , ,+ and parameters a, at
one loop, and choose m , and tanf as two independent
input parameters. As explained in Ref. [7], there is a
small inconsistency in doing so since the parameters a
and B of Ref. [7] are not the ones defined by the condi-
tions given by Eq. (3) of Ref. [7]. Nevertheless, Mendez
and Pomarol have shown [7] that this difference would
only induce a higher order change. Other SUSY parame-
ters M, u, and A, are fixed to be M =50, u= —30, and
A,=0.1.

We present some numerical results in Figs. 2-6. Fig-
ures 2 and 3 are the plots of I' /T versus squark mass /7,
for m,=150 GeV, m =350 GeV, and tanf=2. For
fii, > 250 GeV, the corrections decrease slightly as /7, in-
creases, showing the decoupling effect of squarks. But
the corrections do not vanish for large squark mass since
such corrections arise not only from the virtual squarks
but also from virtual quarks, Higgs bosons, and Gold-
stone bosons. In Figs. 4 and 5 we present I' /T’y versus
m 4 with m, =140 GeV, i, =200 GeV, and tan=2. As

[/To(H-tt)

8 " L s 1 N i "
©300 350 400 450 500
ma (GeV)

FIG. 4. T/TyH-—tf) versus m, with m, =140 GeV,
i, =200 GeV, and tanB=2 in the a scheme and the Gy scheme.
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FIG. 5. As Fig. 4, but for 4 —tt.

shown, the corrections depend strongly on the value of
m ,. Figure 6 shows the dependence of the corrections
on the value of tanS. The corrections are not sensitive to
the value of tanf for tanf3> 2, but as tanf gets small, in
the range of tanf <2, they increase rapidly and can be
quite large. Note that the results of Ref. [7] show that
the corrections are typically a few percent and in some
special cases, for instance, if m, =200 GeV and tanS8<1,
they can reach values up to ~20%. From Figs. 2-6, we
find that the O(am?2/m},) corrections to decay rates of
H, A —ttf in the MSSM are also typically a few percent
and, as shown in Fig. 6, if tan8< 1 they can reach quite
large values which are comparable to the maximum value
given in Ref. [7]. Such corrections are also comparable
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FIG. 6. I'/To(H—tf) versus tanB with m,=150 GeV,
m 4 =350 GeV, and i, =200 GeV in the a scheme and the G
scheme.

corrections typically imply a few percent reduction in the
widths.

ACKNOWLEDGMENTS

This work was supported in part by the National Natu-
ral Science Foundation of China and the U.S. Depart-
ment of Energy.

APPENDIX A

The vertex corrections for H — tf are given by

to the SUSY QCD corrections given in Ref. [9]. o < -
In conclusion, we have presented calculations of the 8T _.g 8y, (A1)
O(am?!/m%) corrections to the H'—»tf(H'=H, A) in =t
the MSSM. The numerical examples show that such with
J
8r{'=— 1617'2F mtz[ 2 NA+mple +ey—cp—cp)tmicoteyn—2c,) 4T 3]
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V2GsinB m2 m2 my
8I3'=— . 2|2 2 77"7'7‘"(%“011)_—2 S nmmidlcotey)——— X mmiAen s
2 47251na tl 3 S ijohij 3 iz i jrij 2 i,j=Hi,Wi ijrij
(A3)
V2Gpmi,si
81‘51:271’21;"—8’1,]1(;13 ASC0+—;-( ALTij+ARTj?)C0_mt[BSOCll+%(Bs]Tij+BszT]?)cll]
t
+Egmlcy +imXE, Ts+EgT;)cy ] , (A4)
V2Gpmi,sinB m
cSI‘f=——Tﬂ‘fzﬁ:Tc—;kaﬁcos(a+B)(%—%s,zy)c“ , (A5)
V2Gym3,sinB
81‘§’=% Leo+ I b} +Igby)co—m, (J + 1T ey —m, [J}+%(J,f +J%) |en
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+ UK} +Ki+KE+HKEIm2cy, l , (A6)
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H_sTH
8Ly =8Is' |, Nia—djc,—AN;, (A7)
V2Gpmj,sinB _
8F7H=‘—4'—2—.—_—aij[M0k(§ki§zj +§Zj§ki )Co“mx(gkigltj +§I:j§ki el (A8)
T°m,sina

where the sums over i,j,k are implied, and c;(—pg,p,,m,,m;,m;) in (A2), c;( p,,pH,m,,ml,m]) in (A3),
c;j( p,,pH,mb,M,,M) in (A4), c;l p,,pH,M iy, m,) in (AS5), c;( p,,pH,m,,Mo,,Moj) in (A6) and (A7),
( —PusPrs Mo, m,, ;) in (A8) are three -point Feynman integrals, deﬁmtlons for which can be found in Ref. [15].
The vertex corrections for 4 — f are given by

6
8T 4= > 81‘,-" R (A9)
i=1
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A ‘/_2GF 2 2 2 2 ~
8F1 =——'~—2—mt 2 ni[_'A_mA(Cll+C21 —612—623)+m,(3CO—C22—2612)—4CZ4+%]
16m i=H,h
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8F6/:6)=—-81‘&5)|(H+,W+)_,(W+,H+) . (A21)

In the above the sums over i,j,k are implied, and c;(—pgy,p;;m;;m,,m;) in (A10), c;( —PusP My, M, M),
¢ p,,pH,m,,Mo,,Moj) in (A12), and c;;( —Pp. Py Moy, M, ;) in (A14) are three-pomt Feynman integrals. In (A3)
A are related to the H-i-j couplings by (—-tgm /2 cosOy )A,; for i,j =H,h, A,G%Z) and by —igh,; for i,j=H*,G*
(W),
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APPENDIX B

Here we present all the factors appearing in this paper.

The factors appearing in the counterterms are

A, =——mt g =ﬂ‘_cotﬁ (Bl)
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The factors appearing the vertex corrections are given by
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Jl=ma;c;N;d; , J.=0,J}=0,
=mA(bjc/Nj3+bjc;Ny) , (B21)
Jr =x3[2M0j N}, +N; N4 (b;My;+b3My)] ,
Kl=—M\a;c!N} , Ki=—MAaic;N;,
T S
KL —-A bucj i4 KR=_}“tbijciNj4

Here, Q;;, R;, Q;j, and R are defined in Ref. [1]. In this
paper, U;; and V;; are the elements of 2X2 matrices U
and V which are given in Ref. [1]. The N;; are the ele-
ments of the 4X4 matrix N which is defined in Ref. [1]
and can be calculated numerically. The chargino mass
M and neutralino mass M,; depend on the parameters
M U, and tanf. M is given in Ref. [1]. M, can be ob-
tained numerically.
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