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Calculating dilepton rates from Monte Carlo simulations of parton production

K. J. Eskola
Nuclear Science Division, Mailstop 70A-8807, Laurence Berkeley Laboratory,

University of California, Berkeley, California 9)790
Laboratory of High Energy Physics, P.O. Box 9, SF 000-1) University of Helsinki, Finland

Xin-Nian Wang
Nuclear Science Division, Mailstop 70A-8807; Laurence Berkeley Laboratory,

University of California, Berkeley, California 9/790
(Received 18 October 1993)

To calculate dilepton rates in a Monte Carlo simulation of ultrarelativistic heavy ion collisions,
one can scale the number of similar QCD processes by a ratio of the corresponding differential proba-
bilities. We derive the formula for such a ratio especially for dilepton bremsstrahlung processes. %e
also discuss the non-triviality of including higher order corrections to the direct Drell-Yan process.
The resultant mass spectra from our Monte Carlo simulation are consistent with the semianalytical
calculation using dilepton fragmentation functions.

PACS number(s): 25.75.+r, 12.38.Bx, 13.87.Ce, 24.85.+p

I. INTRODUCTION

In a previous paper [1], we investigated dilepton pro-
duction associated with minijet final state radiation in
heavy ion collisions at collider energies, using dilepton
&agmentation functions which can be evaluated pertur-
batively. The dilepton pairs &om the &agmentation of
minijets are found to be comparable to the direct Drell-
Yan (DY) processes for small invariant masses M 1—2

GeV/c at the highest energy of the Brookhaven Rela-
tivistic Heavy Ion Collider (RHIC). At the CERN Large
Hadron Collider (LHC) energies, the associated dilepton
production becomes dominant over a relative large range
of the invariant mass.

Because of the relatively large invariant dilepton mass,
M )) A, the radiative corrections are calculable in per-
turbative QCD (PQCD) up to all orders in the leading
logarithm approximation. The collinear approximation is
also used in convoluting the obtained dilepton &agmen-
tation functions with minijet cross sections to compute
the radiative contributions to dilepton production. Since
there exist Monte Carlo simulations of QCD cascading
[2—4] which can take into account many other effects,
such as the xnultiple ladder structure, it is important to
check our semianalytical approach with realistic Monte
Carlo simulations. In this way, we can address the valid-
ity of the approximations we made in the fragmentation
function approach [1].

To directly simulate dilepton production in a Monte
Carlo event generator is rather difBcult due to the small
QED coupling constant as compared to that of QCD.
The simplest way to overcome this di%culty is to artifi-

'Present address.

cially increase the QED coupling constant and normal-
ize the result by a corresponding overall constant factor.
However, one must make sure that the interactions are
still overwhelmingly dominated by QCD processes with
the increased QED coupling constant. Alternatively, one
can also multiply the number of specific QCD processes,
which resemble those of dilepton production, by an ap-
propriate ratio of the corresponding difFerential proba-
bilities. However, the problem is more complicated and
was not discussed in Ref. [5]. For radiative dilepton pro-
duction, one has to take into account the fact that the
corresponding radiated quarks and gluons in QCD can
have further bremsstrahlung which is diferent &om the
QED case. The additional bremsstrahlung gives rise to
an extra Sudakov form factor and one must include it in
the differential ratio to give the correct dilepton emission.
We will derive a formula for the differential ratio and
demonstrate that the resultant simulation is consistent
with our previous semianalytical calculation in Ref. [1].

As is well known, coherence effects in QCD parton
shower cause the angular ordering of the radiated par-
tons [3], which will reduce the overall QCD emissions.
Since QCD coherence is only relevant to radiation pro-
cesses which have more than one QCD branching vertex,
its in6uence on dilepton emission only comes through
the second or higher order QCD corrections to the QED
emission. As we have demonstrated in our previous pa-
per [1], higher order QCD corrections to dilepton radia-
tion are small. Therefore, we can neglect the in6uence of
the coherence effects in QCD parton shower on dilepton
emission rates.

The problem of simulating direct DY processes among
QCD processes lies in how to take into account higher or-
der O(a2a, ) corrections. We will discuss when an over-
all K factor, as used in most Monte Carlo simulations of
QCD hard processes in hadronic and nuclear collisions,
is sufficient enough to simulate the QCD contributions.
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We also consider how possible double counting can be
avoided.

The remainder of the paper is organized as follows. In
the next section, we will discuss how to calculate the dif-

ferential ratio to obtain dilepton emission Rom a Monte
Carlo simulation of the corresponding PQCD processes.
In Sec. III, we will discuss how to simulate direct DY
processes, especially how to take into account higher or-
der corrections. The results of our simulation will be
compared to semianalytical calculations in Sec. IV, and
finally, a summary with some discussions is given in Sec.
V.

II. SIMULATION OF DILEPTON
BREMSSTRAHLUNG

(a)
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If a Monte Carlo generator does not have the /ED
processes built in, one can calculate the absolute cross
sections of the /ED processes by scaling the diKeren-
tial cross sections of certain types of /CD processes.
The scaling factor, however, depends on both the /ED
and /CD processes. For dilepton production through
bremsstrahlung, one would naively think that a scaling
factor between virtual photon and virtual gluon radia-
tion processes &om a quark line is enough. However, the
probability to find a virtual gluon with fixed invariant
mass depends on the probability that the gluon does not
have any further radiations to degrade its virtuality. One
therefore should use the scaling factor between process
(a) and processes (b) and (c) in Fig. 1.

The Monte Carlo simulation of /CD cascading is car-
ried out by giving for each vertex of the radiation tree,
such as those in Fig. 1(b), a normalized probability distri-
bution. Given the maximum virtuality Q „ofa partic-
ular process, the normalized probability for the off-shell
parton a with q2 ( Q2 to branch into partons b and c
of light-cone momentum fractions z and 1 —z is [2,3]

d'P s, (q2, z)

dq n, [z(l —z)q'] 8 (Q )

(1)

2

FIG. 1. Illustration of (a) dilepton, (b) quark-antiquark
pair, and (c) two-gluon emission from a quark line. The
dashed lines present the preceding radiation or scattering pro-
cesses which kinematically determines the maximum value,Q, of the quark virtuality q .

Note that the variable z(1 —z)qz in the strong coupling
constant in Eq. (1) is approximately q&. In a Monte
Carlo simulation, the timelike branching is usually ter-
minated at q & p,o, where the physics of nonperturbative
hadronization sets in. By requiring q&, q, & po and the
relative transverse momentum qz to be real, one defines
the kinematically allowed region of the phase space as

4@0(q (Q
1

~(q) & x & I - q(q) '(I) = -(' —I/I 4polq*) (')-
2

If the virtuality of one of the radiated partons is fixed. to
q&

——M, the above region of the phase space is modified
to

(2)

The relative transverse momentum between the radiated
partons b and c is given by

qz = z(1 —z)
~ q

———2 = (, q~ q,
'

z 1 —z& where
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In Eq. (1), the Sudakov form factor 8 (q ) is defined as

q gA, 2 1—e{k)
S,(I*) = xxp t ) a, [z(l —z)kz]

2K
b,c

(6)

so that 8 (Qz )/8 (q2) is the probability for parton a not to have any branching between Q and q . The
contribution of /ED processes to the Sudakov form factor is negligible.
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Based on the above probability distributions, we can write down the differential probability for a quark to radiate
either a qq pair or two gluons via an intermediate virtual gluon with an invariant mass M, as shown in Figs. 1(b) and
(c):

~ [z~(1 —»)M'] ~u((q —~o)')x dzq[nf Ps ee(zq) + Pu uu(zq)]
~(M) 2'

Notice the variables in the second set of Sudakov form factors. Since q2 is the actual virtuality of the quark line
preceding the gluon radiation and the daughter quark line has at least virtuality of yo, the maximum value of the
gluon virtuality, M2, is then (q —po)2. Because of the same reason, the lower limit of the integration over q2 is
(M+ &o)2.

Similarly, the differential branching probability for the dilepton production via diagram (a) in Fig. 1 is

dP e2 Q~
d 2 eg(q, M) o. 8~(Q' )

' o.
dzPq~yq (z)—,2, dzqP~~t+ g- (zq )—,

dMs M2 (M+„,)~ qs

where again we neglect the /ED contribution to the Su-
dakov form factor, and the integration over z and zq can
be carried out analytically using Eq. (5). Notice that the
differential probability for the dilepton bremsstrahlung
has one Sudakov form factor less than the corresponding
/CD processes. To obtain radiative dilepton production
[Fig. 1(a)] by scaling the corresponding /CD processes
[Figs. 1(b) and (c)], one simply multiplies the number of
virtual gluons from a quark line by a ratio

R(M', Q' ) =—
d Pqwsu

dM2 (9)

for given M2 and Q
To demonstrate the eÃects of the Sudakov form fac-

tor on scaling /CD processes of the Monte Carlo simu-
lations, we plot in Fig. 2 the ratio R(Ms, Q2 ) (solid
line) as a function of Q at fixed M = 2 GeV/c2 to-
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FIG. 2. The ratio R(M, Q „)between the probability of
q -+ Z+E + q and q —+ q;q; + q, gg+ q processes as functions
of Q „at Sxed M = 2 GeV/c, with (solid line) and without
(dashed line) the Sudakov form factors. Ro (dot-dashed line)
is obtained with both Sudakov form factors and the z(1 —z)q
dependence of cx, neglected. A factor eq is divided out.

gether with the result (dashed line) obtained when Su-
dakov form factors are set to unity. We also show the
value of Ro(M, Q „) (dot-dashed line) in which both
the Sudakov form factors and z(1 —z)q dependence of
the coupling constant are neglected. In this case the ratio
is reduced to

Rp(M', Q' ) = n

2'�(M)n, (M)2 '

which is independent of Q, and where

1-e(M)
ps(M)—: dz [Af Pg~g'q(z) + Pg~gg (z)]

e(M)

= 6 in[1/e(M) —1] + 9[e(M) ——,'].

Since a Sudakov form factor takes into account addi-
tional branchings preceding the chosen vertex, it should
suppress the probability distribution of the splitting g —+

qq, gg at the given M. As we see in Fig. 2, the ratio
R(M, Q2 ) is therefore enhanced relative to both the
case when 8~ = 1 and to Ro(M2, Q2 ) by the inclu-
sion of Sudakov form factors. The enhancement increases
with Q as expected due to the increasing branching
probability. Similar to the dilepton &agmentation func-
tions, the ratio is very sensitive to the scale Q . We will
discuss in Sec. IV how we choose Q which is consis-
tent with the Monte Carlo simulation of /CD cascading.
%'hen Sudakov form factors are set to unity, the depen-
dence of the ratio on Q only comes from the z and q2

dependence of the running strong coupling constant. If
both z(l —z)q and zq(1 —zq)M in Eq. (7) are replaced
by M, the ratio Ro becomes larger and is independent
of Q as shown in Fig. 2.

The purpose of the ratio in Eq. (9) is to cancel what-
ever the probability for a virtual gluon emission used in
the parton shower simulation and replace it by that for a
virtual photon radiation. Since Sudakov form factors are
used in our parton shower simulation, we 6nd it essential
to include the Sudakov form factors in the calculation of
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the ratio in order to obtain the dilepton rates consistent
with our semianalytical results [1].

III. SIMULATION OF DIRECT DY PROCESSES

It is relatively easier to simulate the lowest order pro-
cess of direct Drell-Yan processes by multiplying the dif-
ferential cross section of qq -+ q;q;, gg by the ratio

hadronic collisions, one usually also uses an efFective K
factor to take into account higher order corrections [4].
However, this K factor should not be included when one
scales the n»mber of qq ~ gg and q+ g ~ q+g processes
by some ratio to calculate the real QCD corrections to
the DY process. Otherwise, double counting may occur.

IV. NUMERICAL RESULTS

80qq~DY+DY = ~g¹i—I 99~%%' + Qf~M
(12)

It is more subtle, however, to include QCD corrections.
These higher order corrections which give rise to a so-
called K factor have been studied extensively [6]. The
problem here is how to include this K factor in scaling
QCD processes to obtain the DY cross sections.

The first order correction to DY process in QCD comes
&om the "a~~ihilation" qq -+ g + DY, the "Compton"
q + g -+ q + DY process, and the virtual corrections [6].
Like in deeply inelastic lepton nucleon scattering (DIS),
there are infrared singular and finite contributions &om
these corrections. The infrared singular and part of the
finite terms can be absorbed into the quark and anti-
quark distribution functions which are defined in DIS
processes and should be evaluated at the scale of M2 ac-
cording to Altarelli-Parisi evolution equations [7]. What
are left over are finite and scheme-independent contri-
butions from the higher order corrections. One can find
detailed discussions in, e.g. , Ref. [8]. What we want to
point out here is that the dominant contribution to the
K factor of about 2 in the (pT-integrated) mass spectrum
of the direct DY process is &om the virtual corrections.
The contributions &om real corrections which depend on
both the quark and gluon distribution functions are rela-
tively very small. Therefore, as a first approximation, we
can include higher order corrections to direct DY process
in our simulation by multiplying the QCD cross sections
of qq + q;q, , gg by an effectiv K = 2 factor. This K fac-
tor in principle now includes both real and virtual cor-
rections. The quark distribution functions in the cross
section should be evolved and evaluated at scale M2.

In the Monte Carlo simulations, one could also include
the real QCD corrections explicitly to DY processes by
counting the number of similar QCD processes, qq ~ gg,
q+ g ~ q+ g and scaling them by some calculable ratio
as has been done in Ref. [5]. However, one still has to
include the virtual corrections which can be characterized
as an effective multiplicative factor, but which now differs
from the normal overall DY K factor. This is exactly the
problem one has to face if one wants to simulate the pT
distribution of DY dilepton pairs, whose large pT tail
mainly comes from real QCD corrections. The lowest
order DY process only contributes to the small pT part of
the spectrum by including the intrinsic pT of quarks and
antiquarks. The virtual corrections to the lowest order
DY can be taken into account by using an efFective K
factor. However, one must be very careful not to include
the real corrections in this efFective K factor.

In the Monte Carlo simulations of QCD processes in

To perform the Monte Carlo simulations, we use
PYTHIA [4] subroutines for QCD hard scatterings and the
associated bremsstrahlungs as adapted in HIJING model
[9]. HIJING is a Monte Carlo model developed for par-
ton and particle production in high energy pp, pA, and
AA collisions. In this model, multiple minijet produc-
tion at NN level is calculated in the eikonal formalism
[10]. As in many other models which attempt to merge
low and high pT dynamics, a pT cutofF scale po has to be
introduced, which will limit the invariant masses of pro-
duced dileptons in our simulation. For nuclear interac-
tions, binary approximation is assumed for independent
hard scatterings. Jet quenching due to final state inter-
action of produced partons with a stringlike soft mean
field was also included in the original HIJING model [11].
We switch off these final state interactions to simplify
our study here so that we can compare the numerical re-
sults with semianalytical calculations. The initial parton
distribution functions of a nucleon are taken to be Duke-
Owens parametrization [12] set 1. Nuclear shadowing
and its scale dependence are also taken into account as
in Ref. [13]. The impact parameter dependence of the
nuclear parton distributions is modeled in according to
Refs. [9,14]. However, at ~s = 200A GeV, the shadowing
effects on the associated dilepton production are small as
seen in Ref. [1].

During the final state radiation, we count the num-
ber of virtual gluons with given invariant mass M which
are radiated &om quark lines. The maximum virtuality
Q of the quark should be the invariant mass of its
parent parton minus the minimum virtuality po of its
sister parton. If there is no bremsstrahlung prior to this
branching vertex, Qz should be related to the trans-
verse momentum transfer p~ of the corresponding hard
scattering. In order to conserve both energy and momen-
tum, the two produced partons &om a hard scattering are
combined together in PYTHIA [15] to initiate final state
radiation. The total virtuality of the two-parton system
is chosen to be 2'. Since both of the partons must
have at least a virtuality of po, the maximum virtuality
of the selected quark immediately after the hard scat-
tering should be Q = 2pl —yo. With given M andQ, we then can calculate the mimber of dileptons pro-
duced &om the final state radiation by multiplying the
number of these radiated virtual gluons with the ratio
R(M, Q ). Shown by the solid histogram in Fig. 3 is
the invariant mass distribution of the radiated dileptons
thus obtained for central Au+Au collisions at RHIC en-

ergy. In the simulations, the parton shower is terminated
whenever a minimum virtuality po ——0.5 GeV is reached.
Then the parton is put on shell and considered real. So



4546 K. J. ESKOLA AND XIN-NIAN WANG 49

-3
10

Central Au+Au Collisions

4
10

-5
10

-6
10

-7
10

-8
10

4 6
M (GeV/c )

FIG. 3. Mass spectrum of the minijet-associated (solid his-
togram) and direct DY (dashed histogram) dileptons from the
Monte Carlo simulation and our direct calculation (solid and
dashed curves, respectively) (with Q = 2pT, A = 0.4 GeV,
and pp = 0.5 GeV) in central Au+Au collisions at ~s = 200A
GeV.

the minimum invariant mass of our selected virtual glu-
ons, thus also of the dileptons, is 2pp = 1 GeV, according
to Eq. (3).

We also plot in Fig. 3 our semianalytical calculation
of the radiative dilepton production (solid curve) which
agrees quite well with the simulated result. The small
differences both in the total number and the slope of the
distribution could come from several simplifications we
made in our semianalytical approach. As stated in Ref.
[1], we did not fully take into account the kineinatic re-
strictions [Eqs. (3,5)] at every stage of the radiation tree
in the calculation of the dilepton &agmentation func-
tions. The variable in the strong coupling constant is
taken to be q2 instead of the relative transverse momen-
tum q&~ z(1 —z)q2. The fragmentation function ap-
proach has only one branching tree corresponding to a
simple ladder structure, whereas the Monte Carlo sim-
ulation takes into account all possible branching trees,
thereby enhancing the small M dilepton production. In
order to be as consistent as possible in both calculations
in Fig. 3, we have chosen the same scales Q = 2pT
and A = 0.4 GeV in the dilepton fragmentation functions
as have been used in the Monte Carlo simulations [4].

To simulate the lowest order direct DY processes, we
simply count the number of similar /CD subprocesses,
qq + qq, gg at 6xed 8 = M2. We then multiply the
number by the ratio RD~ to obtain the number of direct
DY dileptons, which is shown as the dashed histogram in
Fig. 3. We also compare the result to the parton model
calculation (dashed curve) with the same set of parton
distribution functions as used in the simulation. Higher
order corrections are included by multiplying a K = 2
factor in both the simulation and analytical calculation.
In terms of pT and rapidities yq 2 of minijets, the invari-
ant mass of the dilepton is

M = 2pT, [1+«»h(y, —y2)]. (13)

Since we have a cutoff po
——2 GeV/c for pT, the lower

limit of the dilepton mass from the Monte Carlo simula-
tion is then M ( 4 GeVjc2. The analytical calculation
can go as low as the initial scale of the structure func-
tions, Qo ——2 GeV.

V. CONCLUSIONS

In this paper, we have studied minijet-associated
dilepton production in ultrarelativistic nuclear collisions
through Monte Carlo simulations to check our previous
semianalytical calculation [1] through the fragmentation
function approach. We derived a formula for the differ-
ential ratio by which we multiply the number of simi-
lar /CD processes to obtain dilepton production from
the Monte Carlo simulations of /CD cascading. Using
this ratio, we found that our semianalytical calculation is
consistent with Monte Carlo simulations. The difference
between the two due to some simpli6cations we made in
the &agmentation function approach is small.

Most importantly, we found that Sudakov form fac-
tors are essential for us to give the right results. If ne-
glected, the resultant dilepton rate from 6nal state radi-
ation would difFer &om our early semianalytical calcula-
tion by orders of magnitude. For the same reason, the
difFerential ratio is quite sensitive to the maximum vir-
tuality Q „of the branching processes, similar to the
&agmentation function approach. One therefore has to
choose its value to be consistent with what is used in the
Monte Carlo simulation of /CD cascading.

We also simulated the direct Drell-Yan processes of
dilepton production and compared it to semianalytical
calculation in the parton model. We pointed out the
complication in including higher order corrections in the
Monte Carlo simulations and the possibility of double
counting. We believe this is especially important when
one wants to simulate dilepton production through the
final state parton rescatterings [5,16] in a dense partonic
system such as quark-gluon plasma. Unlike in hadronic
scatterings where infrared singularities due to real and
virtual corrections can be absorbed into the definition of
@CD evolved parton distribution functions, the screening
mass due to resummation of hot thermal loops [17] nat-
urally regulates the in&ared divergences. However, one
still has important contributions &om both real and vir-
tual corrections [18). In order to take into account these
corrections in a Monte Carlo simulation, one needs to an-
alyze the higher order calculation in 6nite temperature
@CD in detail.
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