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Dilepton production associated with minijets is calculated in ultrarelativistic heavy ion collisions
using the first order approximation of the dilepton fragmentation functions of quarks and gluons.
The full /CD evolution of the fragmentation functions is also studied. We find that the dilepton pairs
from the fragmentation of minijets are comparable to direct Drell-Yan production at +a = 200A
GeV for small dileptou invariant masses M 1—2 GeV/c while they are dominant over a large
range of mass at ~e = 6400A GeV.
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I. INTRODUCTION

In the search for a quark gluon plasma (QGP) in ultra-
relativistic heavy ion collisions, electromagnetic signals
are considered good probes of the dense matter [1]. Be-
cause of the large electromagnetic mean free path, leptons
and photons produced by interacting (anti)quarks inside
the QGP can easily escape the hot and dense matter and
carry the information of the system to the detector. Re-
cent developments in parton. transport phenomenology
indicate that dileptons and photons could also reveal the
dynamics of the early evolution of a dense parton system
[2—4]. However, like for all the proposed QGP signals, the
background must be understood and subtracted in order
to distinguish the true features of a QGP. In general,
there are two kinds of background sources for thermal
electromagnetic signals. One comes &om the evolution
of the hadronic phase and the decays of the produced
hadrons. The other one is due to the initial parton scat-
terings at the very earliest stage of the heavy ion colli-
sions. For dilepton production, the latter one is usually
referred to as Drell-Yan (DY) processes [5].

In the lowest order, O(cx ), the DY processes are simply
quark-antiquark annihilations. First order contributions
O(a a, ) in perturbative QCD (PQCD), originating from
initial state radiation and virtual corrections, give rise to
about the same amount of dilepton Production as in the
lowest order, which is often characterized by a so-called
"K factor" of about 2 [6,7]. These corr'ections are also
responsible for large pT tails of the dilepton transverse
momentum spectrum. At small p~, summation over the
initial state soft gluon radiations generates a Sudakov
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form factor regularizing the perturbative low pT produc-
tion [8]. By now, there also exist xnatrix element calcula-
tions of the second order PQCD contributions, O(n2cx2),
to the K factor [9].

In this paper, we will investigate dilepton production
associated with minijet final state radiation in heavy ion
collisions at collider energies. It is expected that at en-
ergies +a + 200A GeV, minijets [(anti)quarks and glu-
ons with pT few GeV/c] are produced abundantly
via multiple semihard scatterings. These minijets have
important contributions to particle production, trans-
verse energy, and overall evolution of the formed quark-
gluon system [10—13]. Therefore, it would be interest-
ing to study dilepton bremsstrahlung &om the initially
produced minijets. Especially, it is important to know
whether the dileptons associated with minijets could
compete with the lower order DY processes at midrapid-
ity and small invariant dilepton masses M 1—3 GeV/c2,
where a window for observing the thermal dileptons is
expected [1].

Rather than strictly applying the almost complete
O(n n2) results &om the matrix element calculations [9],
we take a different and simpler approach by calculating
the dilepton &agmentation functions of the final state
minijets. Unlike in the real photon &agmentation func-
tions [14,15], the relatively large invariant masses M )) A

of the dileptons fix the lower limit of the momentum scale
of the QCD radiation processes. This makes the problem
calculable in PQCD. In the leading logarithm approx-
imation and in an axial gauge [16], the dilepton frag-
mentation functions can be calculated up to all orders
in PQCD. Using the obtained fragmentation functions
to convolute with minijet cross sections, we then com-
pute the contribution to the dilepton production from
the final state radiation of minijets. We will show how
the associated production of M 1—2 GeV/c dileptons
from minijets with pT & 2 GeV/c is comparable to the
first order DY results at BNL Relativistic Heavy Ion Col-
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lider (RHIC) energies but becomes dominant at CERN
Large Hadron Collider (LHC) energies, even up to masses
M 5—10 GeV/cz. We will also study the efFects of nu-

clear modifications of the parton distributions, especially
nuclear shadowing, to the dilepton rates.

The remainder of the paper is organized as follows. In
the next section, we will calculate the dilepton &agmen-
tation functions in the framework of PQCD. The con-
nection and the difFerence between real photon &agmen-
tation functions are discussed. We will derive both the
first order result and the one with QCD evolution, in-
cluding corrections to all orders in PQCD. In Sec. III,
the dilepton &agmentation functions are convoluted with
hard and semihard parton scattering cross sections to
calculate the minijet-associated dilepton production in
heavy ion collisions at both RHIC and LHC energies.
Finally, a summary with some discussions on the impli-
cations to the dilepton production from a QGP is given
in Sec. IV.

quark q; produced in a hard process with moment»m
scale Q to emit a dilepton with invariant mass M is

oo dzdzr dq dMz *
2vrq 2mM

x P~ r+r (zg-),

where e; is the &actional charge of the quark q;, cro is the
total cross section of the hard process, and

P, „()=-[+(— )'],

P&~r+r (z) =—z + (1 —z)

are the splitting functions for q ~ pq and p ~ 8+8
which are similar to those of q ~ gq and g -+ qq, respec-
tively, except for the color factors. Integrating over the
virtuality q2 of the intermediate quark and the &actional
momentum zg of one of the leptons, one has the QED
dilepton &agmentation function of a quark:

II. DILEPTON FRAGMENTATION FUNCTIONS

In this section, we review the dilepton &agmentation
functions of quark and gluon jets. We will work in an
axial gauge so that interference terms in the final state
radiation disappear in the leading logarithm approxima-
tion [16].

A. Lowest order in PQCD

Let us define z as the &actional light-cone momentum
and q as the virtuality of an ofF-shell parton as illus-
trated in Fig. 1(a). The differential cross section for a

Q 1

Ds(&&) (z, M, Q ) = dq dzr—
/~' ' '

M. 0 00 dzdzgdq dM
(q')

x-[1+(1 —z) ].
1 2

z (4)

One can see that D&&& (z, Mz, qz) is similar to a virtual
photon &agmentation function, except for a factor due
to the extra QED coupling and the integration over the
relative phase space of the leptons:

(s)

(b)

(c)
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For a real photon &agmentation function, the lower
limit for the integration over q in Eq. (4) is in principle
given by the quark mass. For massless quarks, the in-
frared divergence in the lowest order has to be regulated
by some cutofF of the hadronic scale. In the absence of a
large mass scale, the QCD corrections to the real photon
&agmentation function have also to be regulated by some
cutofF. The physics below the cutofF becomes nonpertur-
bative. One has to introduce some initial conditions for
the real photon &agmentation functions, either given by
experimental data or by some model-dependent assump-
tions. The problem of dilepton production is difFerent
because the fixed invariant mass M provides a natural
cutofF below which kinematic restrictions will terminate
the processes. The QCD processes above this cutofF are
in principle calculable to all orders.

Since gluons are not directly coupled to photons and
leptons, the dilepton &agmentation function of a gluon
in the lowest order is

Q2

FIG. 1. Illustration of the diagrams of (a) the lowest order,
(b) the Srst order contributions in PQCD to the dilepton frag-
mentation functions of quarks, and (c) gluons. The dashed
lines present the associated hard processes with momentum
scale q.

Ds()/ (z, M, Q ) = 0.

For later convenience, we define

ln(Q2/A2)

»(Mz/Az)

(6)
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QI" ( ) =- .'-'[1+ (1 —.)'],'z
so that we can rewrite Eq. (4) as

xqI') (.).
B. First order contributions

bremsstrahlung before the virtual photon production as
shown in Fig. 1(b). Remember now that z = zi zz is
the fraction of the momentum, carried by the dilepton,
of the initial quark before the gluon radiation. Defining
the convolution of two functions as

1 g
A g B(z):— A(zi)B(z/zi),

z Z1

The first order contribution in PQCD to the dilepton
&agmentation function of a quark comes &om a gluon

it is straightforward to write down the first order dilepton
fragmentation function of a quark

where

Q 2 1
D'" (. M' q') = d' '") ""P, „(»)D,"„',

~

—M' q'
~

ln
~ ~

—(e" —1 —~)Pq~qq 3 Q, (z),
2

~~

q

~2

2 ~ ~ ~ ~
q~q9 i i2x 3Mz

q A2)

4ma, (q )=, , P0
——11 —2ny/3, (12)

is the running strong coupling constant with ny quark Savors. The splitting function for q ~ qg in /CD is

4 1+z2
qu( )=

3 1 —z
(13)

The "+ function" here is introduced to include the virtual corrections to cancel the singularity &om the soft gluon
emission and to guarantee momentum conservation [16,17]. Other splitting functions we will use in the following are
the standard ones [17]:

Pq~qq(z) = Pq~qq( — ),

()= [ +(1 )l
z 1 —z fll

Ps~ss(z) = 6 + +z(1 —z)+
~

——
ss

The convolution in Eq. (11) can be easily done and it gives

S(1 —.) .
36 )

(14)

(16)

Q,'"(z) -=P, „QI"(z)

3z
' (2[1+ (1 —z) ]ln(1 —z) + (2 —z)zln z+ z(2 —-z)) .2 (17)

To the first order in PQCD, the dilepton &agmentation function of a gluon is not zero anymore. From the diagram
in Fig. 1(c), we have

2' f Q2 2 1
(1) 2 n, (qi) dzl (0) ( Z 2

Daiy (z)M, Q ) = ) dq, z Pg~qq( i) ai(q ~

—)M ~q
M' * &z,

M2 2
2TLf

i=1

and the convolution in z can also be calculated explicitly in this case, giving

(."(')(z) —= ) P, „-g QI')(z)
i=1
2Th f

= ) e2 —[s(l —z ) + z(1 —z) + 2(1+ z)z ln z].
i=1

(19)



49 MINIJET-ASSOCIATED DILEPTON PRODUCTION IN. . . 4535

KC-r- e" —1' (20)

where tc is defined in Eq. (7). For values of Q2 not too
large relative to M2, tc is very small so that higher order
corrections can be neglected. Only for extremely large
values of Q2 and thus m, does C become comparable to
1. Then one has to include corrections to all orders. For

I

As we will see below numerically, radiative corrections
to any order will soften the /ED fragmentation func-

tion of quarks and increase the fragmentation function
of gluons. Because of the leading logarith~ behavior of
the radiations, the dependence of /CD corrections on
the strong coupling constant is canceled out so that they
might become important to all orders. From Eqs. (9)
and (11), we can see that the relative importance of the
first order /CD correction to the /ED fragmentation
function is controlled by a Q-dependent factor

our consideration here, Q2 is in the order of p&~ of the
minijets. Thus, as we will show in the next section, for
most of the minijet production with pT 2 GeV/c, first
order calculation of the dilepton fragmentation functions
should be su8icient.

C. Full @CD evolution

Following the same steps as we have calculated the first
order corrections to the dilepton fragmentation functions,
we can calculate the higher order contributions. Here
we neglect the further splitting of the radiated soft glu-
ons and quarks, and only consider those diagrams with
a simple ladder structure in leading logarith~ approxi-
mation. Therefore, the radiated soft gluons and quarks
are always on mass shell. The general form of the contri-
butions with n radiations before the dilepton production
can be derived as

fL

Dz& (z, M, Q ) =
~

— ln
~

~ ~

—
~

e" —
~

1+~+ + —
~

G!"!(z),() 2 2 (a 2 2 &M21 t'2)"
E2n 3M ( A ) (Pe) n! )

(21)

(22)

where QI"l(z) and G&"&(z) can be calculated iteratively
from the lower order results via

QI"&(z) =P, „gq!"-'!(z)+P, „gG&"-'&(z),

Ds~~s(z, M, Q ) = ) D&&& (z, M, Q ).
n=l

(26)

(23)

G&"&{z)= ) P, „gq,'" '&(z)+ P, „gG!"-'!(z).

(24)

Since we know QI!(z) [see Eq. (8)] and G&e!(z) = 0, we
can in principle perform the above convolutions up to
any order as we did for QI l(z) [Eq. (17)] and G& !(z)
[Eq. (19)],and obtain the full /CD dilepton fragmenta-
tion functions as

2d~ 1

dQ2 in(Q2/P2) ~ (27)

For large values of n, evaluating the integrations in the
convolution analytically is obviously too cumbersome.
One method to evaluate the full fragmentation functions
is to solve numerically a set of coupled evolution equa-
tions.

Taking derivatives of D~~~q, s(z, M, Q2) with respect
to Q2 and using

Ds)gq, (z)M )Q ) = ) Dq~)(~ (z)M, Q ))
m=0

(25) and the definition of a, (q ) in Eq. (12), we can derive
from Eqs. (21)—(26) the coupled evolution equations

~.(q') 2 2+ Pq~sq 8 Ds&ys(z, M, Q ),2' (28)

2' f 2

2(z, M, Q ) = ' ) Ps~a @DE(gqf, (z, M, Q ) + '
Ps~ss @DE(gs{z,M, Q ).

i=1
(29)

These evolution equations are very similar to those of
real photon fragmentation functions [14,15] and the par-
ton distribution functions in a photon [18]. The only
difference is that dilepton (or virtual photon) fragmenta-
tion functions with a given mass M have a definite initial
condition

Ds)/q, y(z M Q ) gg M 0

together with the boundary condition

Ds~/q, s(z, M, Q ) = 0.

(30)

(31)
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The boundary condition simply means that the prob-
ability for the dilepton to take the whole &action of
moment»m of the initial quark or gluon is zero after
QCD evolution is taken into account. Since there is al-
ways a finite contribution to dDsi/q, /dq2 from the QED
term in the evolution equation (28), one can verify that
D~~~q, (z, M2, q2) must approach zero as 1/ln(1 —z) at
z = 1 in order to satisfy the boundary condition at all

Q . For gluons, Dsi/s(z, M2, q2) must go to zero faster
than 1/ ln(1 —z).

The above evolution equations with the initial and
boundary conditions can be solved numerically. The
scale Ms now sets the starting point of the evolution.
We show the QCD-evolved dilepton fragmentation func-
tions zD~I/q, . s(z, M, q ) scaled by a common factor
(a/2qr)2(2/3M2) In(Q2/Ms) in Fig. 2 for M = 1 GeV/c2
and q = 5 GeV. Together, we also show the analytical
results to the lowest and first order. It is clear that both
the first order corrections and the full QCD evolution
soften the fragmentation functions. The overall QCD
corrections to the QED (or lowest order in PQCD) result
are about 10%, except near z = 0 and 1. Since a gluon
does not have dilepton production to the zeroth order in
PQCD, the dilepton fragmentation function of a gluon is
one order of magnitude smaller than a quark. Because
there are logarithmic divergences at z = 0 and 1 for each
order correction to the dilepton &agmentation functions,
as can be seen in Eqs. (17) and (19),every order becomes
important so that one has to sum them together to get
the full QCD result. This is why the full QCD-evolved
fragmentation functions in Fig. 2 dicer considerably &om
the first order results near z = 0 and 1. To the first or-
der, the fragmentation function of a quark is exactly pro-
portional to the square of its fractional charge, e;. This
charge scaling is only slightly violated at small z for large
q due to the gluonic contribution to the QCD evolution
as seen in Eq. (28).

HV (i)
Dam. +Do~.

(o)
DVu
I I

I I

-4
10

p 0.2 0.4 0.6 0.8

with fractional momentum z, one can verify that the rel-
ative transverse momentum of the dilepton with respect
to the original parton is

a~=z(1 —z) q—2 = M2

z

g2

1 —z
(32)

Neglecting q and requiring k& & 0, we can see that M2
provides a natural kinematical cutoff for z:

z)zo=M /Q.

FIG. 2. The +CD-evolved (solid line), the lowest order
(dot-dashed line) snd the Srst order (dashed line) approxima-
tions of dilepton fragmentation functions zDq~y (z, M, Q ) of
s u quark snd s gluon, for M = 1 GeV/c snd Q = 5 GeV.
A factor (a/2s) (2/3M ) ln(q /M ) is divided out.

III. ASSOCIATED DILEPTON PRODUCTION

A. Kinematical limits

In this paper, we are interested in the dilepton pro-
duction cross section integrated over the transverse mo-
mentum. Hence, we need only the dilepton &agmenta-
tion functions integrated over z. As we have seen in the
previous section, the &agmentation functions diverge at
z = 0. One must therefore introduce an infrared cutofF.
Fortunately, for dilepton production, the invariant mass
M provides a natural cutofF.

Assuming that Q2 and q2 are the virtualities of the
parton before and after the emission of a virtual photon

In principle, one could take into account these kinemat-
ical limits at every step of the radiation processes, as
done in Monte Carlo approaches [19—22]. Although not
shown here, this can be done analytically for the first or-
der calculation of the dilepton &agmentation functions.
One could also use the relative transverse momentum kT
as the argument in the running strong coupling constant.
This is, however, beyond the scope of our simple leading
logarithm estimates in this paper.

With the kinematical cutoff in Eq. (33), we can ob-
tain the integrated dilepton &agmentation functions,
Dsigq, s(M2, Q2), the probabilities for a quark or gluon
to produce a dilepton with mass M within the interval
dM2. The lowest and first order &agmentation functions
can be obtained analytically by integrating Eqs. (9), (11),
and (18) over z:

(34)
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/Ml 2s f M) f Ml f' Ml

( 1M) (M) ( M) (5
2 Q') k Q') ( Q') E2 2 Q')

2Tl f

0

/4 M M l (Q21 1/' M l ( M M4)
x

l

—+2 + ling
l

——
l

1 —
l l

22+13 +4

where the function gs(z) is defined as
I

z-integrated dilepton &agmentation functions is a very
good approximation.

OO

g.(*) = ):—„,. (87)

We plot in Fig. 3 the full /CD-evolved results

D~~~q6 s(M, Q ) as functions of M2 at fixed Q= 4 GeV.

The first order results D&~&&l (Mz, Q2) +DsI&l (Mz, Qs)

and Ds~&&l (M2, Qs) are very close to the full /CD-evolved
fragmentation functions with only a few percent differ-
ence through the whole Mz range. As we have seen in
Fig. 2, the full /CD-evolved fragmentation functions are
enhanced at small z while depleted at large z as com-
pared to the lowest order calculations. For small values
of Mz/Qs, /CD evolution is important, but the lower
limit zo of the z integration is also small. Thus, the
integrated full /CD fragmentation functions are almost
the same as the first order results. At large values of
M /Qz, the lower limit zo is large, but the /CD correc-
tions in any order are increasingly smaller. Therefore, in
the whole range of M2, the first order calculation of the

I

B. Dilepton production associated arith minjjets

In the following, we consider dilepton production as-
sociated with minijets. In particular, we are interested
in the difFerential rates of dileptons with rapidity Y = 0
as functions of the invariant mass M. As a first ap-
proximation, we can assume the dilepton to be produced
collinearly with the parent quark or gluon. Then the dif-
ferential cross section can be written down in a straight-
forward manner by folding the z-integrated dilepton &ag-
mentation functions D~~~q, (Mz, Qs) and D~~~s(M, Q )
with the 2 ~ 2 subprocesses of minijet production. We
can also neglect the contribution &om the initial state
dilepton radiation, since the rapidities of these pairs are
typically large like those of the initially radiated partons
[23]. One has to take into account that the dilepton pair
can be produced by either one of the final state partons,
and connect this to the correct normalization of the in-
tegrated minijet cross section ~;,q. In this way, the basic
formula for the associated production of dileptons with
Y 0 &om minijets in a AA collision at impact param-
eter b can be written

dM2dY 2
d ri dpT dyqdyz ) zi f /z(zx, Q, ri)z2fsyx(z2, Q, lb —ri[)2

Pp abed=

ab-+cd
x —.( ,666)(D ~xy (M, , q )6(Y —6&)+DaYx(M, q )6(Y —yg)),dt (3s)

t'

lyil &»I +
(2pT 4pT

( s l f s—e "'
I

& y2&»
IE» ) E» (40)

The momentum fractions of the initial state partons are
denoted by

where the produced (anti)quarks and gluons (i.e., mini-
jets) have transverse momentum po & pT & +s/2 and
the kinet. atical range of rapidities

s = zqzzs = 2pT [1+cosh(yq —yz)],
p2 (1 + elm sx

)

u = —p (1+e"' "')

(42)

(43)

(44)

The cross sections do '"/dt = O(az) for the various
partonic subprocesses can be found, e.g., in Re&. [14,24].
The parton density of a nucleus by our definition is

I

and the Mandelstam variables in the parton-parton level
for the massless partons by

(e+sx + e+vm) (41)
fey~(z, Q', ri) = ~~(ri)&.y~(z, Q', ri) fag+(z, Q'),

(45)



4538 K. J. ESKOLA AND XIN-NIAN WANG

0 I i I
[

I I I I
J

I I I I1

10

-2
10

-3
10

10

-5
10

-6
10

5 10
M (GeV/c )

15

FIG. 3. The z-integrated dilepton fragmentation functions
Dq~/ (M, Q ) for a u quark (solid line) aad a gluoa (dashed
line) as functions of M at Qxed q = 4 GeV. A factor
(a/2z) 2/3M is divided out. The curve for gluoa &agmea-
tation is multiplied by 10.

where t/i(r~) is the thickness function of the nucleus
which is normalized to I d r~t~(r~) = A. The parton
distribution in a aucleon is f /~(z, Q ), and the ratio
R /~(z, Q, r~) for the nuclear modifications to the par-
ton distributions is both scale and impact parameter de-
pendent [11,25]. In the following, we will approximate the
impact-parameter-dependent ratio R /~(z, Q, r~) by its
averaged value

1R //i(z, Q ) = — d r~t~(r~)R /~(z, Q, r~), (46)

so that

f.//i(z, Q', ri) = t~(r~)f."/(n)(z Q') (47)

where the effective parton distributions per nucleon in a
nucleus is defined as

f /(m)(» Q ) = Ro//i(z Q )f /nr(» Q ) (48)

In this paper we will use set 1 of the Duke-Owens
parton distributions [26] for f /~(z, Q2). We use the
scale-dependent nuclear modifications for R /~(z, Q ) as
studied in [27]. Especially, we assume that at the low-
est scale Q = 2 GeV, gluons are shadowed by the same
amount as the structure function E2 in deeply inelastic
M scatterings. Note that the normalization of Eq. (38)
can be checked by setting the M2-integrated &agmenta-
tion functions to»»ty and integrating over Y; this will
give us 20'i, t(po, ~s) as expected when integrating over
the inclusive 2 —+ 2 scattering cross section.

As usually in the case of PQCD calculations, there are

uncertainties in choosing the momentum scales both in
the parton distributions and the fragmentation functions.
We will choose the scale entering the parton distributions
to be the transverse momentum of the jets, Q = pT, for
Duke-Owens parametrization set 1 with A = 0.2 GeV
[14]. The scale Q2 in the dilepton fragmentation func-
tions represents the maximum virtuality of the 6nal state
parton before any radiation. As we have emphasized in
this paper, the dilepton fragmentation functions at large
6xed mass do not have nonperturbative contributions.
Therefore, unlike the scale in the parton distributions,
Q in large mass dilepton fragmentation functions is
not correlated with the choice of A. Examining the ma-
trix elements of a+ 6 m a+b+p' processes, one can find
out that the scale entering the leading logarithm term
is one of the Mandelstam variables, s, —t, —u, depend-
ing on the channel of the speci6c process. However, in
Eq. (38), we convolute the fragmentation functions with
jet cross sections which include difEerent channels and
their interference terms. Therefore, Q „ in Eq. (38) is
only an effective inomentum scale. From Eqs. (42)—(44),
we know at least that Q & pT. We will discuss the
sensitivity to the choice of Q when we present the
results of our calculation.

Note also that for the minijet production the lower
limit po of the integration over pT is a parameter which
determines the division between calculable "hard" and
model-dependent "soft" processes. Most of the mini-
jets are produced with pT po few GeV/c, and they
are basically nonresolvable as distinct E2 clusters, even
in hadronic collisions [28]. The phenomenological value
of po depends on the model for 0', gt of soft processes,
the parton distribution functions, and the correspond-
ing scale choice. Since these issues cannot be addressed
within PQCD, the possible range of values of po has to
be determined phenomenologically, in connection with a
model for the soft contribution cr, g to the particle pro-
duction in pp and pp collisions [11,12,29,30]. We will use
here po ——2 GeV/c, as suggested and studied in detail in
Ref. [31]. Although already exactly calculated for inclu-
sive jet production [32], the O(a, ) coatributions to the
lowest order parton cross sections are simulated here by
an overall factor K 2. Clearly, the parameter po de-
pends also on the size of the next-to-leading order terms.
We want to point out, however, that the cross section for
the associated dilepton production in Eq. (38) is much
less sensitive to the choice of po than the minijet cross
section itself. For Q = pT, the dilepton fragmenta-
tion functions vanish for M & p~. Whenever M ) po,
M takes over as an effective cutoff in the integration over
pT in Eq. (38). Therefore, the cross section for the asso-
ciated dilepton production does not depend on the exact
choice of po at large M.

The symmetrized formula of Eq. (38) can be somewhat
simpli6ed by considering all the possible pairs of partons
in the initial aad final states, (ab), (cd). By changing
the integration variables y~ 2 into —y2 ~ appropriately in
the other half of the expression, and by using the t, u
symmetries of the subprocess cross sections, a Y ~ —Y
symmetric formula can be written down. Especially, at
Y=Owe get
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dNat/&et (b)
dM2d Y x=0

e/4 1 1 2 A 2
2TAA(b) ~pT'dI/2 ) h

zlfz/(N) (zl) Q )z2fs/(N) (z2& Q )- 1+b.& 1+h.~
(cd)

ebmcd ab-+cd

x Dg)], M, —.S, t, u + Dg)(d M,
dt

(49)

where T~~(b) = f d r~t~(r~)t~(~b —r~ ~) is the nuclear overlap function of the two colliding nuclei.
As discussed in the previous section, the first order results in Eqs. (34)—(36) are a good approximation for the full

z-integrated dilepton fragmentation functions, which is the approximation we shall adopt in what follows. The results
from Eq. (49) with nuclear modifications to the parton distributions are shown in Fig. 4 (solid curves) for +s = 2002
GeV and 6400A GeV, respectively. In the figure, we have compared the minijet associated production of dileptons to
the lowest order differential cross section of the direct Drell-Yan process (dashed curves):

dN~~ (b) 4xn 2 A 2 A 2 A 2= Tgg(b) M4 ) eq zlfq /(~l. (zi, M )z2fq /(~)(z.2, M ) +z~f~ /(~)(zi, M )z2fs /(N)(z2, M ),dMdY ~ 9M

(50)
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FIG. 4. Mass spectra of minijet-associated (solid curves)
and Drell-Yan (dashed line) dileptons at Y = 0 in central
Au+Au collisions at ~s = 200A and 6400A GeV. The two
solid curves correspond to two choices of the scale q = pT
and 2~ in the dilepton fragmentation functions. Parton
shadowing is included in the calculations.

where zq 2 ——M/~s at Y' = 0. We have chosen the scale
in the parton distributions as Q = M. To simulate the
first order PQCD contributions to the DY cross section
[6,7], we multiply Eq. (50) by an overall factor XDY 2.
Note that since we have used the Duke-Owens parton
distributions, which extend only down to Qo ——2 GeV,
the results for direct Drell-Yan cannot really be trusted
much below M = 2 GeV/c2.

To study the sensitivity of the minijet associated dilep-
ton production to the choice of the scale Qm in the
fragmentation functions, we plot in Fig. 4 the results of
Eq. (49) for both Q = pT and 2pT. It is apparent
that the results are relatively sensitive to the choice of
Q . As we can understand from Eqs. (34)—(36), the
difference between the two solid curves is due to the fact

that the
z-integrated

fragmentation functions are pro-
portional to ln (Qs /M2). Because of the kinemati-
cal restriction M & Q, changing Q = 2pT to pT
also efFectively doubles the lower limit of the integration
over pz for fixed M in Eq. (49). This is the reason why
the two solid curves have different slopes. As one of the
main purposes of this paper, Fig. 4 demonstrates how
the relative contribution of the dileptons associated with
minijets in the range 1+M+10 GeV/c changes with
increasing energy as compared to the direct Drell-Yan
production. Even after taking into account the uncer-
tainties due to different choices of Q, it can be seen
clearly that at RHIC energy, ~s = 200A GeV, dilep-
tons &om the bremsstrahlung of minijets are compara-
ble to the direct Drell-Yan at M + 2 GeV/c . However,
when going up to TeV energy range, dileptons associated
with minijets become more important, and dominate the
Drell-Yan at LHC energy, ~s = 6400A GeV, even up
to masses M 10 GeV/c . Qualitatively, our results
are similar to the minijet-associated photon production
in Ref. [33] where real photon fragmentation functions in
the lowest order are considered.

To demonstrate the effects of parton shadowing and
antishadowing, we plot in Fig. 5 the results calculated
with (solid line) and without (dashed curves) nuclear
modifications of the parton distribution functions. We
can see that nuclear shadowing depletes the Drell-Yan
dileptons relatively more than the dileptons &om the
minijets. The basic reason for this is that Drell-Yan
pair production de&+ in Eq. (50) as a function of M =
zq 2~s probes the (anti)quark distributions directly, at
least in the lowest order. Furthermore, the antiquark
shadowing does not vary strongly with the scale M, as
has been experimentally measured [34,35]. On the other
hand, in the minijet-associated dilepton production, we
have to integrate the contribution over the whole range
of x. In addition, we also have to integrate over the scale
Q = pz. The gluon shadowing [27] we used here has
stronger Q dependence than the (anti)quark. Therefore,
the net effect of the nuclear modifications of the parton
distributions to the minijet-associated dilepton produc-
tion remains relatively small even at TeV energy range.
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FIG. 5. Mass spectra of the minijet-associated and
Dreii- Yan dileptons in central Au+Au collisions at +s = 200A
and 6400A GeV, with (solid line) and without (dashed line)
parton shadowing. For the associated production, the scale
in the dilepton kagmentation functions is chosen to be
@max = 2pT ~

IV. SUMMARY AND DISCUSSION

In this paper, we have studied minijet-associated dilep-
ton production in ultrarelativistic nuclear collisions. We
calculated both the first order approximation and the
full P /CD evolution of the dilepton fragmentation func-
tions of produced partons. The dileptons &om the &ag-
mentation of minijets are found to be comparable to di-
rect Drell- Yan at RHIC energy for small invariant masses
M 1—2 GeV/c2. At LHC energy, the associated dilep-
ton production becomes dominant over a relative large
range of the invariant mass. These dileptons plus the
direct Drell- Yan pairs would constitute part of the back-
ground to the dilepton production from a QGP and its
preequilibrium stage. Other background includes dilep-
tons from final hadronic rescatterings [36,37] and the de-

cay of charmed hadrons [33,38].
It is also straightforward to calculate the pl distri-

bution of the associated dileptons in our &agmentation
function approach. Since one has to convolute the dilep-
ton fragmentation functions in z together with the p~
distributions of the jets, we expect the resultant p~ spec-
trum of these dileptons to be softer than the pT spectrum
of the jets. Therefore, the dileptons associated with mini-
jets should have smaller pT relative to the direct Drell-
Yan pairs which have a high pz tail like that of the pro-
duced jets Since the. rmally produced dileptons in a QGP
also have relatively small pl as compared to Drell-Yan

[1],minijet-associated dileptons thus pose a more intan-
gible background.

In calculating the dilepton &agmentation functions,
we have ass»med leading logarithm approximation so
that we can include contributions &om all orders in
PQCD. However, the higher order corrections are small
and the 6rst order results are suKcient enough for our
estimates of the minijet-associated dilepton production.
The largest uncertainty in our calculation is the choice
of the momentum scale Q used in the dilepton frag-
mentation functions. Since the correct scale in a matrix
element calculation is channel dependent, we used only
an efFective scale choice in the &agmentation functions
to convolute with the minijet cross sections. We evalu-
ated the dilepton spectrum for two choices of the scale,
Q~~ = pz, 2pT. However, the results with Q = pT
should give us the lower bound of the associated dilep-
ton production. Another notorious uncertainty of the pT
cutoff ps in minijet-related problems is greatly reduced
here due to the kinematic restriction M ( Q . For
Q~~ = pT, the pT cutoff is replaced by M whenever M
is larger than po.

The abundance of dileptons associated with minijet
production at high energies is mainly due to the large
gluon-related minijet cross sections and the high initial
gluon densities inside the colliding nuclei. This should
have important implications for the dilepton production
in the preequilibrium stage of the quark gluon plasma. As
pointed out recently [39—41], the parton system is not at
all in chemical equilibri»m when initially produced in the
earliest stage of high energy nucleus-nucleus collisions.
Because of the small cross sections for (anti)quark pro-
duction, the initial parton system is dominated by glu-
ons and is quark deficient as compared to an equilibrated
QGP. Studies [39—41] also suggest that the parton sys-
tem thus produced may not be able to achieve chemical
equilibrium before hadronization. In this case, dilepton
production through qq annihilation should be severely
suppressed. On the contrary, dilepton production &om
gluon &agmentation could become relatively important
for a gluon-dominated system, since gluon-related cross
sections of small angle scatterings are about 9/4 larger
than the quark. Even though the dilepton &agmenta-
tion function of a gluon is about one order of magnitude
smaller than a quark, a gluon density at least about 5
times higher than the quark could easily compensate the
small &agmentation function and make the gluon associ-
ated dilepton production important.
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