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Dijet production at large rapidity intervals
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We examine dijet production at large rapidity intervals at Fermilab Tevatron energies, by using
the theory of Lipatov and collaborators which resums the leading powers of the rapidity interval.
We analyze the growth of the Mueller-Navelet K factor in this context and find it to be negligible.
However, we do find a considerable enhancement of jet production at large transverse momenta. In
addition, we show that the correlation in transverse momentum and azimuthal angle of the tagging
jets fades away as the rapidity interval is increased.

PACS number(s): 13.87.Ce, 12.38.Bx, 13.85.8d

I. INTRODUCTION

As the search for the top quark continues, the Fermilab
Tevatron Collider continues to produce large amounts of
data on hadronic jets [1]. These data provide a unique
opportunity to test our understanding of jet production
at high energies. The calculation of jet production rates
at hadron colliders is a challenging problem of pertur-
bative /CD, because it involves many difFerent scales,
including AgcD, the hadron-hadron center-of-mass en-

ergy ~s, the parton-parton center-of-mass energy ~s,
and the momentum transfer Q, which is of the order of
the transverse momentum of the jets produced in the
hard scattering.

The conventional approach to these calculations is to
work at fixed order in the coupling constant n„assum-
ing that +s, +8, and Q are comparable in size, so that
there are no large logarithms involving them. The ef-
fects of AggD are factorized. into the parton structure
functions, which are then evaluated at a scale of order

Q using the usual Dokshitzer, Gribov, Lipatov, Altarelli,
Parisi (DGLAP) evolution. At present the first radiative
corrections to the Born processes are available [2]. These
yield a more detailed description of the jet structure, re-
duce the dependence on the factorization scale, and are
in very good agreement with the data on the one-jet in-
clusive distribution at large transverse momenta [3].

At the high energies of the Tevatron, however, there
may be kinematic configurations where one cannot ig-
nore the efFects of the disparate energy scales. In the
semihard region, defined as s &) Q2 )) A&&D, the calcu-
lation of jet cross sections is characterized by the appear-
ance of coefEcients containing logarithms of large ratios
of the kinematical invariants. If no restrictions are made
on s = xq x2 s, these logarithms will involve the small-
x behavior of the structure functions, requiring a more
sophisticated analysis than the usual DGLAP evolution
[4]. Combined with the experimental uncertainties in the
structure functions at small x, it appears very difBcult to
make precise predictions in this kinematic region.

One way to overcome this problem is to try to disen-

tangle the different ratios of kinematic invariants in the
process. This can be achieved, for example, by requir-

ing that the parton momentum &actions xq and x2 be
large enough that no large ratios, other than the usual

Q2/A~&&D, appear in the evolution of the parton distri-

bution functions [5]. The price to be paid is that loga-
rithms of the kind s/Q2 will now appear in the parton
subprocess. These logarithms are of the size of the ra-

pidity interval in the scattering process. To realize this
configuration experimentally, Mueller and Navelet pro-
posed to tag two jets at the extremes of the Lego plot in
azimuthal angle and rapidity, at fixed xq, x2, and trans-
verse momenta p~, and to watch the growth of the dijet
inclusive cross section as the rapidity interval between
the tagging jets grew with the center-of-mass energy. To
deal with the large logarithms they used the Balitsky-
Fadin-Kuraev-Lipatov (BFKL) theory [6], which system-
atically resums the leading powers in the rapidity interval

by using a multigluon amplitude, with the gluons uni-

formly filling the rapidity interval between the tagging
jets. The Mueller-Navelet K factor, defined as the ratio
between the resummed and the Born dijet cross sections
at large rapidity intervals and fixed x's, exhibits the pow-
erlike growth in the center-of-mass energy typical of the
BFKL resummation.

In this paper we study the Mueller-Navelet dijet cross
section at the Tevatron energy of ~a = 1.8 TeV. Since +s
is fixed, we instead let xq and x2 vary with the rapidity
interval. At the same time we retain the Mueller-Navelet
requirement that xz, x2 be large enough that the parton
distribution functions can be described by the DGLAP
evolution. This is done by tagging on the two jets at
the extremes of the rapidity interval y with transverse
momenta larger than some cutofF p~;„. For reasonable
values of y and p~;„ the moment»m &actions xq, x2 will

be sufBciently large. We can then study the efFects of the
minijets in the BFKL resummation as a function of the
kinematic variables of the two tagging jets.

In the exposition of this paper we follow the outline of
Ref. [7]. Namely, in Sec. II we consider the inclusive dijet
production p p -+ 2 jets + X at the Born level, both ex-
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act [8] and in the large-rapidity limit. We then compute
the leading logarithmic corrections at large rapidity as
done in Ref. [5]. In Sec. III we present numerical results
for the inclusive dijet production, with and without inte-
grating over the jet transverse momenta. We discuss the
eKects of the BFKL resummation on the growth of the
Mueller-Navelet K factor, on the single-jet pJ distribu-
tion at large y, and on the correlations of the two jets in
transverse momentum and azimuthal angle as the rapid-
ity interval is increased. In Sec. IV we include some re-
marks on the range of validity and the limitations of this
purely leading logarithmic calculation, and we present
our conclusions.

s = z1z2s = 2pz [1+ cosh(y)],
t = —»(1+e

= -p'(1+ ")
~

where pJ ——p1J ——p2J . The subprocess invariants do
not depend on the rapidity boost y. This is a general
property, since y parametrizes the collective motion of
the parton subprocess in the hadron reference &arne. The
lowest-order parton cross sections are well known and can
be found in, for instance, Ref. [8].

B. Large-y Born cross section

II. DIJET INCLUSIVE CROSS SECTION
We are going to study the semi-inclusive process

pAp~ -+ 2 jets + X in the semihard regime defined by
s )) Q2, with Q2 being a typical momentum scale in
the event, Q p1~ p2~. The two tagged jets are chosen
with a large rapidity interval y = y1 —y2 = ln(s/p1~p2~).
Other relevant parameters in the event are the relative
azimuthal angle p and the rapidity boost y = (y1 +y2)/2
of the two jets.

In the semihard, large-y regime we can write the cross
section

d0

dP', ~dP2~dfdydy ) zlz2 fi/A(z1) /J )fj/B(z21/J )

do ing

dP1~ dP2~ dg

A. Born level cross section

with f;(~& = Q, Q, G labeling the structure function
of the parton species and Savor i(j) = q, q, g inside
hadron A(B). The parton subprocess cross section
do;~/dp21&dpz&dp contains the sum over all additional
particles (i.e., minijets) in the event. The factorization of
the minijets into the subprocess cross section is possible,
because at large y the initial parton momentum &actions
z1 and z2 are fixed in terms of the two tagged jet mo-

menta, and are essentially independent of the particles
filling the rapidity interval. We will arrive at this cross
section in several steps, starting with the exact Born level
cross section, taking it to the y && 1 limit, and finally fill-

ing in the rapidity interval with the minijets.

dCTqq

dt

Cz 6f&qg C~ do gg

dt CA dt

with Cs = (N, —1)/2N, = 4/3 the Casimir operator
of the fundamental representation. Thus, it suffices to
consider the subprocess gg ~ gg and include the other
subprocesses by means of the effective structure function

f,fr(z, IJ ) = G(z, p, )+ ) [Qg(z, p )+Qy(z, p, )],
A

(6)

where the sum is over the quark Savors. The parton
momentum &actions in the large-y limit are

P1J (y+y/2) Pl J y~
)

P2J (—y+y/2) P2J —y~

We now investigate the lowest-order cross section when
the rapidity interval y is large. For y )) 1 the lowest-
order amplitude is dominated by diagrams with gluon
exchange in the t channel as in Fig. 1(a). In this limit
the only subprocesses that contribute are gg -+ gg and

qg ~ qg and qq -+ qq. We obtain

do gg 7f'CA cl

dt 2p4J

with CA = N, = 3 the Casimir operator of the adjoint
representation. Similarly, we find

At the Born level the two partonic jets are produced
back to back. The exact lowest-order cross section can
be put in the form (1) with the replacement

Equation (7) is also valid in the large-y limit when higher-
order corrections are included, so that p1~ g p2~.

-" b(P1i —P2i) b(& —&) .
P',i P2i dt

(2)

The parton momentum &actions and the subprocess in-
variants at this level are given by

2pJ e&
z1 —— cosh(y/2),

(a)

'n pF
555K
'5 FA!
MAX

(b)

2pJ e
z2 = cosll(y /2) ~

FIG. 1. Two-jet production amplitude in the large-y limit
at (a) the Born level and (b) with minijet corrections.
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C. Minjjet-corrected cross section

As discussed in the Introduction, going to higher or-
ders in the coupling constant, i.e., to roultiple parton
emission, we encounter large logarithmic contributions.
In the semihard regime, the BFKL theory [6] systemat-
ically resums the leading logarithmic terms ln(s/Q2) by
using a multigluon amplitude where the rapidity interval
between the tagging jets is filled with gluons, strongly or-
dered in rapidity. This amplitude is shown in Fig. 1(b),
where the thick line represents the resummation of the
virtual radiative corrections, whose eEect is to Reggeize
the gluons exchanged in the t channel. The real gluons
are inserted on these using the Lipatov effective three-
gluon vertex [6]. The BFKL multigluon amplitude is
then put in a rapidity-ordered phase space, the rapidi-

dO&z +A~a f ( )
+Ass

(8)

In this equation f(y, p1J, p2J ) is the Laplace transform
in the rapidity interval y,

dc'
f(y, plJ p2J) = e "f. (p», p2J. ),

27ri
(9)

of the solution of the BPKL integral equation

ties of the gluons are integrated out, and the dependence
of the cross section. on the gluon transverse momenta is
reduced to the resolution of an integral equation. Its solu-
tion is then convoluted with a jet emission vertex on each
side of the rapidity interval to give the minijet-corrected
parton cross section for two jets at large y:

OO

f ( ) ) lfL{$ 'll') —
d ( 1J ) ( 2J )

(2z)2 -
ur —(u(n, v)

(io)

The eigenvalue of the integral equation u(n, v) is

with Q the logarithmic derivative of the I' function. Substituting (9) and (10) in (8), and doing the integral over ~,
the minijet-corrected parton cross section becomes

C2 a2 OO 2
d+gg A~s & isa{/ m) —

d ur{n,v) y I I plJ.ve ' cosllv n
0

If we integrate over the azimuthal angle p in (12), only
thy n = 0 term survives.

D. Minjjet-corrected cross section
in the saddle-point approximation

At very large values of the rapidity interval y, the cor-
relations between the two jets are washed out by the ran-
dom walk in transverse momentum space of the gluons
exchanged in the t channel. This can be seen most eas-
ily by evaluating (12) in the saddle-point approximation.
The contribution of (11) to this equation is dominated
by n = 0 and is strongly peaked near v = 0. Thus we
keep only the first term in the Fourier expansion in P,
and expand &u(v) = ~(0, v) about v = 0:

ur(v) = A —Bv2+

with

(14)

Then we can evaluate (12) using the saddle-point approx-
imation for the integral over v to obtain

do„e„'o.,' e"3

dp1J dp2J dq 8p1J p2J /Bury
»'(P»/P2i)

~4By

The exponential growth of (15) with the rapidity interval

y is due to the production of the minijets.

III. NUMERICAL RESULTS

We now examine numerically the eKects of the mini-
jets at the Tevatron center-of-mass energy ~s = 1.8 TeV.
We are mainly interested in understanding the behavior
of the parton subprocess, which does not depend on y.
Therefore, except where indicated, we work at Gxed y
and observe the cross sections as a function of the ra-
pidity interval y. We chose y = 0 so that neither x can
become too small. For consistency of notation we will re-
fer to the leading jet in rapidity as jet 1 and the trailing
jet as jet 2 (i.e., y1

—+[y[/2, y2 ———[y[/2). Of course,
everything is symmetric under the exchange of the two
jets. We have used the leading order CTRL Collabo-
ration structure functions [10] with the renormalization
and factorization scale set to the geometric mean of the
transverse momenta of the tagging jets, p, = p~~p2~.
We shall address some of the difBculties involved in the
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choice of scale in the next section. For p~;„& 10 GeV
and y = 0 the parton density functions are always eval-
uated at x & 10, and so we are justified in using the
DGLAP evolution in this region of phase space.

We begin by looking for the exponential growth of
Eq. (15) in the cross section as originally suggested by
Mueller and Navelet. To do this we integrate over the
azimuthal angle P and over both transverse momenta
above a cutoff ofp~; = 20 GeV. In Fig. 2(a) we present
this cross section in the first three approximations (Secs.
IIA—IIC). From the plot we see that the large-y Born
cross section is a good approximation to the exact Born
level cross section for large y & 4. However, the minijet-
corrected cross section does not exhibit any great en-
hancement at large rapidity. This is more easily seen in
a plot of the K factor, defined here as the ratio of the
minijet-corrected cross section to the large-y Born cross
section:

b'0

103

1p2

1p1

100

10—1

2

1.2 I I I I ~ I I I I

I

10 — »»
~

~ » ~

)
I I

(a)

.I
8

do'(minijet) da (large y)
dgdg dydy

(16)
1.0

The K factor is defined so that K ~ 1 as y -+ 0. In
Fig. 2(b) we see that the K factor increases until y —6,
but then quickly goes to zero.

This effect can be understood if we remember that the
rapidity dependence enters not only in the BFKL kernel

f (y, pq~, ps~), but also in the parton structure functions
f;(zq, iJ, )f~(zz, p ) where the momentum fractions are
given by (7). The allowed phase space in pq~, p2~ is
substantially decreased at large y by the restriction that
the momentum fractions must be less than 1. The de-
crease in phase space has a greater effect on the minijet
cross section, with the result that the K factor is cut
off at large y. It requires a much larger range in scales
from p~;a to ~s in order to approach the exponential
growth of the Mueller-Navelet K factor. This is exhib-
ited in Fig. 3 where we show the K factor at the Tevatron
energy, at a CERN Large Hadron Collider (LHC) energy
of ~s = 15 TeV and at ~s = 10 TeV. The full exponen-
tial growth is achieved in the limiting case of an infinitely
large value of ~s, where the cutoff in the phase space of
the minijet cross section never occurs.

Thus, at the Tevatron energy we must look elsewhere
for effects of the minijets. In Fig. 4(a) we show the p~
distributions of jet 1 for a rapidity interval of y = 4. We
plot the minijet cross section with two different cutoffs
for the second jet, p2~; ——10 GeV and 20 GeV, while
the Born level cross section always has p2~ ——pq~. These
plots exhibit two effects of the minijets. We see that the
overall scale of the p~ distribution depends strongly on
the minimum p~ of the second jet, and that the slope of
the distribution is Batter with a substantial increase at
large p~. In Fig. 4(b) at y = 6 we see an even greater
dependence on p2~; . These effects can be partially un-
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FIG. 2. (a) Inclusive dijet production at the Tevatron,
as a function of the rapidity interval y. The dashed and dot-
dashed lines are, respectively, the exact and large-y Born cross
sections, and the solid line is the minijet-corrected cross sec-
tion. (b) The K factor, i.e. , the ratio of the minijet-corrected
cross section to the large-y Born cross section, as a function
of the rapidity interval y. The kinematic parameters for both
figures are described in the text.

The fact that K goes belovr 1 for small y is presumably a
computational artifact, arising from the difficulty in doing the
numerical integration over a very sharply peaked function at
small y.

FIG. 3. K factor as a function of the rapidity interval y
at difFerent center-of-mass energies. The cutofF on integra-
tion over both transverse momenta is at p~; ——20 GeV.
From bottom to top, the solid lines represent the K factors
at Tevatron energies, at LHC energies (~s= 15 TeV), and at
~s = 10 TeV.
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f(y p» p2~) ~ h(&ii —&2i)b(& — ) .

The two jets are produced back to back in p~ and P.
However, as the rapidity interval becomes large, we have

103
I I I I

i

I I

derstood by the fact that the p~ of jet 1 can be balanced
by the smaller p~ of jet 2 and the minijets produced in
the rapidity interval. The lower x values required for this
type of event increase its likelihood relative to the back-
to-back dijet event, which is all that can occur at the
Born level. It is even possible for jet 1 to attain trans-
verse momenta that are kinematically impossible at the
Born level.

These arguments suggest that the minijets occurring in
the rapidity interval between the tagged jets will cause
the tagged jets to become uncorrelated. This can be seen
easily in the minijet formulas by looking at the BFKL
kernel as it is varied Rom y = 0 to very large y. For very
small rapidities we approach the Born cross section (4)
with

f (JJ~ plJ ~P2J ) & (plip2J )

and the tagging jets become completely uncorrelated.
The disappearance of correlations as y increases can be

seen dramatically in Fig. 5(a) where we plot the trans-
verse momentum distribution of jet 1 at a 6xed value
of @2~

——50 GeV. For a rapidity interval of y = 2 the
cross section is strongly peaked near pq~ ——@2~. As the
rapidity is increased there is a diffusion of the jet 1 mo-
mentum away &om the jet 2 momentum until the peak
is practically gone for y = 5. In practice jet 2 will be
integrated over some range of transverse momenta, and
so in Fig. 5(b) we show the same plot with p2~ inte-
grated &om 50 GeV to 55 GeV and lyl & 0.5. To retain
the normalization we have divided this cross section by
5 GeV.

Similarly, there is also a reduction of the correlation in
the azimuthal angle P as the rapidity interval increases.
This can be seen in Fig. 6, where we show the P distribu-
tion with both jets integrated &om p~; ——20 GeV. The
P distribution is normalized to the uncorrelated cross sec-
tion da'/dy dy, so that the area under each curve is equal
to 1. As expected the correlation in P decreases as we
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FIG. 4. p~ distribution of jet I at (a) lyl = 4 and (b)
lyl = 6. The dashed and dot-dashed lines are, respectively,
the pz distributions for the exact and the large-y Born cross
section, for which p1~ ——p2~. The solid lines are the p~
distributions of jet 1 for the minijet-corrected cross section,
with two diferent cutoffs for jet 2, p2~;„——10 GeV and
20 GeV. Notice that in (b) the dashed and dot-dashed lines
completely overlap.
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FIG. 5. pz distribution of jet 1 with the jet 2 transverse
momentum (a) fixed at 50 GeV, and (b) integrated from
50 GeV to 55 GeV. From top to bottom, the solid lines are
the p~ distributions for the minijet-corrected cross section at
lyl = 2, 3, 4, 5, and 6. In (b) the rapidity boost y is integrated
over [yl & 0.5.
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FIG. 6. P distribution normalized to the uncorrelated
cross section do/dy dft. From top to bottom, relative to the
peak, the solid lines are the P distributions for the minijet-
corrected cross section at iy[ = 5, 6, and 7.

vary from y = 5 to y = 7. The decorrelation in P, how-
ever, is slower than the decorrelation in p~, because the
eigenvalue (ll) of the BFKL integral equation is more
strongly peaked in v than in n For e.xample, at y = 5
the tagging jets are not correlated any more in pi, while
they still show a considerable correlation in P.

IV. DISCUSSION AND CONCLUSIONS

The BFKL analysis that we have been using is a lead-
ing logarithmic approximation. With this in mind we
ofFer some caveats to our results and discuss which ef-
fects should survive in an exact calculation. First, we
must state that any of our plots at very small y are not
expected to be very accurate. For y ( 2 there is even
a reasonable discrepancy between the large-y Born cross
section (Sec. IIB) and the exact Born level cross section
(Sec. IIA). However, we expect that the trends as y is
increased should be apparent even at reasonably small
values of the rapidity interval. In particular the decorre-
lations in pi and P should definitely increase with y.

There are also several ambiguities in our calculation,
arising from the fact that the BFKL analysis assumes
little variation in the pi of the minijets. For instance,
the rapidity variable used in the standard BFKL analysis
is Y = ln(s/Q2) where Q is some typical scale of the
minijets. In our calculation we have chosen Q = pi~@2~
so that Y = y, the experimental rapidity. This should
not make a signi6cant difFerence at large y, but it does

emphasize the fact that the approximation becomes less
reliable when the transverse momenta of the tagging jets
are not of similar size, and there arise large logarithms
of order ln(pi~/ps~). In addition, the dependence on jet
def][.nition, cone size, and other variables are subleading
in this analysis at large y.

For related reasons the proper renormalization and/or
factorization scale p, at which the coupling constant is
evaluated is not well determined in our leading logarith-
mic analysis. As required for the BFKL solution, we have
evaluated the coupling for all of the minijets at a single
scale of order Q. Possible choices for p,

2 are pi~p2i (as
we have used), pii, p&i, or max(pi» p2&). At the level
of our approximation, all of these scales are equivalent,
but in practice the choice of scale can make a reasonable
difference in the slope of the pi spectrum. 2 However,
our main conclusions about the decorrelation in trans-
verse momentu~ and azimuthal angle at large y, as well
as the increase in the cross section at large pi and y, will
not change.

Finally, it is interesting to imagine a comparison of our
results with a fixed O(as) calculation. The fixed order
calculation includes only the effects of up to three par-
ton jets, while the BFKL resummation includes the lead-
ing contributions of amplitudes containing an arbitrary
number of parton jets. Prom naive estimates one might
expect that y ( 6 is not large enough to warrant the use
of the full BFKL analysis and that a next-to-leading or-
der calculation is quite sufficient. However, as we have
seen, the kinematic phase space is greatly enhanced by
the sharing of transverse momentum among the addi-
tional minijets. This suggests that it may be necessary
to go beyond O(n, ) at large rapidity intervals. Moreover,
the BFKI approximation clearly predicts the main fea-
tures of the multiple jet emission at large y and readily
suggests the experiments to look for them. It would be
exciting to compare the predictions of the BFKL resum-
mation given here, as well as the next-to-leading order
calculations, against experiment.
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This ambiguity will arise in any nonexact calculation in-
volving multiple jets with disparate energies.
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