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Parton interaction rates in the quark-gluon plasma
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The transport interaction rates of elastic scattering processes of thermal partons in the quark-
gluon plasma are calculated beyond the leading logarithm approximation using the effective per-
turbation theory for QCD at finite temperatures developed by Braaten and Pisarski. The results
for the ordinary and transport interaction rates obtained from the effective perturbation theory are
compared to perturbative approximations based on an infrared cutoff by the Debye screening mass.
The relevance of those interaction rates for a quark-gluon plasma possibly formed in ultrarelativistic
heavy ion collisions is discussed.

PACS number(s): 12.38.Mh, 12.38.Bx

I. INTRODUCTION

Interaction or damping rates of parton scattering pro-
cesses in a thermalized quark-gluon plasma (QGP) are
of great physical significance. For example, the inverse
rates related to the elastic scattering of thermal partons
(gg ~ gg, gq -+ gq, qq ~ qq) give the mean free paths
and typical interaction times, i.e., the relaxation times
used in the collision term of the Boltzmann equation.
Hence they can be used for an estimate of the thermal-
ization time of a preequilibrium parton gas in ultrarela-
tivistic heavy ion collisions [1] and the maintenance of
the thermal equilibrium by comparing the interaction
rates versus the cooling rate. Of course thermalization
times calculated in this way at finite temperature should
be valid only for situations which do not start too far
kom equilibrium. On the other hand, this thermaliza-
tion time does not depend on the somewhat ambiguous
definition of the beginning and the end of the preequi-
librium stage as the one deduced from numerical studies
of ultrarelativistic heavy ion collisions (HIJING [2], par-
ton cascade [3]). After all, both methods lead to similar
results, namely a fast thermalization of the gluons, i.e.,
an isotropic and exponential momentum distribution, af-
ter about 0.2 fm/c for the CERN Large Hadron Collider
(LHC) and 0.3 fm/c for the BNL Relativistic Heavy Ion
Collider (RHIC) [4]. The full equilibration of the phase
space density can be investigated, on the other hand, us-
ing the inelastic interaction rates, e.g. , gg -+ ggg and

gg ~ qq, describing the chemical equilibration process of
the QGP [4].

Furthermore the elastic rates are the basic inputs for
the energy loss of a parton in the QGP [5—12] and the
viscosity of the QGP [13]. The first quantity is related
to a possible signature of the QGP in ultrarelativistic
heavy ion collisions (jet quenching) [7,14,15], while the
latter provides information about the role of dissipation
in the hydrodynamic expansion phase [16].

Finally, damping rates are especially suited for study-
ing problems of quantum 6eld theory at 6nite tempera-
ture such as gauge dependences and infrared singulari-
ties in perturbation theory [17]. In particular, the puz-

zle of the gauge dependence of the gluon damping rate
at rest (plasmon damping) in naive perturbation theory
started a recent development in finite temperature field
theory, which led to a powerful effective perturbation the-
ory [18]. Assuming the weak coupling limit (g « 1)
effective propagators and vertices are obtained by re-
summing self-energies and vertices in the high temper-
ature limit (hard thermal loops), which are used for soft
external momenta of the order gT, while bare Green's
functions are sufficient for hard momenta of the order
T. In this way gauge-independent results for physical
quantities are found, which are complete to leading or-
der in the coupling constant. (The gauge independence
of this method is still under discussion by evaluating
the damping rates in a general covariant gauge. How-

ever, using an appropriate infrared regularization for the
gauge-dependent part, independence of the gauge-fixing
parameter can be shown [19—22].) In addition, screening
effects are included yielding an improved in&ared behav-
ior. In summary, the Braaten-Pisarski method provides
a consistent treatment for quantities which are sensitive
to the momentum scale gT, meaning a crucial improve-
ment compared to the naive perturbation theory at finite
temperature.

Here, we will present calculations of the interaction
rates based on the Braaten-Pisarski technique and study
their physical relevance for the QGP. Two different kinds
of interaction rates are considered. In the next section
we will discuss the ordinary interaction rate I', in the
following simply called interaction rate, of a parton with
hard momentum, defined by I'—:n o, where n is the par-
ticle density of the QGP and o the cross section of the
scattering process under consideration. In naive pertur-
bation theory without resummation I' o., T is found

(a, = g /4vr). However, I turns out to be quadratically
infrared divergent. Using the Braaten-Pisarski method,
I' n, T ln(1/n, ) follows, which is only logarithmically
infrared divergent [7,22—29]. The interaction rate is en-
hanced by a factor I/o. , compared to the one obtained
from naive perturbation theory due to the infrared reg-
ularization inherent in the resummation method. The
logarithmic term, reflecting the logarithmic infrared di-
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vergence, arises &om the sensitivity of the rate to the
momentum scale g T, which cannot be treated within
the Braaten-Pisarski method.

In Sec. III, we will discuss the transport interaction
rate defined by I' t, „, ——n ot, „„where the transport
cross section et, „,——I do (1 —cos 0) enters the collision
term of the transport equation in the case of a plasma
with long range interactions, for which the interaction
rate is dominated by distant collisions [30]. Here 0 de-
notes the scattering angle in the center of mass system.
Hence the mean free path as well as the therrnalization
time may rather be given by the inverse of the trans-
port interaction rate [30]. The relevance of this rate for
the QGP has been pointed out in Refs. [23,31,32]. The
transport interaction rate is also closely connected to the
shear viscosity beyond the relaxation time approximation
[Is,ss].

The factor 1 —cos0 cuts oK small scattering angles
and therefore small momentum transfers, too. Thus the
transport interaction rate is only logarithmically infrared
divergent in naive perturbation theory (Coulomb loga-
rithm [30]),but finite using the Braaten-Pisarski method
since it is sensitive to the scale gT only. Hence dynamical
screening of the magnetic interaction, which is included
in the efFective gluon propagator, is sufBcient [34] leading
to I'i, „, n, T ln(1/n, ) [13,29,31]. Note the n, depen-
dence as expected from naive perturbation theory since
there is no enhancement by a factor I/n, caused by a

quadratic infrared divergence. Also the logarthmic term
stems from the sensitivity to the scale gT instead of g T
as is the case for I' [29].

Up to now the transport interaction rates based on
the Braaten-Pisarski method have been calculated only
within the leading logarithm approximation [13];i.e. , the
coefficient of I/o. , under the logarithm has not been de-
termined. However, if we want to extrapolate the result
for the transport interaction rate in the weak coupling
limit to realistic values of a, = 0.2 —0.5, we should not
neglect this coefficient.

One aim of the present paper is the calculation of the
transport interaction rate beyond the leading logarithm
approximation using the Braaten-Pisarski method. Fur-
thermore we will discuss the consequences of I' and I't, „,
for realistic values of o, Finally, we will compare the
results of the Braaten-Pisarski method with the widely
used approximation of the naive perturbation theory reg-
ularizing the infrared singularities simply by using the
Debye screening mass as an infrared cutoR'.

II. INTERACTION RATES

'there are two equivalent ways of computing the inter-
action rates either using matrix elements or self-energies

[35]. Considering for example elastic quark-quark scat-
tering we may find the corresponding interaction rate I qq

from the matrix element via [8]

1

2p

d'p'
, [1 —nF(p')]

d3k

(2.) 2k" ("

d3k'

(2vr) s 2k' [I —nF ("')] (2~)' i~'(P+ ~ —P' —&') ONE (I~(qq ~ qq) I').

The four-momentum of the incoming particle is denoted
by P = (p, p), where quark masses are neglected and

p = Ipl. (We consider only the case of a QGP containing
up and down quarks for which the bare masses are neg-
ligible compared to the temperature of the QGP. ) The
quark of the heat bath from which the quark under con-
sideration is scattered off has the momentum K = (k, k).
Momenta with a prime belong to the outgoing parti-
cles. The Fermi-Dirac distribution functions are given by
n~(k) = 1/[exp(k/T) + 1], while Ny denotes the number
of thermalized ffavors in the QGP. The matrix element
is averaged over the spin and color degrees of freedom of
the incoming particles and summed over the ones of the
final state. The factor 6' comes from summing over the
possible spin, color, and flavor states of the quark with
momentum K. The diagrams which enter the matrix
element to lowest order are shown in Fig. 1(a).

In the case of quark-antiquark scattering we have to re-
place the diagrams of Fig. 1(a) by the ones of Fig. 1(b).
In the case of quark-gluon scattering we have to substi-
tute the Fermi distributions by the Bose-Einstein distri-
butions n~ (k) = 1/[exp(k/T) —1], the Pauli blocking fac-
tor 1—n~(k') by the Bose enhancement factor I+ngy(k'),

Pl

(a)

(b)

(c)

4-point

FIG. 1. Lowest order Feynman diagrams for qq m qq (a),
qq ~ qq (b), qg ~ qg (c), and gg m gg (d) scattering.



49 PARTON INTERACTION RATES IN THE QUARK-GLUON PLASMA 453

and the factor 6Nf by 16 (number of gluonic degrees of
freedom). If we wish to consider the scattering of an in-

coming gluon by the partons of the QGP we have to deal
with the diagrams of Figs. 1(c) and 1(d).

The second possibility to determine the quark inter-
action rate is given by the imaginary part of the quark
self-energy on mass shell [8]:

(a)

(b)

1
P~(p) = ——[1 —n~(&)] tr (&"P„1m'(p, p)] . (2)

The equivalence of the expressions (1) and (2) can be
seen from cutting the self-energy of Fig. 2(a) through
the fermion lines. Equation (2) is the starting point for

applying the Braaten-Pisarski method by considering the
quark self-energy of Fig. 2(b), where the effective gluon
propagator contains the resummed one-loop gluon self-

energy in the high temperature limit [36,37]. [Note that
Fig. 2(b) contains the diagram of Fig. 2(a) if the high
temperature limit is used for the fermion loop, called
hard thermal loop approximation [18], in the latter. ] It
is not necessary to take an effective quark-gluon vertex
into account because the external quark with a momen-
tum of the order of the temperature is hard. Also because
the interaction rate falls off rapidly for large momentum

I

FIG. 2. Lowest order quark self-energy contributions to the
quark interaction rate using naive perturbation theory (a) and
using the Braaten-Pisarski method (b).

transfers q:—Ip —p'I, I' f dq/qs, i.e., only small mo-

mentum transfers contribute, a bare quark propagator
is suHicient. An effective quark propagator and quark-
gluon vertex would contribute to higher order in o., only.

Since the final result for observables using the Braaten-
Pisarski method is gauge independent we are &ee of
choosing any gauge. Using Coulomb gauge and the ap-
proximation p, k 3T )) q gT the quark interaction
can be written as [8]

g2T' ~ d~ f
pi(~, q)+ I

1 ——,
I p~(~ q),

2K O q')

where C~ = 4/3 is the Casimir invariant of the fundamental representation. The interaction rate of a hard gluon
is simply obtained by replacing C~ by the Casimir invariant of the adjoint representation C~ = 3 [26]. The four-
momentum of the exchanged gluon is denoted by P —P' = K' —K—:Q = (u, q), and the discontinuous parts of
the longitudinal and transverse spectral functions, related to the effective gluon propagator b, ~ t, through p~ q(~, q) =
Imb, ~ q(~, q)/x, are given by ( q& ~ & —q) [38]

Sm2~ (, , Sm2~ q+ ~~
'

(S~m2~1
'

p~(ur, q) = q +3m — ln +

- 2
Sm ~(q —(u ) 3m u) ( q2 —~2 q+~)

p, (~, q) = ', q'- ~'+ ',
I
1+ ln

4q3 2q2 ( 2urq q
—ur)

t Smm2(u(q2 —u)2) l
(4)

where m2 = (1+Ny/6) g2T /3 may be interpreted as an
effective gluon mass generated by the interaction with
the thermal ensemble of the QGP. This expression was
derived assuming the high temperature approximation u,
q ((T.

The integration over q can be performed analytically,
whereas the one over ~ has to be done numerically. The
result for the longitudinal part of the interaction rate
corresponding to the exchange of a longitudinal gluon is
given by [7]

I' = j..098 C a, T.

Note that the interaction rate is independent of the num-
ber of fiavors Nf due to a cancellation of the factors m 9
in (4) after integration. Although a larger number of

I

thermal flavors corresponds to an increase of the number
of scattering partners enlarging the interaction rate, the
screening mass is also increased cancelling this enlarge-
ment. Also the interaction rate does not depend on the
external momentum p in the p )) ~, q limit.

The transverse part of the interaction rate I', on the
other hand, is still in&ared divergent, although the in-
&ared behavior has been improved &om a quadratic sin-
gularity in the bare two-loop case [Fig. 2(a)] to a logarith-
mic one due to dynamical screening of magnetic fields.
On the other hand, there is no static magnetic screening
in the transverse part of the spectral function (or the ef-
fective propagator); i.e. , the denominator of p& vanishes
in the static limit co = 0, q —+ 0, while the denominator
of p~ is given by p& = 3m in this limit. In other words,
the high temperature limit of the perturbatively calcu-
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w(~«q) =

pg(~ && q) =

3m w

2q(q' + 3m2)2 '

3m wq

4q + (3vrm2~/2)
(6)

Inserting (6) into (3) the integrations can be done exactly,
leading to

lated gluon self-energy contains static electric screening
(Debye mass pD) but no static magnetic screening. In
QCD, however, static magnetic screening may arise non-
perturbatively from monopole configurations due to the
gluon self-interaction. Indeed, lattice as well as semiclas-
sical calculations show the existence of a magnetic screen-
ing mass m 15n2T [39,40]. Thus static magnetic
screening is provided on the momentum scale g T.

After all, in order to obtain an estimate of the trans-
verse interaction rate we consider the nearly static limit
("« q) 'f (4) [251

massive fermion in a hot plasma [8].
Recently, Pisarski proposed an empirical way of in-

cluding the magnetic mass and an imaginary part of the
fermion self-energy in the parton damping rates [44]. In
the case of a hard, massless quark, using the magnetic
mass of [39,40], r~ 0.8C~ o., T follows from his inves-
tigation assuming o,, = 0.3 under the logarithm of the
transverse part. This result is smaller than the estimate
(8), since the transverse part of it turns out to be negative
for realistic values of the coupling constant.

Next we discuss a much simpler, widely used approxi-
mation (see, for example, Refs. [4—6]) based on the naive
perturbation theory, i.e., bare propagators and vertices,
where the Debye mass p&

——3m is simply introduced
by hand as an infrared regulator into the gluon propa-
gator. It should be noted that in this case the Debye
mass also cuts off the magnetic divergence without jus-
tification. Then the interaction rate is easily calculated
from

d3k
p(k)

ddtdt-dt' (9)

I'=CFOG, T ln

We observe that the nearly static limit is a good ap-
proximation (within 10'Fo) for the longitudinal rate. The
logarithmic term of the transverse rate comes from as-
suming a hypothetical infrared cutoff of the order g T.
For example, the magnetic screening mass [25] or the in-
teraction rate itself, i.e. , the imaginary part of the quark
propagator [22,23], have been suggested as such an in-
frared regulator. The coefFicient K cannot be calculated
using the Braaten-Pisarski technique but must await the
development of nonperturbative methods at finite tem-
perature for dynamical quantities [41].

For a rough estimate we propose

(8)

assuming o., 0.3 under the logarithm and v. 2. A jus-
tification for the latter assumption may come from choos-
ing pD as an upper limit and m z as a lower limit for
the integration over q. The gluon interaction rate, corre-
sponding to the scattering processes shown in Figs. 1(c)
and 1(d), is given by r~ = (C~/C~) r~ = (9/4) r~. Be-
cause it is also independent of the number of flavors, it
holds for the QGP as well as for the pure gluon gas.

Compared to the real part of the dispersion relation for
thermal partons, w k 3T, the damping rate p = I'/2
defined by the imaginary part of the self-energy, is not
really small, p~ 3o.,T for realistic values of o, This
anomalously large damping [22,23] indicates that interac-
tions in the QGP are important, at least for temperatures
not too far above the phase transition in accordance with
the recently emerging picture of the QGP [42].

An alternative method to the Braaten-Pisarski method
based on (2) is given by inserting the t-channel diagrams
of Fig. 1 in the t = (P —P')' «—s—:(—P + K)' ap-
proximation into (1), where the effective gluon propaga-
tor Ai q is used instead of the bare one [43]. This method
has been shown to be equivalent to the self-energy cal-
culation [Eqs. (2)—(4)] in the case of the energy loss of a

where the parton momentum densities are given by

pz(k) = 12' np(k) for quarks plus antiquarks and

p~(k) = 16n~(k) for gluons, respectively. The cross sec-
tions in the small momentum transfer limit ( t « s)—
containing the Debye mass read

d02'7I" Aa

dt (t + p )
(lo)

where the color factor I,
' = 4/9 for quark-quark scatter-

ing, ( = 1 for quark-gluon scattering, and ( = 9/4 for
gluon-gluon scattering. In contrast with the complete
calculation (to leading order in the coupling constant)
using the Braaten-Pisarski method, the result depends
weakly on the number of flavors. In the case of two fla-
vors (Ny = 2) we find

I' (Nt =2) l.ln, T,
1 (Ny = 2) 2.5a, T

and, in the pure gluonic case,

I' (Nt =0) 2.2n, T (12)

Comparing with (8) the simple approach leading to (11)
or (12) appears to underestimate the interaction rates by
about a factor of 2. However, it agrees with Pisarski's
result [44].

Finally, we discuss the consequences of the present re-
sults for typical values, T = 300 MeV and o., = 0.3,
expected at RHIC and LHC. Using (8) we arrive at re-
laxation times

(0.5 + 0.3) fm/c,

r, = (1.O + O.5) fm/c

indicating a rapid thermalization of the QGP and the
maintenance of the local thermal equilibrium during the
expansion phase by comparing with a typical expansion
time r,„~ „)1 fm/c [4]. Similar results have been found
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&om Monte Carlo simulations of ultrarelativistic heavy
ion collisions [2—4,45—47]. Furthermore the results (13)
support the prediction of a two-stage equilibration; i.e.,
there is first a thermal equilibrium of the gluonic compo-
nent before a complete thermalization is achieved later
on because of the stronger interaction of the gluons com-
pared to the quarks [1,4].

III. TRANSPORT INTERACTION RATES

The relevant physical quantities, such as mean &ee
path and equilibration time, in a plasma with long range
interactions are described rather by the transport in-
teraction rates than by the ordinary ones [23,30—32].
The transport rates are obtained &om the latter by in-
troducing a weight 1 —cos8 under the integrals of (1)
or (2), defining I'q, , = f dI'(1 —cos8). Here 8 de-
notes the scattering angle in the center of mass system:
cos 8 = (p. p')/(pp') = 1+2t/s. Thus the transport fac-
tor 1 —cos 8 = 2t/s =—2q (1—u2/q )/s is proportional
to the square of the momentum transfer q . This addi-
tional factor q changes the in&ared and ultraviolet be-
havior of the interaction rate completely. The transport
interaction rate behaves like I'&, „, f dq/q in naive per-
turbation theory. Therefore the soft as well as the hard
momentum transfer regimes contribute to I't, „,. This is

I

very similar to the energy loss of a charged particle in
a relativistic plasma, where an additional factor ~ ap-
pears compared to the interaction rate [7,8]. Quantities
which are logarithmically infrared divergent in naive per-
turbation theory turn out to be finite using the Braaten-
Pisarski method for soft momentum transfers (dynamical
screening). Such quantities can be calculated using the
method proposed by Braaten and Yuan [48]. According
to this, introducing a separation scale q*, the soft and
hard contributions are calculated separately. For the soft
contribution (q & q*) resummed propagators and vertices
have to be used, whereas bare Green's functions are suS-
cient for the hard one (q ) q*). Assuming gT « q* « T
the otherwise arbitrary scale q* drops out at the end

by adding the soft and the hard contributions, reflecting
the completeness of the effective perturbation theory. In
the following the Braaten-Yuan method will be used for
computing the transport interaction rate following the
example of the energy loss [8] as close as possible.

We will present the calculation of the gluon transport
rate in a pure gluon plasma (Ny = 0) in detail, quot-
ing only the results for the quark and gluon transport
rates in a QGP of two active Havors afterwards. The soft
contribution follows from (3) introducing the transport
weight 1 —cos0 under the integral and using q* as an
upper limit for the q integration:

I soft
g, trans

~»Z ~*, ~ d f 2) f
sI.(~, q)+ I

1 ——, ai(~ q)
7rs o ~ ( q2 ) ( q2 )

(i4)

The integral over q can be done exactly, while the ~ inte-
gral has to be evaluated numerically. This has been done
already in Ref. [13] yielding (m = 47m, T /3)

27rs a (ma2 )

~g, trans = 24mo 2T3 1
lD —.

8 As
(16)

However, since the strong coupling constant is not small
for realistic values expected in ultrarelativistic heavy ion
collisions, the knowledge of the coeKcient under the log-
arithm is essential. Therefore the constant Ah, d of the
hard contribution has to be determined. Before we turn
to this, let us note that the ln(1/n, ) term in (16) arises

24mn2Ts ( q*
ln

~
~

—2.811
s (n, j

In Ref. [13]the hard contribution has not been computed.
However, from general arguments (q* cancellation) [48]
we know that the hard contribution has to be of the form
I'a ~', „,= B [ln(T /q* ) + Ah, s], where B = 247rn2T /a
and the constant Ah, g has to be determined &om a de-
tailed calculation of the hard contribution. Thus, if we
are only interested in a logarithmic accuracy (leading log-
arithm approximation) valid in the weak coupling limit,
we end up with [13]

I

from the sensitivity of I't, „, to the momentum scale gT,
while the logarithmic term in the interaction rate (7)
comes from a sensitivity to the scale g T [29]. Thus
the transport interaction rate can be calculated com-
pletely to leading order in the coupling constant using
the Braaten-Pisarski method in contrast with I'. These
entirely different properties of the two different kinds of
rates originate, of course, &om the additional factor q
in & trans ~

For the hard contribution (q ) q*) it is sufficient
to use the bare gluon propagator. However, in con-
trast to the soft contribution the —t &( 8 approxima-
tion does not hold any more and the u- and s-channel
diagrams of Fig. 1 cannot be neglected. The correspond-
ing amplitudes have been calculated a long time ago in
Feynman gauge [49,50]. Since the on-shell matrix ele-
ments are gauge invariant, regardless of the momenta
integrated over, there is no problem in adopting those
results although the soft contribution has been evaluated
in Coulomb gauge [8,51].

However, a new difBculty arises now from the diver-
gence of the u-channel contribution for u = (P —K')
0, i.e. , t ~ a. (For massle—ss particles s+t+u = 0 holds. )
The u-channel divergence can be regulated in the same
way as the t-channel singularity, if we choose the trans-
port factor (sin 8)2/2 = 2tu/s2 instead of 1 —cos 8. This
choice is justified because the transport weight 1 —cos 0
has been introduced only for sDiall scattering angles
[30] for which it is identical to (sin 8)2/2. The latter
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also restores the t-u-channel symmetry in the transport
cross sections of quark-quark and gluon-gluon scatter-
ing. Furthermore, the shear viscosity coe%cient beyond
the relaxation time approximation also contains a factor
sin 0 [13,16,32,33]. Finally, parton collisions with scat-
tering angles near 0 as well as 180' are less important
for achieving an isotropic momentum distribution (ther-

mal equilibrium) indicating the physical significance of a
transport rate defined by a weight proportional to sin 0
instead of 1 —cos 0 for the equilibration process.

For calculating the hard contribution of the transport
interaction rate in a gluon gas we start from (1) mod-
ified to gluon-gluon scattering and including the factor
(sin0) /2:

1
Fg, trans(+f 0)

2p

I

(2 ),2„, [1+nB(p')]
d'3k

(2vr)s2k
"

d3k'
, [1+nrr(k')] (2~)' ~'(&+ & —P' —~') 16 (~~(gg ~ gg)I') (17)

where the matrix element contains the scattering diagrams of Fig. 1(d). While the hard contribution of the energy
loss of a heavy fermion with mass M )) T could be calculated exactly [8,9], this is not possible for (17). Therefore we

propose the following approximations: First we assume nor(p') nB(p) and na(k') nil(k). These simplifications
hold as long as q = ~p

—p'~ = ~k' —k~ is not too large or t is —not of the order of s. This assumption may be justified
because the transport factor (sin 0) /2 cuts off those mornenta efFectively. While we will neglect nrr(p) because of

(p) 3T, we do not set nil(k) = 0. As a matter of fact, the Bose enhancement factor 1+nor(k) is important for the
exact matching of the soft and hard parts, i;e. , for the cancellation of q*.

Using the definition of the differential cross section [52) (17) may now be written as

F g, trans (+f 0) 16nrr(k)[1 + nil(k)]
27r 3

t'der l 2tu
dt

( dt ) s2 (18)

The k integration over the Bose distribution functions
gives a factor 8Ts/3, compared to 16((3)T /z' = 1.95 T
neglecting the Bose enhancement factor. The differential
cross section for gg ~ gg scattering according to the
diagrams of Fig. 1(d) are taken from Ref. [49]:

I g, trans(+f = 0)
24 T

lrl
/

'/
—1.397

(~, )
24vro. ,T 0.25

ln
o's

0.25
5 20.' T ln (22)

f'do 9g' / us st tuI-—————+3i,
t dt 64vrs t t u2 s2 )

'

gg

(19)

I'," t ...(&f = 0)

where a factor 1/2 has been included to account for the
identical particles in the final state [29]. The hard contri-
bution follows from (18) by restricting the t integration
from —s to —q* . Assuming s )) q*, (18) together with

(19) results in

where we have used s (s) in the last equation.
The result (22) may be compared to the simple approx-

imation of using bare propagators with the Debye mass
as infrared regulator. Since the degree of the infrared sin-

gularitv is only logarithmic this amounts approximately
to using (18), where the separation scale q* is replaced
by p&

——4am, T in the upper limit of the t integration.
In this way we And

24vra, T 0.33
ln

pharcl (~ 0)
24nn T /T

ln
i

+ 1.414 . (21)
8 gq*

Adding up the soft and hard contributions, (15) and (21),
the separation scale q* drops out as required:

In order to proceed with the calculation we replace the
Mandelstam variable s under the logarithm by its aver-
age thermal value (s) = 2(p) (k) = 14.59T for gluon
momenta (p) = (k) = 2.701 T Then we arrive at.

Comparing to (22), one realizes that the, to leading order
in cr, exact, result (22) may be obtained by using an
efFective infrared cutofF of 1.32 p& instead of pL, .

In the case of a QGP with two flavors we have to con-
sider the diagrams of Figs. 1(a)—1(c) in addition. Modi-

fying (18) to these processes, the corresponding calcula-
tions are a little bit more involved than in the purely glu-

onic case. For example, we have to be careful about the
fIavors of the Anal state, e.g. , the flavors of the Anal state
quarks of the u- and s-channel diagrams of Figs. 1(a) and

l(b) have to be identical. Furthermore there is no tu-
channel symmetry in the quark-gluon scattering process.
After all the u-channel singularity is cancelled by the
transport factor (sin 0) /2 because it is only logarithmic
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Ny ) 247m, T 0.19
I'g, trans Nf = 2 = 1 + ln6) s' n,

0.19
6.6n T ln

N~) 32~a.T' 0.21
I'q, tr naNsf = 2 = 1+ ln

6 ) 3s" n,
0.21

2.5o. T ln {24)

in this case, rendering the use of an effective quark prop-
agator unnecessary. Also the gluon "mass" mz depends
now on Ny and, finally, in the case of quarks (or anti-
quarks) with momenta K and K' we have to replace in
(18) the factor 16 by 6', n~(k) by n~(k), and I+ning(k)
by 1 —n~(k). The soft contribution for the quark rate
follows from (14) by replacing |~ by C~. Putting every-
thing together we end up with

vertices and quark propagators in addition, correspond-
ing to including higher orders in g [9,48]. Thus, in order
to guarantee positive results and gauge invariance at the

same tiro.e for values of the coupling constant g 1, one
has to go beyond the lowest order in g. In the weak cou-

pling limit, on the other hand, the lowest order contri-
bution, here a2 ln(1/a, ), is sufficient. Furthermore such
an unphysical behavior for realistic values of the coupling
constant has also been observed in the calculation of the
gluon plasma frequency beyond leading order [53]. In all
of these cases, a negative result shows up, if g exceeds a
critical value of about 1.

Finally, we will discuss the implications of the trans-
port interaction rates for the viscosity of the QGP
[13,16,32,43,54—56]. In Refs. [13,16] the shear viscosity
coefficient g has been calculated &om

where s' = (1+Ny/6)/(I/sss+ Ny/6ssq) and s" = (1+
Ny/6)/(I/ssq + Ny/6sqq). Here sss is the Mandelstam
variable for two gluons, s~q for one gluon and one quark,
and sqq for two quarks in the initial state, leading to
(s') = 15.13T~ and (s") = 17.65 T2.

Applying the transport interaction rates (22) and (24)
to ultrarelativistic heavy ion collisions we encounter a
serious problem: The results (22) and (24), obtained to
lowest order perturbation theory, become negative for re-
alistic values of n, ) 0.2. Hence we cannot draw any
conclusions regarding thermalization times at RHIC and
LHC &om (24). However, the validity of the Landau
collision integral containing the transport cross section
beyond the logarithmic approximation depends on the
condition that the characteristic length l over which the
distribution function varies significantly must be large
coinpared with the screening length I/pii, i.e. , l pD )) 1

[30], which is not satisfied for 1/I T and pD 4~n, T
Thus the physical significance of the transport interac-
tion rate is somewhat obscure in the QGP.

The unphysical, negative results for the transport rates
for realistic values of o;, arise from the separate calcula-
tion of the soft and hard contributions, which works only
in the weak coupling limit g « l. In the soft and hard
contributions the assumption T )) q* )) gT is essential
for achieving the cancellation of q*. Of course, this as-

sumption cannot be satisfied for g 1 rendering (15) and
(21) negative, although each contribution is positive by
itself without any restriction on q*, since they are equiv-
alent to integrals over squares of magnitudes of matrix
elements. A similar problem occurred in (23) by using
pD as an upper limit for the t integration instead of a
regulator in the gluon propagator and assuming s )) pD,
which does not hold for g 1 any more.

The problem of an unphysical, negative result already
appeared in the computation of the energy loss of a heavy
quark in the QGP [9]. There it was argued that by using
the effective perturbation theory for the entire momen-
t»m range this problem may be circumvented, increas-
ing, however, the complexity of the calculation drasti-
cally. Gauge invariance and completeness in the order of
the coupling constant then. demand the use of effective

(25)

where i = q, g, e; is the energy density of the quarks and
gluons in the QGP, and I'," = 2 I', t, „,[13]. [The factor of
2 comes from using the weight sin 8 instead of (sing)2/2
in the definition of the shear viscosity coefficient [33].]
Inserting (24) into (25) we find

T3 0.11 0.37
n ln(0. 19/n, ) ln(0. 21/a, )

This should be compared to the most elaborate calcula-
tion of g (albeit in the leading logarithm approximation)
using a variational method for the Boltzmann equation
resulting in g = 1.16T /[n, ln(1/n, )] [43]. For n, ( 0.1
both results are comparable.

IV. CONCLUSIONS

Before presenting our conclusions, we discuss the va-

lidity of the approximations used here. The distinction
between soft and hard momenta and the cancellation of
the separation scale q*, which are the foundations of the
Braaten-Pisarski and the Braaten-Yuan method [18,48],
rely on the weak coupling limit assumption g « 1. In
contrast, realistic values of a, ) 0.2 imply g & 1.5. Since
n, is expected to decrease only logarithmically with in-
creasing temperature, g « 1 is not even satisfied at the
extreme temperature of the Planck scale. On the other
hand, the Braaten-Pisarski method is nothing but an
improvement of the usual perturbation theory at finite
temperature which should work at temperatures above
twice the critical according to comparisons with lattice
QCD [57,58]. Furthermore, comparing the effective gluon
"mass" mz, calculated using the nonperturbative Hartree
approximation, with perturbative results shows a differ-
ence between both results by less than 30%%uo at g = 1.5
[41]. Also in the case of the energy loss of an energetic
quark in the QGP it has been shown that the result de-
pends only weakly on the assumption gT « q* « T [11].
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Those observations indicate that the assumption g « 1
should be merely regarded as a mathematical trick and
not as a physical restriction. Therefore we believe that
the Braaten-Pisarski method not only provides a consis-
tent treatment of QCD at high temperatures taking into
account at the same time important physics as collective
effects of the nonideal relativistic plasma, e.g. , screening,
but also gives results for realistic situations which are
correct within about a factor of 2 [59], as long as loga-
rithmic factors ln(const/a, ) are not too close to zero or
negative as is the case for the transport interaction rate.

We have estimated the ordinary interaction rate of
thermal quarks and gluons by using the effective per-
turbation theory of Braaten and Pisarski, for which the
use of an effective gluon propagator is sufBcient in the
case of thermal partons. Because of the missing static
magnetic screening in the transverse part of the effective
gluon propagator and the absence of an imaginary part of
the quark propagator we still encounter a logarithmic in-
frared singularity. Assuming a reasonable cutoff, a rough
estimate has been obtained, I'g = (6.0 + 3.0) n, T for
gluons and I'~ = (2.7+ 1.3) n, T for quarks, which cor-
responds to relaxation times of the order r = (0.5+ 0.3)
fm/c for gluons and r = (1.0 +0.5) frn/c for quarks. This
indicates a rapid thermalization of the gluon component
(two-stage equilibration [1])and a maintenance of the lo-
cal thermal equilibrium during the expansion phase of the
possibly formed QGP at RHIC and LHC in accordance
with computer simulations of ultrarelativistic heavy ion
collisions [2,3,45].

On the other hand, in a plasma with long range in-
teractions as in QCD the physically relevant quantity
should be the transport rather than the ordinary inter-
action rate. The transport rate follows from the ordi-
nary one by introducIng a transport weight containing
the scattering angle in the center of mass system. Be-
cause of this factor the infrared behavior of the inter-
action rate is completely changed. The transport rate
turns out to be finite using the Braaten-Pisarski method
because dynamical screening sufBces now. We have cal-
culated the transport interaction rate for thermal quarks
and gluons beyond the leading logarithm approximation
by decomposing it into soft and hard parts according
to the prescription of Braaten and Yuan [48]. The soft
contribution has been computed by using the effective
gluon propagator of the Braaten-Pisarski method, while
the hard contribution has been treated using bare prop-
agators and vertices.

Compared to the ordinary interaction rate the trans-
port rate is reduced by a factor of a, caused by
the improved infrared behavior due to the trans-

port weight. For a QGP of two active flavors
I's t, „, 6.6 n, T 1n(0.19/n, ) for gluons and I'v „„,
2.5cr, T 1n(0.21/cr, ) for quarks have been found. The
surprisingly small values of the coeKcients under the log-

arithm show that I'&, „, is only meaningful for o., 0.1.
Improving the calculation by using the Braaten-Pisarski
method over the entire momentum range increases the
complexity of the calculation enormously, including
higher orders of g. Hence no statement about the conse-
quences (e.g. , thermalization times, mean free paths) for
realistic values of the coupling constant can be given here.
For this purpose, at least a calculation beyond the low-

est order perturbation theory is required. However, the
transport interaction rate obtained here suggests that it
may be much smaller than the ordinary rate. Thus the
realization of a local thermal equilibrium in relativistic
heavy ion collisions seems to be questionable assuming
the transport rates to be responsible for thermalization,
in contrast to computer simulations. However, neither in
HIJING [2] nor in the parton cascade [3] are transport
cross sections for the fundamental parton interactions
used.

Furthermore the shear viscosity, which is proportional
to the inverse of the transport interaction rate [13], has
been obtained for the first time beyond the leading log-
arithm approximation. For values of o., ( 0.1, for whirh
the result is well defined, it is large and comparable to the
ones obtained by using the leading logarithm approxima-
tion [13,16,43]. This supports the idea that dissipation
cannot be neglected in hydrodynamic descriptions of the
expansion phase of the QGP in ultrarelativistic heavy ion
collisions [16].

Finally, we have compared the rates obtained from the
Braaten-Pisarski method, which are complete to lead-
ing order in the coupling constant, with the widely used
approach of using bare propagators including the Debye
mass as an infrared regulator. While the latter approx-
imation works well for transport rates and energy losses

[8], it seems to underestimate the ordinary rates. This
observation suggests that the use of the Debye regula-
tor is justified for quantities which are logarithmically
infrared divergent in naive perturbation theory as the
transport rates or the energy loss, but might be ques-
tionable for quadratically infrared divergent quantities
as the ordinary interaction rate.
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