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Twist-4 nuclear parton distributions from photoproduction
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We analyze anomalous nuclear enhancement in the photoproduction of jets as a higher-twist process
in perturbative QCD. We use the Fermilab E683 data on dijet momentum imbalance to estimate the size

of the relevant twist-4 parton distributions. We find that twist-4 matrix elements are of the order of
0.05-0.1 GeV times typical twist-2 parton distributions. We discuss a physical interpretation of the nu-

clear enhancement as a measure of the average net transverse color force on an ofF-shell parton moving

through nuclear matter, and give an order-of-magnitude estimate for the typical squared transverse field

strengths encountered by a fast moving parton.

PACS number(s): 13.87.Ce, 12.38.Bx

I. INTRODUCTION

In this paper we continue our investigation of high-
energy multiple scattering with nuclear targets [1,2].
Theoretical considerations [3] and experimental results

[4] suggest that the process of hadronization is largely in-

dependent of the size of the target, and that it takes place
for the most part outside the nucleus. If this is the case,
efFects that grow with nuclear size are directly sensitive to
the propagation of partons, rather than hadrons, through
nuclear matter. This analysis is consistent with a basic
insight of the parton model, that the hadronization of
high-energy outgoing partons is time dilated in the rest
frames of the remaining participants in the hard process.
A high-energy scattered quark, for instance, which is ha-
dronizing at a normal rate in its own rest frame, propa-
gates across the entire nucleus before this hadronization
can begin. Thus, for high-energy hard scattering events,
it is sensible to think of multiple scattering at the parton-
ic level [5].

The field theoretic analogues of parton model formulas
are factorization theorems [6—8]. In Ref. [1]we observed
that factorization theorems at first-nonleading power in
momentum transfer can naturally describe multiple
scattering at large transverse momentum in photoproduc-
tion. (For related work, see [9].) In that paper, we dis-
cussed the cross section do /d 3l, with l the momentum of
an outgoing parton, which, according to our discussion
above, evolves into a jet of hadrons outside the target nu-

cleus. The relevant factorization theorem is of the form

The technical evaluation of Eq. (1) is described in detail
in Refs. [2,8]. At lowest order it consists of an expansion
("collinear expansion"} in transverse momenta of the par-
tons andlor by the inclusion of more partons. We have
found that it is convenient to carry out this procedure in
the Feynman gauge [8].

The lowest-order corrections included in this analysis
are shown schematically in Fig. 1, in which a quark
scatters from a photon, radiating in the process a hard
gluon. One of the outgoing partons later picks up an ad-
ditional gluon of momentum k on its way out of the nu-
cleus [Fig. 1(a)]. At the same order in the cross section,
there are virtual contributions in which the outgoing
quark exchanges two gluons on the way out [Fig. 1(b)].
The likelihood of an extra scattering is evidently propor-
tional to the nuclear size, and hence to A '~ . The leading
effects of this scattering are found at low gluon momen-
tum, but although the gluon itself is soft, it continues to
couple weakly to the outgoing quark, which is effectively
far off-shell before it evolves into a jet [3,8]. This obser-
vation is the basis for the application of perturbative
QCD to multiple scattering processes in nuclei. We shall
give expressions for such cross sections below, of the
form of the second term in Eq. (1}.

In the following section, we describe the "twist-four"
matrix elements, corresponding to f4 in Eq. (1), which
arise in our analysis. In particular, we point out their re-
lation to transverse color fields in the nucleus. In Sec. III

o(lT)=H Sf2fz+ z
H'8 f2@f4+0 4, (1)

1 1

I I„

where represents a convolution in the m —1 parton
fractional momenta of f . Thus, at leading power, each
hadron is represented by a single fractional momentum x,
while at first nonleading power, the nucleus has, in the
most general case, three fractional momenta over which
to integrate.

(a) (b)

FIG. 1. (a) Lowest-order scattering. (b) Order g scattering.
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we give the lowest-order twist-4 contribution to the dijet
transverse momentum imbalance, and compare our form
for anomalous nuclear enhancement to the Fermilab
E683 data [10]. Comparing the data with our theoretical
expression, we estimate the size of the relevant twist-4
parton distributions. We also discuss an interpretation of
the momentum imbalance in terms of transverse color
forces, and determine the order of magnitude of the
equivalent field strengths encountered by an outgoing
parton. A brief derivation of the A-enhanced twist-4
corrections at lowest order, following the methods intro-
duced in Refs. [1,2], is given in Sec. IV, along with a

short discussion of the influence of higher orders. We
conclude with a brief summary and suggestions for future
work.

II. MATRIX ELEMENTS

The relevant matrix elements are proportional to the
joint expectation value of a pair of hard parton (quark or
gluon) fields with a squared line integral of the gluonic
field strength:

T (x, A)= f e ' f 8(y —y, )8(y2 )—,'(p„~q(0)(n y)n, F'"(y2 )n F" (y )q(y, )~p„),

and

i n x
~(y —yi )@y~ ) &p~lnIF (0)n,F '(y, )n F" (y )nrF p(yi )Ipg)

yi '( p) y& y y2

2' 2K x np
(3)

Here n" is a vector defined by its scalar product with the momentum p of a single nucleon in the nucleus, n p =m, with
m the nucleon mass. At high energies, we may think of n" as a lightlike vector in the minus direction
[n+=2 in(nokn3)]

n"=5„ (4)

defined in the projectile-nucleus center of mass system. Thus, we take the incident photon to be moving in the —z
direction. In this system, we may also take for the momentum of a nucleon p"=p+ v", with

We note that (2) and (3) are exhibited as they would appear in the n A =0 gauge. In gauge-invariant form, they in-
clude ordered exponentials of n A between the various fields.

The matrix elements Tg and T may also be written as squared matrix elements summed over hadronic final states c:
for instance,

Tq(x, A)= X (2n)5(n p, —n (pn —xp)l(pn(q(0) f dy n"F „(y )(c)(c I dy n„p" (y )—(n y)q(0) pn),
C

(6)

where the index a may be + or transverse. The largest
contribution is for transverse components, a =l, in
which case the integral of the field strength has the inter-
pretation of the transverse non-Abelian Lorentz force felt
by a lightlike quark moving in the n" direction through
the nucleus. The occurrence of this expectation value is
natural for a cross section with measured transverse
momentum.

From the general form of Eq. (1), we see that A
enhancement must be a property of the relevant nuclear
matrix elements, since all information on the identity of
the target has been factorized into the matrix elements.
Equations (2) and (3) show how such enhancement can
occur, through integrals over the relative positions of the
fields that appear in the expectation values. For the ma-
trix elements at hand, these are the lightlike separations
y;. Such an enhancement can occur when the expectation

of the fields at fixed y; is essentially independent of A

when A is large. We note, however, that this assumption
is reasonable only if the fields pair ofF into color singlets
that are separated by no more than a nucleon diameter in
the y,. integrals. Otherwise, we would expect color
confinement ta imply sharp fallofF as the fields separate.

These considerations reduce the possible nuclear
enhancement in Eqs. (2) and (3) to growth that is linear
with the radius. In T, for instance, enhancement can
occur when the two quark fields are close together and
the two gluon fields are close together, but the two pairs
are separated by a distance that varies up to the nuclear
size. In this manner, we anticipate an A ' nuclear
enhancement, aside from an overall factor of A, which
reflects growth with the nuclear volume, even when all
four operators are close together.

We may summarize the above considerations with the
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following representation of A enhancement in the matrix
elements (2) and (3):

T, (x, A}=A, A i f, (x, A),

where A. is a constant with dimensions of mass, and where

f, (x, A) is a dimensionless function that depends on the
identity of the "hard" parton, a =g, q. We shall assume
that A, is the same for quarks and gluons and that
f, (x, A) depends only weakly on A. In fact, because the
origin of the A enhancement is in scatterings that occur
far apart in the nucleus, we expect f, (x, A) to be essen-
tially identical to a normal, leading-twist, distribution of
parton a in the nucleus (normalized by 1/A ), in which A

dependence for moderate x tends to saturate at relatively
small values of A, becoming essentially independent of A
for A )10-20 [11].

Of course, there are twist-4 matrix elements other than
those in Eqs. (2} and (3). To produce a nuclear enhance-
ment from the separation of two color-singlet combina-
tions of fields, the relevant operators must include four
physical fields. Of particular interest are those involving
transverse derivatives on the quark fields. Each such
derivative, however, promotes the twist by one. For a
single such derivative, then, we can have only a single
gluon field strength at twist four, which by itself cannot
form a color singlet to generate the A enhancement
identified above. (Note that fields like n ~ A, which may
be included at higher order without changing the twist,
will be incorporated in the ordered exponentials that
make the matrix elements gauge invariant. They will not
combine with a field strength to produce a physical nu-
clear enhancement. ) We shall, therefore, neglect higher-
twist terms which involve derivatives on quark fields.
Another possibility is a matrix element with four quark
fields. As we shall see, however, the contributions associ-
ated with these matrix elements turn out to be even
higher twist.

Finally, we note that for the matrix elements (2) and (3}
that are relevant to nuclear enhancement, the twist-four
convolution in Eq. (1) is in terms of a single momentum
fraction for both target and projectile, just as in the lead-
ing twist case. This is a significant simplification. We are
now ready to turn to the role of these matrix elements in
dijet photoproduction cross sections.

III. NUCLEAR ENHANCEMENT
FOR PHOTOPRODUCED DIJETS

In Ref. [1], we computed the first correction to
dor" /d l, the inclusive single-jet cross section with jet
momentum I. Here we sha11 consider a variation of this
process, suggested by the experimental studies of Refs.
[10,12]. This is the average squared transverse momen-
tum imba1ance, kz. , of a pair of observed jets. At 1owest
order, kz-=0. The computation of this cross section is
actually simpler than that for the inclusive single-jet cross
section [1],dcr""/d 1, because the extra factor of kz in
the phase space integral eliminates the virtual double-
scattering diagrams, Fig. 1(b}, as well as the Born contri-
bution. We will use the observed va1ues of kz- in pho-
toproduction [10] to give a rough estimate for the con-

stant A, in Eq. (7), and hence for the size of the nuclear
matrix elements.

Consider the cross section for the observation of two
outgoing partons (jets):

y+ A ~jet(l)+jet(l')+X . (8)

dcrr"(l )-5'(k ) . (10)

To compute any (higher-twist) nuclear enhancement,
we perform a collinear expansion [7,8] in the momenta of
the four external lines (two quark, two gluon) that con-
nect the target nucleus with the order a, hard scattering,
working to second order in the transverse momenta of
these lines. The nuclear enhancement, as in Ref. [1],
comes about only from the second derivative with respect
to kz, the transverse momentum that fiows between the
two gluons in Fig. 2. Expansion in terms quark trans-
verse momenta, in particular, will produce higher twist
matrix elements with only two physical fields (say, two
transverse derivatives of the quark fields).

kr defined above is slightly different from the momen-
tum kz& quoted by Ref. [10], which is the projection of
kz out of the scattering plane defined by the beam axes
and either of the two observed jets. The relation, assum-
ing rotational symmetry, is simply (we always use rms
averages)

(k,') =2(k,', ) .

To be specific, we consider the average value of kz for
fixed momentum of the less energetic (say) of the two ob-
served jets, denoted l:

(k&EI(der/d l) )

EI(do/d l}
(12)

PA
k —k,

FIG. 2. Sample diagram for a multiple scattering process.
The vertical line represents the final state.

We will study the role of rescattering in the dijet trans-
verse momentum imbalance at lowest order. A general
diagram is shown in Fig. 2. In second order in the strong
coupling g, the outgoing partons scatter from two addi-
tional gluons of the target, labeled k —k, and k —k2 in
the figure.

The extra scatterings of Fig. 2 can produce a transverse
momentum imbalance,

kr =lr+ 1z,
whose average value we shall calculate. We work in the
laboratory frame. At lowest order (Born approximation),
the two transverse momenta are equal and opposite:
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where

k'E = d'k, k,'E,
T

(13)

Again, these averages are manifestly zero in the Born ap-
proximation.

The computation of (kzE&(do /d 1) ) at lowest order
closely follows the method introduced in Refs. [1,2], and
will be given in the following section. We may summa-
rize the argument there as follows. Nuclear enhancement
is found from the discontinuities of the hard scattering,
which are computed by setting the lines adjacent to the
final state in Fig. 2 on shell. We emphasize that taking
the poles is only a calculational device, and that the hard
scattering remains short distance and calculable in per-
turbation theory. The poles fix two of the fractional mo-
menta Bowing from the target into the hard scattering to
zero, resulting in the matrix elements of Eqs. (2} and (3),
which involve four fields but depend on a single fractional
momentum only.

In this manner, the nuclear enhancement to
( krE&(do /d 1) ) at order A /3 is found to be

(krEi 3 4/3= g f dx T, (x A)Hy'(xp p 1)
d 1 p q g

=k A" g f dxf, (x, A}Hy'(xp, p, l),
a =q, g

(14)

where in the second form we have used Eq. (7), and where
H~' is a hard-scattering function. The form shown here
is dependent only on the assumption of no long-distance
color correlations in the nucleus. We will make an
identification of f, (x, A) with a nuclear twist-two parton
distribution. This is a separate assumption, however,
upon which the form of Eq. (7) does not depend.

The hard scattering functions H~' that appear in Eq.
(14) depend on the particular cross section being comput-
ed. We note, however, that all double-scattering cross
sections of this type are proportional to the dimensional
constant A, at lowest order in the expansion in twist,
from the matrix elements Eqs. (2) and (3). Of course,
when A becomes large, the A ' enhancement from the
matrix elements may become correspondingly large, and
it may be necessary to incorporate higher powers of A,
that is, even higher twist. In this paper, however, we wi11

content ourselves with the first correction, which may be
appropriate to the moderate nuclear effects found in pho-
toproduction [10].

At lowest order, explicit calculation gives the striking-
ly simple result [see Eq. (45) below]

8m. a, (lz ) dyy&
Hy'(xp, py, 1)= z C, Ei (xp,p, 1),

N —1
' d3l

(15)

where the & ' are partonic jet production cross sections,
and C, are the usual group factors, Cg=(N 1)/2N, —
C =N =3. a, (lz) is evaluated with the running cou-
pling at the scale of the hard scattering. This gives, from
Eq. (14),

kr2E, 4/3
A2A4/3 C f dx f (x A)E( (xp p 1)+C f dx f (x A)E( (xp py 1) (16)

with doy, the leading-twist cross section. We suppress
the evolution of the distributions, which we assume to be
moderate in the experimental range of /z. . Equation (16)
is our basic result for the momentum imbalance in pho-
toproduction.

The average value of k~ for all events in a region R of
dijet phase space is found from Eq. (16} by integrating
over that region and dividing by the corresponding un-

weighted cross section:

yA(R )
— d 1 E dCT

& E(2n) d 1
(17)

(ky(R))4/3
8' a, (Q )I(N —1)

or"(Rp )

X X'A '/3[C, ay "(R,p, )+C,ay "(R,p, )],
(18)

In this calculation, we shall evaluate the running cou-
pling a, (lr) in Eq. (15) at a typical value, Q, of the
momentum transfer. We assume that a, (lr) is approxi-
mately constant within R. We then find

y A(R,p )=ar A(R,py)+agy A(R,py) . (19)

If we take, as indicated above, quark and gluon nuclear
distributions for the functions f, (x, A), we can compute
the right-hand side of Eq. (18}and, comparing to the ex-
perimental A dependence measured for the left-hand
side, determine )(. and hence, by Eq. (7), the size of the
relevant twist-4 matrix elements. In the following, we
shall give such an estimate.

Most of the dijet events measured by the Fermilab
E683 Collaboration [10] are in the central region of the
c.m. frame. As a result, the typical initial parton momen-
tum fraction x satisfies

x ~ ( 21r } /s, (20)

where s =(21.5)~ GeV . The data was cut for lr &3

where crgy"(R,Pr ), for instance, is the gluonic contribu-
tion to the nuclear cross section. We have absorbed a
factor of A into these cross sections, in accordance with
our definitions of the f, above. In our approximation,
linear in twist-4 matrix elements, we may take o y "(R,p )

as the leading-twist total cross section:
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GeV, so that the initial parton momentum fraction typi-
cally obeys x )0.08 for the sampled events. Similarly, in
the dijet phase space, R in Eq. (17), if we take (lr )-4
GeV, we will have (x)-0.14 for the Fermilab E683
data. Since gluons concentrate with momentum fraction
x &0.1, we may make a simplifying assumption that
valence quark contributions dominate over gluonic con-
tributions in Eqs. (18) and (19), at least for the purposes
of a rough estimate for the size of the twist-4 matrix ele-
ments. In the other extreme, we could assume that the
gluonic contribution dominates. In this case, our esti-
rnate in Eqs. (21) and (23) below will differ only by replac-
ing C by Cs. If we assume that quarks and gluons con-
tribute to a comparable extent, we find an intermediate
value. Nore accurate estimates can be given, and our as-
sumptions about the matrix elements in Eq. (7) checked,
when ( kr ) is given as a function of lr. It is already clear
from Eq. (18), however, that (kr ) will be enhanced in a
region of phase space, R, where gluons dominate, simply
because Cs & C». Thus, at fixed lr, we may expect the
momentum imbalance to increase with increasing energy.

To be specific, let us return to the approximation in
which only valence quarks initiate the hard process
[f »f in Eq. (14)]. In this case, o r", Eq. (19), cancels
between numerator and denominator on the right-hand
side of (18},to give

(k (R)) =A, A' C = '»r a (Q)A, —A'
8n a, (Q2)

(21)

where we have set, for QCD, N =3. Thus, in view of Eq.
(6), A enhancement in the average squared momentum
imbalance is a direct measure of the squared color
Lorentz force experienced by the scattered partons as
they leave the nucleus. Note that the only remaining R
dependence in Eq. (21) is implicit in Q .

From Ref. [10] we have the approximate relation (in
terms of the natural logarithm of A)

(krz) -2(1.2+0.091nA) -2(1.44+0.2161nA}, (22)

in units of GeV, where, in the second form we have
dropped the term quadratic in lnA in view of its rather
small coeScient. This average includes a set of high /z
dijet events that satisfy criteria that are described in Ref.
[10]. In the valence quark approximation of Eq. (21), the
dependence on the region R that corresponds to this cri-
teria is relatively weak. We now observe that for
10 & A & 200, the relation ln A —A ' is good to 10%, so
that the ln A dependence of (22) has the direct interpreta-
tion of dependence on the nuclear r'adius.

The approximately linear dependence of the average of
(kz ) on the nuclear radius implies that the average of
the absolute value of k~ grows as the square root of the
number of scattering centers, identified with nucleons.
This is what we would expect if the parton is scattered in
a random, independent manner by each nucleus in its
path. This implies, in each transverse direction, an aver-
age net transverse momentum transfer to the outgoing
partons of roughly 0.47 GeV per internucleon distance,

or a net transverse force of roughly 0.39 GeV per fm,
within each nucleon W. e have just seen that this interpre-
tation arises naturally in the formalism of higher-twist
factorization.

In the approximation A ' -lnA, we can also identify
the coefficients of A '~ in Eq. (21) with the coeScient of
ln A in Eq. (22). We then find

dy dy2

2Ro( A ' Ro) (Fl+ )2Ay (24)

To get the first expression, we note that the matrix ele-
ment that is left in Eq. (2} once the field strengths are re-
moved is just the quark distribution in the nucleus, which
we write as Af . In the second expression, we have tak-
en the squared fields strengths as constants, and have re-
placed the y and y 2 integrals by twice the nucleon ra-
dius times the nuclear radius. This reflects our intuition
that F(y )F(yz ) contributes to T only when the F's
are within a nucleon diameter of each other, although
their average position may be anywhere within the nu-
cleus in the path of the scattered parton. Given the (7}
and (24) for the matrix element and (23) for A, , we find
the following estimate for the average squared transverse
field strength encountered by the outgoing partons:

(Fj.+ )2

Ro

-0.22 GeV fm -0.85X10 GeV (25)

Such a semiclassical estimate, in which we have removed
the integrals of the field strengths from the matrix ele-
ment, can have at best an order of magnitude
significance. Our central result is the estimate of
A, -0.05—0. 1 GeV, and hence of the twist-4 matrix ele-

G V -0.1 GeV
C»m a, (Q )

Recalling the discussion that led to Eq. (7}, and estimat-
ing na, (Q )-1, we see that Eq. (23) suggests that the
twist-4 matrix elements T and T~ are of order 0.1 GeV
times twist-2 parton distribution functi'ons. Of course,
we emphasize that the specific number depends on the
valence quark approximation. If the gluonic contribution
is important, we expect the value of A, to be smaller than
the 0.1 GeV estimated in Eq. (23). It should, however,
be larger than 0.046 GeV, the value that is obtained by
the extreme assumption the quarks may be neglected. As
mentioned above, in this case C» in Eq. (23) is replaced by
Cg. In any case, the experimentally determined result for
the A, , given here, will be slightly larger, even up to a fac-
tor of 2 larger, than the guess A, -AqcD-0. 04 GeV
given in Ref. [1].

Going a step further, we estimate a set of equivalent
classical field strengths [13] that would produce a A, of
this size in T, Eq. (2). We do this by identifying A, in
Eq. (7) with the integrals of the squared field strengths,
which we factor out, as if they were classical quantities:
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ments. The connection with field strengths is strongly
dependent on our assumptions.

Of course, we also made a number of approximations
to reach A, , but we believe it to be a reasonable guide to
the scale of the nuclear matrix elements that we set out to
study. In the next section, we shall give some technical
details of the calculation of the twist-4 hard-scattering
function, Eq. (15).

IV. FACTORXZATION AT LOWEST ORDER

In this section we discuss the lowest-order computation
that leads to the result of Eq. (16), and discuss the effect
of higher orders in a, on this result.

Equation (16) has the factorized form given in Eq. (1),
which is a direct consequence of the higher-twist factori-
zation theorem [7,8]. We should note that a general
Feynman diagram contributes to almost every term in the
power expansion of cross sections illustrated by Eq. (1).
To disentangle leading and nonleading powers, we em-

ploy an expansion ("collinear expansion"} in the trans-
verse momenta of the partons linking the matrix elements
and the corresponding partonic hard-scattering diagram.
The detailed structure of the hard-scattering functions,
the H' in Eq. (1), depends on the choices made for the
matrix elements at leading and nonleading twist.

A. Collinear expansion

trix elements. Consider a typical diagram contributing to
momentum imbalance of two jets, as shown in Fig. 2. It
has three parton momenta, k, ki, and k2, linking the par-
tonic diagram with the matrix element.

The collinear expansion is an expansion in transverse
momenta of the partons. At leading power, all partons
are represented by their longitudinal momentum frac-
tions, and consequently, integrations over k, k, , and k2
are reduced into three one-dimensional integrals over the
momentum fractions x, x&, and x2, respectively. As we
will show later, because of the pole structure of the Feyn-
man diagrams the x

&
and x2 integrals can be done explic-

itly by contour integration, for that part of the cross sec-
tion that is enhanced in A. Therefore, the final result
presented in Eq. (16) has only one x integration linking
the matrix elements and hard parts.

%e can write the contribution of Fig. 2 to the two-jet
cross section as

d4k dk, dk2
E

(22r)' (22r)' (2n)'

XTr[M ~(k, k „k2,p)8~(k, k), k2, q, I, l') ],
(26)

where M is the two-quark, two-gluon matrix element,
and 8 includes all corresponding diagrams for photon-
parton scattering to produce two jets with momentum l
and l'. We now expand the parton momenta k, k„and
k2 in 8 about the values,

The collinear expansion is the first step in separating
the short-distance scattering from the long-distance ma-

k", =x,p", k)=xip", k"=xp"+kg,

and keep only the leading term of P. We then obtain

(27)

Ei i
= Jdx dxi dx2 Jd krTr[f' (x,x),x2, kr, p)8~&(xp, x)p, xip, k&, q, l, l')],

31

where the matrix element f'is given by

+ — +d +A 42 +p dy P y) P y2 yr ix)p y) i(x —x )p y i(x —x —
)p y —ik y(x,x),x2, kr,p}= ))e)e22eTT252m' '2n' (22r )

2

X ('p p I q (0)A '(y 2,Or )3 (y,y r )q (y ),Or ) lp & &

(28)

(29)

At the lowest order, kr and the jet momenta l and l' in

Eq. (28) are not independent, but are related by

kg =1"+ l'" . (30)

Therefore, in the following, we will suppress I' depen-
dence in the partonic part H. Note that we have fixed all
transverse positions to zero except for yr (we treat yr as
a transverse vector, so that kz"yr ——yz"kr). This corre-
sponds to the rule, discussed in Sec. II above, that we
neglect quark transverse momenta in the hard scattering.
The transverse momenta fiowing between the quark
fields, and between the quark and gluon fields, is thus im-

plicitly integrated over, which sets three of the four fields
in 1' to zero transverse separation.

The matrix element f and the partonic part A' are still
linked by a spinor trace and by sums over vector Lorentz
indices, in addition to the integrals over parton momen-
tum fractions. The spinor trace can be separated in the
standard manner by using a Fierz transformation. The
leading power contribution is given by contracting
y /(2p+) to the quark operators q(0) and q (y, ) in ma-
trix element f', and contracting (y p)/2 to the partonic
part 8 [8]. In Feynman gauge, the leading contribution
of the gluon field operators in the matrix element f' is
given by

a P
(31)
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where A+=n A. By absorbing the factor p p~ into the
hard-scattering function, the sums over Lorentz indices
are also separated between the short- and long-distance
functions. We now have a somewhat simpler factorized
expression for the cross section,

diy 2Ei 3
= dx dx, dx2 d k7T(x, x(&x2, kT&p)

d3l

XH(x, xi,x2,p, k7, q, I),
where the modified matrix element T is

(32)

&2
dp 4 i d3 2 d 3 T ix(p+y) i(x —x) )p+y —i(x —x2)p+y2 ikr—yT

277 27r 277 (2n )2

X
2

&pA lq(0)(n r)A'(y2, 0T)A '(y, yT)qb i )lpA & . (33)

The partonic part H is given the diagrams shown in Fig. 3, with quark lines traced with (y p)/2, and gluon lines con-
tracted with p p~.

The matrix element T given in Eq. (33) has gluon field operators A +, which are not gauge covariant, so that the re-
sulting matrix element cannot be made gauge invariant by the inclusion of ordered exponentials of gauge fields [8]. We
can, however, convert the A +'s into field strengths, F +. To relate A +'s to the field strength, we rewrite Eq. (32) as

El + +1 +2 TT++1 +2 TP T~ ++1 +2P T 0 T3l

+1 +2 T 8++1+2 TP+++1+2 TP'6 T

where fF(x x i x2 kT p) is given by

M2
dy +3'i +3 2 & 3 7' ix)p+y) i(x —x()p+y -i(x —x2)p y2

—ikr yrgF(x,x„x2,kT,p)= e ' 'e ' e ' 'e
2m' 2n2m' '(2n )2

(34)

~pA lq(0)(n l )F (3 2 0T)F"(/ ~T)q(xi )lpA & (35)

The two factors of k7 have been converted into trans-
verse derivatives on the two fields A+, by integration by
parts. Derivatives of quark fields are neglected in identi-
fying the A-enhanced matrix elements, following the

(x-x,)p (x-x,)p

(b)

comments of Sec. II above. Had f' included four quark
fields, the collinear expansion would have produced a ma-
trix element of four quark fields and two transverse
derivatives, a twist-6 contribution. Dimensional counting
requires that the hard part associated with such a matrix
element be suppressed by a power of /T2 relative to those
associated with twist-4 operators. This justifies our
neglect of these operators at this order.

The explicit l/k72 factor in the modified partonic part
in Eq. (34) requires that H vanish at k7 =0 for the
higher-twist contribution to be well defined. This is cer-
tainly the case for the averaged squared momentum im-
balance of two jets, ( k7 d o ) . Therefore, we may usefully
introduce a new hard-scattering function H, by

H(x, x(,x2, kT,p, q, l)/k7 =H(x, xi,x2,p, q, l), (36)

where we have neglected higher orders of kT in H, which
contribute at yet higher twist.

At leading power, the momentum imbalance is now

(d)

FIG. 3. Lowest-order diagrams in quark photoproduction
which give rise to nuclear enhancement proportional to the ma-
trix element of Eq. (2).

k7E( 2
=fdx dx, dx2 fd kTf'F(x&x)&x2, kT&p)

d I

XH (x,x „x2,p, q, 1) . (37)

Now we can integrate over kT in the matrix element, to
get
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krE, , =fdx dx, dx, TF(x,x),x2,p)2 d0
d I

X H( x, x), x 2, p, q, 1),

where TF is defined by

Tz(x, x&,xzp)= f e ' ' e ' e ' ' —(p& ~q(0)(n y)F +(y2 )F+ (y )q(y& )~pz ) .
2m 2m 2%. 2

(39)

In TF, as in Eq. (2}, all transverse position vectors are
equal to zero.

In deriving Eq. (38), we have so far neglected the color
sums that link the hard scattering and the matrix ele-
ment. In line with our comments of Sec. II, we always
assume that color has no long-distance correlations in the
nucleus. This means that A enhancements in the matrix
elements can only be derived when the quark and gluon
fields in TF separately form color singlets. Thus, in the
following, we shall assume that quark and gluon color in-
dices are traced separately in both matrix elements and
hard-scattering functions. This involves normalizing the
hard-scattering function by a factor

1 1C
N2 1

(40)

with X =3. As usual, higher order at the same twist will
produce ordered exponentials between the various fields,
which make these matrix elements gauge invariant.

With the color traces understood in both H and TF,
and the color factor C &„absorbed into H, Eq. (38) gives
the physically measured quantity (, kTzE&do /131 ) in the
general factorized form of Eq. (1).

B. Leading pole contributions

The averaged momentum imbalance given in Eq. (38)
depends on integrations over three parton momentum
fractions. For fixed, nonzero fractions x —x, and x —x2,
oscillations of the exponentials in Tz, Eq. (39), destroy
any A enhancement that cou1d come from the y integrals
(see Sec. II above). At low order in the hard-scattering
diagrams of Fig. 2, however, the x& and x2 integrals can
be done explicitly by contour integration. We will find
that certain diagrams have poles precisely at x =x, =x2,
which results in the matrix elements T„a =q, g of Eqs.
(2) and (3), without these exponentials, and hence with A

enhancement. By the same token, the A-enhanced con-
tribution to the cross section depends on a single x in-
tegral only, as claimed above.

To see how this comes about, consider the specific dia-
gram shown in Fig. 3(a}, in which the incoming photon
and target quark undergo a "Compton" scattering to pro-
duce a quark and a gluon, and the quark interacts with
another gluon on its way out to form a jet of momentum
I. There are two poles in this diagram corresponding to
vanishing momenta (x —x, )p and (x —x2)p. The par-
tonic part H for the diagram shown in Fig. 3(a) is given

by simply

Cq 1H(x, x„x2,q, l)=g
x) —x +is X2 X l6

gyre
XEi 3 (xp q 1),

d 1
(41)

where C =(N 1)l(2N—) and where EI(d&r~l
d31}(xp,q, l) is the lowest-order photon-quark "Comp-
ton" cross section. Substituting Eq. (41) into Eq. (38),
and using the integrals

dx, e = —2mi8(y —y, )~

~

X) X+lE'

ixp+(y I
—y )

Xe
+ ~ +

x 2
2
~

I
~ I ~

rIx ~~ ~I ~ 2
~

~
r

~~
t

X2 X lE

we obtain

(42)

where T (x,p) is given in Eq. (2). The remaining lowest-
order two-quark and two-gluon diagrams with poles at
x =x, =x2 are given in Figs. 3(b)—3(d). A brief calcula-
tion such as the one above shows that these three dia-
grams just cancel, and give no net contribution.

Similarly, for two-photon and four-gluon diagrams, of
the form of Fig. 4, we have, at lowest order,

{x—x, )p (x—xa)p

FIG. 4. Diagrams in gluon photoproduction which give rise
to nuclear enhancement proportional to the matrix element of
Eq. (3).

(
dg9 87K Q

kTEI 3
= C fdxT (x,p)E, 3 (xp, q, l),

d 1 N 1 — d 1

(43)
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d ~s 8&a3 d &rs
kzE, , = Cs fdx T (x,p)EI, (xp, q, l),

d I N 1 — d I

(44)

where C =N =3 and T~(x,p) is given in Eq. (3).
In summary, our complete result is of the form

(
8&a,

krzE, = J dx C T (x,P)E» (xP, q, l)
d'I N' —1

FIG. 5. Typical higher-order contributions to jet photopro-
duction.

dprs
+CsT (x&p}EI (xp, q, l),d'I

(45)

as given in Eqs. (14)-(16),with pr for q.

C. Higher-order corrections

The lowest-order calculation given above neglects the
evolution of the final state partons into jets. Although
this evolution may be expected to take place outside of
the nucleus, ideally this feature should be a result of the
formalism, rather than an input. In fact, this is the case,
as we now show. Consider the diagram of Fig. 5, which is
a generalization of Fig. 1. J represents graphical contri-
butions to the evolution of an outgoing parton. We in-
clude (any number) of soft interactions with this jet. The
generalization of the follawing argument to the remain-
ing outgoing parton(s) is trivial.

As above, at lowest order in the momentum imbalance
kr~, the momenta of the soft gluons, k;, may be replaced
by their projections in the p direction, x;p, as in Eq. (27}.
In addition, only the polarization in the p direction con-
tributes to leading order in the collinear expansion. In
the collinear expansion, then, each soft gluon is replaced,
in the jet to which it attaches, by a "scalar" polarized
gluon, whose polarization is proportional to its momen-
tum. This is a standard situation in factorization argu-
ments [6], and in this case the soft gluon decouples from
the jet by the use of Ward identities. Without going into
the details [6], we may summarize the result: the leading
contributions of soft rescattering factorize from the inter-
nal structure of the jet, and the cross section may be writ-
ten as the product of two factors, one that describes the
evolution of the jet, and the other the coupling of soft
gluons to a single "eikonal" line, whose direction and
color are defined by the outgoing jet. Thus, the evolution
of the jet is unaffected by soft rescattering, although the
soft gluons may still transfer momentum from the nu-
cleus to the jet.

V. CONCLUSIONS

In this paper we have applied the twist-4 formalism for
nuclear enhancement [1,2] to dijet momentum imbalance
in photoproduction. Because of the simplicity af the ex-
pressian for this quantity Eq. (18), we were able to use ex-
perimental results to estimate the size of the relevant
twa-parton matrix elements, such as Eq. (2},as the order
of A '~ times A, -0.05-0. 1 GeV times twist-2, nuclear
single-parton distributions. This is a sizable matrix ele-
ment, and should give significant contributions to nuclear
enhancement in other processes.

Our estimates employed approximations in which the
result is essentially independent of the directions of the
outgoing jets. Measurements of "differential" averages
(kr) as a function of Iz, or other kinetic jet variables,
would make it possible to determine A. separately for the
matrix elements Tg and T~. In addition, it remains to
study the evolution of these matrix elements. It is possi-
ble that this evolution is highly nontrivial, since they in-
volve vanishing partonic momentum fractions.

Finally, in this paper and Refs. [1,2], we have
developed the formalism of nuclear enhancement only for
the electromagnetic-induced processes of deeply inelastic
scattering and photoproduction. Data on dijet momen-
tum imbalance in hadroproduction [10,12], in which sub-
stantial nuclear enhancement has been seen, should pro-
vide direct tests of the formalism, given that we now
know the scale of the relevant matrix elements. At the
same time, the much smaller nuclear dependence seen in
Drell-Yan production [14] suggests a complementary test
for these methods. We hope that these and related issues
will be the subject of future work.
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