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An attempt is made to give a consistent description of high energy hadron interactions starting with
the physical assumption that only “hard” processes contribute to the Pomeron structure. Using the gen-
eral properties of a “hard” Pomeron in perturbative QCD an equation for shadowing corrections is sug-
gested and solved. It allows one to extend the new approach to high energy hadron collisons. In doing
so we generalize the so-called eikonal approximation widely used to describe the shadowing corrections
for both hadron and nucleus scattering at high energy. New formulas are also suggested for the large ra-
pidity gap survival probability which crucially differ from the eikonal ones.

PACS number(s): 13.85.Qk

I. INTRODUCTION

Calculations of large-cross-section physics at high en-
ergy are usually regarded as dirty since there is a
widespread delusion that it is impossible to develop any
theoretical approach to such processes based on our mi-
croscopic theory—QCD. It is widely believed that the
gap between current phenomenological models for high
energy hadron and/or nucleus scattering and QCD is so
big that it is difficult to see any interrelation between
them. The main goal of this paper is to develop an ap-
proach that is based on QCD and establishes a very
transparent relationship between high energy “soft”
scattering and our microscopic theory.

Of course, in order to do this we need to make a hy-
pothesis. Our key assumption is that only “hard” pro-
cesses contribute to the Pomeron structure. It means
that we can describe the Pomeron in the framework of
perturbative QCD. I would like to develop a self-
consistent approach based on some new physical assump-
tion in comparison with all previous attempts to take into
account both “soft” and ‘“hard” processes [1]. The prin-
cipal difference is the fact that I am going to use the lead-
ing log (energy) approximation (leading[ln(s)] 4, see Sec.
II for details) of perturbative QCD for ‘hard” processes.
In Refs. [1] two approaches have been used for the same
purposes: either the factorization formula for the in-
clusive cross section to calculate the “hard” contribution
to the total inelastic cross section (see Ref. [2] for the
relevant criticism on this point) or/and the leading log
(transverse momentum) approximation [leading(nk?) 4 ]
of perturbative QCD to estimate the “hard” part of the
total inelastic cross section (see [3]). We do not expect
good accuracy for the second approach. This is the
reason why we have to go back and try to develop a new
approach for the “hard” part of the total inelastic cross
section.

Let me list the arguments that show that the assump-
tion that only “hard” processes contribute to the Pome-
ron structure is not so crazy as it seems to be at first
sight.

0556-2821/94/49(9)/4469(12)/$06.00 49

(1) In any attempt to fit the experimental data, the
slope of the Pomeron trajectory (a’) turns out to be very
small, at least not bigger than a’'=0.25 GeV 2 [4]-[6].!
We use the following notation for the Pomeron trajecto-
ry, ap(t=—g2)=1+A+a't.

(2) The experimental slope of diffractive dissociation in
the system of secondary hadrons with large mass is ap-
proximately two times smaller than the slope for the elas-
tic scattering. In terms of Pomeron phenomenology this
fact results in the small proper size of the triple Pomeron
vertex (G;p). To a first approximation, we can assign a
zero slope for the triple Pomeron vertex so as to describe
the experimental data on diffraction dissociation.

(3) The idea that gluons inside a hadron are confined in
the volume of smaller radius (Rg~0.1 fm <<R;, ~1 fm)
is still a working hypothesis which helps to describe the
experimental data (see Ref. [4] for the details).

(4) The introduction of “semihard” processes in QCD
[7] which are responsible for the total inclusive cross sec-
tion of hadron interaction at high energy leads to a value
of the total cross section compatible with the geometrical
size of the hadron. The assumption that “semihard” pro-
cesses are responsible for the major part of the total cross
section provides the most probable and natural way to
describe the matching between “hard” and “soft” pro-
cesses.

(5) Previous experience in multiperipheral models
shows that one could describe the global features of the
“soft” interaction at high energy providing the main
transverse momentum of produced hadrons is large
enough (of the order of 1 GeV).

(6) In the eikonal approach, the QCD Pomeron is able
to describe the current experimental data on total and
elastic cross section as well as the slope (see Ref. [12] for
details).

I hope that the above arguments are convincing

IWe will comment on this point in more detail at the end of
Sec. II.
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enough to consider a hard Pomeron as a first approxima-
tion to high energy scattering. This hypothesis has at
least three big advantages: simplicity, natural matching
with QCD at small distances, and the obvious possibility
to check it experimentally.

Let me discuss the general strategy of this approach.
The first step is a review of the main properties of the
QCD Pomeron. It will be shown in Sec. II that the QCD
Pomeron has no slope (a’=0) and can be considered as
an exchange with definite impact parameter b,. More-
over, in the leading log approximation the interaction be-
tween Pomeron cannot change b,. This fact allows us to
regenerate the old Reggeon field theory [8] for the in-
teraction of hard Pomerons, to be discussed in Sec. III.
In this section the new equation for the shadowing
(screening) corrections will be discussed as well as solu-
tions to these new equations. Physical applications are
collected in Sec. IV, where we discuss such important
problems as the behavior of the inclusive cross section
and the large rapidity gap survival probability. The re-
sults and their physical meaning will be further discussed
in the Conclusions.

II. THE “HARD” POMERON IN QCD

As discussed in the Introduction, we assume that only
hard processes contribute to the structure of the Pome-
ron. This means that we believe in some natural cutoff in
momentum (Q,) and that only the production of quarks
and gluons with transverse momenta k, > @, is dominant
in the Pomeron. Since we assume that the value of Q is
so large that a,(Q3)<<1, we can use perturbative QCD
to calculate Pomeron exchange in the leading log approx-
imation (LLA) considering the following parameters as
small ones:

2

a,(Q3)<<1, as(Q(z,)ln-éz—<<1, but @ (Q3)Ins>>1 .
0

The scattering amplitude in the LLA is given by the sum-
mation of the perturbative series:

fls,t;k%,08)="3 C,[a,(Q3)Ins]"

2
+0 as(Q%);as(Q%)ln—kéz : M
0

where k2 and Q2 are the virtualities of the scattering par-
tons (quarks or gluons).

During the last two decades the sum of Eq. (1) has been
studied in great detail (see the original papers [9,10] or
several reviews [7,11,13]). I would like to outline the
solution to this problem, using a slightly different tech-
nique, which will be very convenient for further presenta-
tion.

A. The Pomeron in the LLA of perturbative QCD at 1 =0

In the leading log approximation [leading(lns)A ] we
can reduce the problem of summation of the perturbative
series of Eq. (1) to the solution of the so-called ladder
equation (see Fig. 1), namely,
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FIG. 1 The Pomeron as a QCD ladder.
NaS ’ d2 ! ’ ’ ’
$.0,0)=—"" [dy' [ LK(g%qM, 10,0,
(2)

where y=Ins /q* (y'=Ins’/q'?), and q* and q'? are the
virtualities of the two slowest particles (see Fig. 1). The
function ¢ is closely related to the gluon structure func-
tion in deep inelastic scattering, since

2
a,(g*)x5G(x5,g))= [* dq'zastq'2>¢<y=1“§1;""2’ '

(3)

To solve Eq. (2) it is very convenient to introduce the
auxiliary function

W(y,r=Ing%x)=Vg>3 ¢,(y,r)x" . 4)

It is easy to see from Eq. (4) that the amplitude of gluon-
gluon scattering, or in other words the gluon structure
function, can be reduced to

¢(y,q2)=2¢,,(y,r)=ﬁ‘l’(y,r,x=l). (5)

The partial cross section (¢, ) can be calculated as

1 1 3"¥(y,r,x)
‘/y_2 n! a"x x =0 ’

é,(y,r)= (6)

We can also write down simple expressions for different
correlators through the function W, such as

v
_ ox
<n>_ v x=1 ’
a2y (7)
(nin—1)y =2
\I/ x=1 )

We can rewrite Eq. (2) as the equation for ¥, which is
very simple if we assume that r —r’ <<r and adopt the ex-
pansion (as was first done in Ref. [10])

Y(y,r',x)=¥(y,r,x)+ Lt a’rr’x ) (r'—r)
1 3*¥(y,r,x)
2 or?

Finally the equation for V¥ looks like

+ (r=r)+--- . (8)
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2
a‘l’( a;r’x) =coox‘l’(.}’,r,x )+8X%
r

where (see Ref. [10] for details)

4N oy N_.ag
W= — In2; 8=Tl4§(3).

)

Equation (9) can be solved by going to a Laplace repre-
sentation and noting that ¥ depends on z =xy,

Wz,r)= [ i(%e“"”f’)iﬁ(w, . (10
For i the equation reads

0=wy+8f%, (11
which leads to the answer

Wy x)= [l My ) AL 12)
Starting with the initial condition Y(y=0,r,x)

=8(r—ry) we can easily get the famous diffusion solu-
tion of the equation: namely,
J

172

0’1
—= exp

n—+1
oy

o,

From Eq. (14) we can also calculate the mean (r —r,)? at
fixed multiplicity:

fdr(r—-ro)za,,(y,r)
o,(y,r)

((r—ry)?)=
Using Eq. (14) we can find that

<(r¥r0)2)=2i(n+1) . (15)
(2}

Equation (15) shows a very important property of the
LLA structure of the Pomeron, namely the fact that the
mean log of the transverse momentum increases after the
emission of n gluons.

B. b, dependence of the LLA Pomeron

The main property of the impact parameter motion of
the parton could be understood directly from the uncer-
tainty principle, since

Abg,~1. (16)

It means that Ab, < 1/q, for each emission, where g, is
the typical transverse momentum of the parton. As we
assumed ¢, > Q,>>1 GeV for all produced partons, the
displacement of the parton in b, can be considered as a
small one. Moreover, because of the emission of gluons,
the mean transverse momentum increases at high energy
or after n >>1 emissions. I hope that this discussion il-
luminates the strict LLA result (see Refs. [9,13,14)]) that
the LLA Pomeron does not depend on the momentum
transferred (¢). Thus, in the LLA of perturbative QCD,

—(n+1D)[In(n+1)—1]—wgy —(r—ry)?
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(r —ry )2
DXy 45xy

1 exp (13)

W 20 =
(yr>x) 2V xyd

Equation (13) gives the solution that allows one to calcu-
late both the amplitude and the multiplicity distribution
using Eqs. (5)-(7) and therefore it enlarges our possibility
to study the Pomeron structure in perturbative QCD.
However, the main reason why I gave this somewhat new
derivation of a well known solution is to illustrate the
new technique of the auxiliary function that I am going
to use later on to get the solution to the more complicat-
ed problem of Pomeron interaction. To demonstrate how
this technique works let us calculate the multiplicity dis-
tribution

In _ 1 f_di 1
o, VYy,r,x=1)

i x(n+1)\11(y,r,x) )
where the integration contour over x is to the right of all
the singularities of the function ¥. In the saddle point
approximation we can perform the above integration and
the answer can be written in the form

(20} 1

45(n+1) 48y || (14)

-
we can consider the Pomeron as being frozen in b, space,
or in other words its exchange is proportional to (b, ).

For the Pomeron exchange 8(b,) means that the slope
of the Pomeron trajectory (a') is negligibly small. Of
course, it is so only in the first rough approximation and
perturbative QCD is able to describe b, behavior in more
details (see Refs. [9,14]). However, strictly speaking, in
the LLA we have to restrict ourselves to 8(b,) behavior
(see, for example, Ref. [15] where this problem has been
discussed).

C. QCD motivated Pomeron

Now we can formulate what model for the Pomeron
structure we are going to discuss as the first approxima-
tion to the “hard” Pomeron, namely, we assume that the
Pomeron can be reduced to the simple formula

P(y,b,)=ie“”8(b,) . 17

Since we consider the case when the initial and final vir-
tuality are equal, the over-simplified formula (17) does
not take into account the powerlike behavior on y in Eq.
(13). Throughout the paper we will use this simplified
version of Eq. (13), but it should be stressed that it is not
hard to incorporate the correct behavior of Eq. (13) in all
our calculations. This simple expression, i.e., Eq. (17),
makes all our calculations so transparent that we prefer
to use this form so as to clarify the main property of the
screening (shadowing) corrections.
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III. SHADOWING CORRECTIONS

In this section we are going to discuss how to incorpo-
rate the shadowing (screening) corrections in the frame-
work of the simplified approach to the Pomeron structure
given by Eq. (17). There are two origins of the shadowing
(screening) corrections: the interaction between colliding
hadrons due to multi-Pomeron exchanges and the in-
teraction between Pomerons. The first one is usually tak-
en into account by the eikonal approach which is present-
ly the only method in the market for the description of
the shadowing corrections. During the last decade the
eikonal approach has resulted in a better understanding
of the origin and nature of the shadowing (screening)
corrections, so much so, that it has become a synonym of
the shadowing correction in general. This happened
partly as a reaction to the failed attempts to account for
the Pomeron interaction in the framework of the Reg-
geon field theory (RFT) [8]. The main goal of this sec-
tion, as well as the whole of this paper, is to revive the
RFT and to suggest a more general approach than the
eikonal one to the problem of the shadowing correction.

A. Eikonal approach

Let me start with a review of the main ideas and for-
mulas of the eikonal approach, which are carried out
most compactly in the impact parameter (b,) representa-
tion. Our amplitudes are normalized as follows:

id‘tl=‘”|f(s,t)|2, 0 =4mImf(s,0),
where

f(s,t)=#fdb,eiq'b'a(b,,s) (18)
and

ats,b) = [dae " "fis,0) 5 (19)

hence ~we have ©0,,=2[db,Ima(s,b,) and
oq= [db,la(s,b,)|%

Unitarity requires Ima(s,b,)<1. In order to satisfy
the unitarity constraint it is convenient to express a(s,b,)
in terms of the complex eikonal function x(s,b,) with
(Imy =0), i.e.,

ix(s,b,)
e

a(s,b,)=i[1— 1, (20)

which ensures that unitarity is restored on summing up
all the eikonal multiparticle exchange amplitudes.

All of the above formulas are general and the eikonal
model starts with two assumptions.

(1) At high energies elastic scattering is essentially
diffractive and therefore Rey is small. We assume
Rex=0; then the amplitude a(s,b,) is purely imaginary
and determined by the opaqueness Q(s,b,)=Imy.

(2) The opaqueness

_ 1 2, Tiab, 5
Q(s,b,)—Efd be 'V 'gX(t)ImP(s,t)
21

@ d’b ’ ’
=s" [ ——g(b,—b)g (b)), @

g(t)

g (t)

FIG. 2. Scattering amplitude with Pomeron exchange.

FIG. 3. Eikonal diagrams

FIG 4. The structure of the parton cascade.

2 glby)

T

FIG. 5. Parton structure of eikonal diagrams.

by-b)

2 alby)  glby) g(b})

* Y.*‘(Qz' Xg)

FIG. 6. “Fan” diagrams.



49 “HARD” POMERON APPROACH TO “SOFT” PROCESSES . . .

where all notation is obvious from Fig. 2 and t=—g2.
Here

glb)=>- [d.e g},

where g(t) is the vertex for the Pomeron-hadron interac-
tion as seen from Fig. 2. Equation (21) establishes the
direct relationship between the opaqueness and the
Pomeron exchange. Within this assumption Eq. (20)
sums up the diagrams of Fig. 3.

The advantages of the eikonal approach are evident:
the exceptional simplicity of the approach and the fact
that this approach takes into account the natural scale
for the shadowing corrections. It makes this model very
attractive and popular. However, it should be stressed
that there are no theoretical arguments why this ap-
proach should work. The eikonal model looks extraordi-
narily strange from the point of view of the parton or
QCD approach. Indeed, a slight glance at the QCD par-
ton cascade (see Fig. 4) shows us that, in spite of the very
complicated structure of this cascade, the number of par-
tons drastically increases mostly due to the decay of each
particular parton in its own chain of partons. No argu-
ments have been found in QCD why this complicated
structure of the parton cascade, which could in principle
be described as the Pomeron interactions (see Fig. 4),
could be reduced to eikonal diagrams. The parton cas-
cade for the eikonal diagrams looks very simple, namely,
it is only the production of the different parton chains by
the fast hadron as is shown in Fig. 5. I would like to
draw your attention to the fact that even in the simplest
case of deep inelastic scattering the structure of the par-
ton cascade can be described better by a “fan” diagram
than by an eikonal one (see Fig. 6 and Ref. [7] for details).

B. Pomeron interaction (“fan’ diagrams)

In this subsection I am going to discuss the “fan” dia-
gram contribution to hadron-hadron scattering. I consid-
er this problem as the next approximation to reality after
the eikonal one. It certainly will teach us how Pomeron-
Pomeron interaction results in the shadowing correction.
However, I would first like to make some general re-
marks on the main features of Pomeron interactions in
QCD.

1. Pomeron interactions in QCD

The main advantage of QCD in our problem is the fact
that we can formulate what we are doing. Our QCD
Pomeron is a well established object, namely, LLA
“ladder” diagrams which lead to Eq. (17) in the first
rough approximation. So in principle we can calculate in
QCD the vertices of interaction between three, four, and
so on, “ladders.” In practice only triple “ladder” interac-
tions have been calculated in specific kinematical regions
where the virtualities of all interacting partons were large
enough (see Refs. [16—18]) as well as the amplitude of the
two “ladder” rescattering (see Refs. [19,20]). Let me
summarize what we have learned from these calculations.

(1) In perturbative QCD we can introduce vertices for
three and four Pomeron interaction (see Fig. 7), which
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FIG. 7. Pomeron interactions.

are local in rapidity.

(2) All contributions with integration over small trans-
verse momenta k,(k, <Q,) are canceled. This means
that we can justify calculations in perturbative QCD.

(3) The vertices ¥ and A in Fig. 7 have different orders
of magnitude in ;. Namely, it turns out that

2
Y<N.a;, Axa; .

(4) The sign of the Pomeron-Pomeron scattering ampli-
tude A corresponds to the attractive forces [19,20] as was
discussed many years ago by McCoy and Wu [21].

(5) Concerning the b, dependence of the Pomeron-
Pomeron interaction vertices we can also consider them
as a 8 function in b,.

2. Strategy of approach

Based on this experience with QCD calculations, I
would like to suggest the following strategy of approach.

(1) We start from the simplest formula of Eq. (17) for
one Pomeron exchange.

(2) We introduce the vertices g(b, /R ) for the Pomeron
interaction with the hadron (see Fig. 2). In our approach
this is the only vertex for which dependence on b, is
scaled by the hadron radius R.

(3) We describe the Pomeron-Pomeron interaction in-
troducing the triple Pomeron vertex () and four Pome-
ron amplitude (A) which are local in rapidity and are pro-
portional to 8(b,) with respect to any impact parameter
related to the interaction.

It is easy to understand that the above approach is an
attempt to calculate the scattering amplitude within ac-
curacy O(a’'lns/R?). In QCD the effective a’ of the
Pomeron trajectory depends on energy (a’ < 1/V'Ins, see
Ref. [14]) and it is proportional to the extra power of the
coupling constant a;. Thus we can consider this ap-
proach as a legitimate try in QCD.

3. Summation of the “fan’’ diagrams
g

To demonstrate the problems that we face in finding
the screening correction contributions let me discuss the
simplest nontrivial case: summation of the “fan” dia-
grams of Fig. 6 only, neglecting even the Pomeron rescat-
tering (vertex A in Fig. 7).

To solve this problem we develop the same method of
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auxiliary function®

Yy, x)=3 C,(y)x", (22)

in which the coefficients C,(y) constitute the probability
amplitude for finding n Pomerons at rapidity y. For
W(y,x) it is very simple to write down the equation

oW(y,x) _ oW(y,x) oV
—“—‘a{)*x*—wox—ax&—‘)/xza . (23)

This equation is nothing more than a different form of the
equation for C,,:

_dC,(y)
dy

The physical meaning of Eq. (24) is clear from Fig. 8,
where the first term describes the propagation of Pome-
rons which do not interact with each other while the
second one annihilates any Pomeron in the interval dy,
replacing it by two others. The minus sign in front of
this term reflects the shadowing (screening) character of
the interaction or, in other words, the fact that our
scattering amplitude is purely imaginary at high energy.

Equation (23) can be solved and the solution is an arbi-
trary function of one variable W(k), where

=wognC,—y(n—1)C, _, . (24)

k=¥ —y)+In—>— . (25)

X
1——x
Wy

The function W(«) can be found from an initial condition,
which for our problem is (see Fig. 6 for notation)

W(k)=xg(b,—b,) aty=Y . (26)
From Eq. (26) we can find that
K (b —b')e"
x=—2%— and \l‘=g—t——£— . (27
1+Lex 1+ Ler
@o @o

Finally to get the answer for the scattering amplitude at
fixed impact parameter b, we need to substitute y =0 and
x=g(b/) in the definition of x and find ¥(x) from the
previous equation. Thus

d%b; g(b,—b!)g(b])

2T L+e—w0Y
@9

app(Y=Ins,b,)= [
1—Lg(b)

@o

(28)

4. Eikonal+ ‘fan’ diagrams

It is very instructive to get now the formula for the am-
plitude that takes into account eikonal and “fan” dia-
grams (see Fig. 9) together. Such a formula can be writ-
ten in terms of the opaqueness ()(s,b,) and Eq. (20) if

2As far as I know this method was first applied to the problem
of the shadowing correction in Ref. [22].
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FIG. 8. Graphical representation of the equation for the sum
of “fan” diagrams.

27

oy~ d?b
Q(Y=Ins,b,)=e "Yf—z—ﬂ’—g(b,—b{)g(b{)

+2[app(Y,b,)—app(Y,b,,y=0)] .
(29)

The above expression for () takes into account in a
correct way the fact that two sets of the “fan” diagrams
with Pomeron interaction coupled to the top or bottom
part of a Fig. 9-type have the same common part, the
one Pomeron exchange.

C. Rescattering of Pomerons

I have considered a toy model for the origin of the sha-
dowing correction in the previous subsection; here I
would like to discuss a self-consistent approach in which
the Pomeron-Pomeron rescattering will be taken into ac-
count, since this interaction seems to be the biggest one
in QCD (A x a, while y xa?). It means that I am going
to sum up the diagrams of the type shown in Fig. 10, or
in other words we include self-consistently the interaction
of the Pomeron with the hadron, which is of the order of
a, in QCD, as well as the Pomeron-Pomeron rescattering
(Axay).

The equation for the auxiliary function W for this prob-
lem looks like a trivial generalization of Eq. (24): namely,

_ 0¥(y,x) —w
dy 0%

It should be stressed that Eq. (30) describes the attractive
interaction between Pomerons (A >0) as was discovered
many years ago by McCoy and Wu [21] and has been re-
cently rediscovered in QCD (see Refs. [19,20]).

However, this equation cannot be solved in such an
easy way as Eq. (24). First let us simplify the equation a
little bit, introducing a new variable n=Inx and going to
the o representation:

2
an(y,x)sza Y(y,x) . (30)
ox ax?

\I/(y,n)=f%%e“’(y—y’¢(w,n) : (31)
g(b,-b}) g(b,-b)  glby-by)
%
Y
aby gy gib) gl glbp)

FIG. 9. “Fan” diagrams in hadron-hadron collisions.
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A
A
——— e ———
Q k92
FIG. 10. Pomeron-Pomeron rescattering diagrams in

hadron-hadron collisions.

For 9 the equation looks like

_ dyo,n) |, d*Ww,n)
) =(wg—A +A . (32)
oP(w,n)=(wy—A) dn d?

Equation (32) can be easily solved by going to a Laplace
representation with respect to 7:

o= [ 2Lergo,r) . (33)

In the » and 7 representation Eq. (32) reduces to
o=(wy—A)f +Af2%. (34)
So the solution of Eq. (32) finally looks like

W= 2 -
‘I’(Y—y,n)=f—2‘%.¢(f)e[( oM HALNY kS g

d,
Q(Y=lns,b,)= [ —

W(Y,7=Ing (b))

us

d*b,

b, :
= ’ — — —h! ’ -7
J = Jan'(1—expl—g(b,=b/)g(b))e ™"} o essexp
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The function ¢(f) should be found from the initial condi-
tion

[g(bt _bt')]

W(Y—y,n)= 2(—-1)"+1 pr e

n=1
=1—exp[—g(b,—b/)e"] aty=Y . (36)

To satisfy the above condition we need to choose the
function ¢(f) equal to

o(f)=T(—=f)
and the solution can be rewritten in the form

‘I’(Y—y,n)= 2 (_1)n+lw

n=1 n!
- 2y y—
Xe[(mo An+An“|(Y—y) ) 37)
Using the obvious relation
e(mofoZ)(Y—y)
=fe_f’7'dn’—l—
2Vahly —y)
[(@o—ANY—y)+7')?
x po—
exp Y —y) , (38)

we can rewrite the answer in a form more convenient for
further discussions:

[wo—A)Y +7' ]2
4y

1

(39)

Equation (39) can be simplified assuming the Gaussian for b, dependence of g (b, ): namely,

oo(s=s9) —p2/R2
— e

(b,)=
4 t 1TR,%

b

(40)

where R, is the radius of the hadron while o is the value of the cross section of the hadron-hadron interaction at
sufficiently small energy s =s,. Performing integration over b, we get the result

R} 0% —b2pR2—y
QUY,b,)=— | d7n'{In e TTTh +C—Ei
' 40, f K { (mR})?
WY P 4nY

At very high energy the dominant contribution in the in-
tegral over 7’ gives the value of '~ —(wy—A)Y and for
b} <<2R(wy—A)Y we get

R: (24 th
AUY,b) =7 (0= MY +In—% +C~—
R 2R}

40, (42)

[E—

For b?>>2R(w,—A)Y we have

_ % —b2/2RE 7
(mR}2)?
41)
T
o oY —b2/2R2
QY b,)=—e " 2R 43)
7TRh

Substituting this expression for ) in Eq. (20) we can con-
clude that the total cross section increases logarithmical-
ly with energy:

o,<2mR}Ins .
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However, this result depends crucially on the Gaussian

. . . —b,/R,
parametrization of function g(b,). If g(b,)xe ,
o,—In%s at high energy.

D. Pomeron interaction (general case)

In this subsection I am going to consider the general
case and sum up diagrams of the type shown in Fig. 11,
taking into account both the Pomeron-Pomeron rescat-
tering (A) and the Pomeron splitting into two Pomerons
(") as well as the Pomeron annihilation (y ~) (see Fig.
11 for notation). The first question that arises is why we
can restrict ourselves to summing only diagrams of the
type of Fig. 11, or in other words why we neglect the
more complicated interactions among Pomerons, for ex-
ample, the one Pomeron transition to three or even more
Pomerons. To answer these questions we need to recall
that in QCD we have the following order of the magni-
tudes for our basic interactions:

gxa,, wy*N.a, Axa, y ~yT«N.a?. (44)

Summing diagrams as shown in Fig. 11 we make an at-
tempt to calculate the high energy amplitude within the
accuracy of the order of O((a’ Ins)"). Indeed, if we con-
sider the following set of small parameters,

a,<<1, a;lns>>1, allns~1, (45)

we can reduce our problem to the summation of the Fig.
11 set of the diagrams. The Reggeon diagrams give us
the possibility to take into account in a constructive way
the factorization property of QCD that is very general, at
least more general than any leading log approximations.

The equation for the auxiliary function ¥ for the gen-
eral set of the diagrams of Fig. 11 can be written in the
form
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g (byb})

FIG. 11. Diagrams for the general case of Pomeron interac-
tions.

This equation can be simplified by introducing the new
variable 7=Inx and going to the w representation [see
Eq. 31)]. For y¥(w,7) the equation can be reduced to the
form

ot =ay=hy ey e )
2
topenThen
n

Let us find the semiclassical solution of the equation by
substituting

Plw,m)=exp[x(w,7)]
and assuming that

2
d )‘(1(16;)2,7]) «

dx(w,m)
dn

In this case Eq. (47) can be reduced to the algebraic one:

— — 2 — namely,
_ V(Y —y,x) _ Oxa‘IJ(Y y,x)_'_}\xza\I/(Yzy,x) y ;
dy ax ox _ . - dy - dy
+ 20¥W(Y—y,x) o=[wy—A—yTel—y e ]E—FM—*—Y e dn
—ytx2 822 X
o 48)
+ ._xa2\ll(Y—y,x) (46) (
4 Ax? ) Solving this equation we can get the answer
J
1
(w,1)=d(w)ex T Ay ——
om=dwiep [7 dn' e ==
X[)\,+y+e”'+y”e‘ﬂ'_wo_\/(k_'_y-&-eﬂ'_{_‘y‘e*ﬂ'_w0)2+4w(k+y—e‘ﬂ')]} . (49)

However solution (34) is reliable only at sufficiently large w,

w>yel,

where x’), << X'nz- At very small o, however, the last term in Eq. (32) turns out to be negligibly small, so solution (34) is
able to describe this region too. The function ¢(w) can be found from the initial condition of Eq. (26): namely,

1

do L.
[ odt@rexp i [ dn Ah+y e )

[A+yTeT+y e T—aw,

-V (A +yTe"+y e T —wy)+4o(A+y e )] (={1—exp[—e"g(b,—b/)]} . (50)
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However the solution given by Egs. (49) and (50) can-
not be considered as transparent from a physical point of
view. This is the reason why I would like to give another
solution which has worse accuracy, but is simple enough
to clarify the situation and to demonstrate the main prop-
erty of the solution. Let us assume that the last term in
Eq. (47) is small enough to be neglected. In this case the
solution looks like the solution of Eq. (23), namely, that ¥
is a function of one variable [ ¥(k)],

1. (x—x4)x_

=Y—yp——In——M — 51
Kk=Y—y Aln(x—x_)x+ , (51)

+—x_(x—x3.)/(x—x_)e
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where

—(wg—A)EV (@g—A)—4y Ty~
x:t= 2'y

and
A=2y " (x,—x_), x=e".

The function ¥(«) could be found from the initial con-
dition (50) at y =Y. It is easy to see that W(k) is given by

—A(Y—y)

X
W(k)=1—exp | —g(b,—b;
=1=exp ) =g (b, = b)) — T a—x)

Using this solution we can calculate the last term of Eq.
(47). One can see that this term is small enough even at
y =Y and becomes smaller as y —0.

Thus, to get the solution of our problem, namely, to
sum up all diagrams of the type shown in Fig. 11, we
need to (1) substitute x =g(b/) in Eq. (52), (2) integrate
over b,, (3) calculate Q(s,b,) as
d?b,

27
X {W(b,,b,,k(y t =y~ =0))
+2[W(b,,b,,k)

—W(b,,b/,k(y =y~ =001},

(53)

QY =Ins,b,)= [

and (4) substitute the opaqueness Q(s, b, ) in Eq. (20).

IV. LARGE RAPIDITY GAPS
IN HADRON-HADRON COLLISIONS

Equation (47) gives us the possibility to discuss the
behavior of the total cross section and elastic cross sec-
tions as well as inclusive observables in hadron-hadron
collisions. Here I am going to discuss only two problems:
the energy behavior of the inclusive cross section and the
probability of a large rapidity gap.

A. Inclusive cross section

Accordingly to the Abramovski-Gribov-Kancheli
(AGK) cutting rules [23] the inclusive cross section can
be calculated as a sum of diagrams shown in Fig. 12. Itis

obvious that the formulas for the inclusive cross section
looks like

do d*
_d7=G2Ph f —2_17._1\Pinc( Y—y,x=g(b,))

d?b;
X [ Wy x=g ), (54

(52)

e —A(Y—y)

|

where all notation is clear from Fig. 12. V¥ is the solution
of Eq. (47) but with a different initial condition as com-
pared with Eq. (50), namely,

Y(Y—y=0,x)=x . (55)

In the approximation that leads to solution (51) one can
find the answer for ¥, :

Xy —x_(x—x 4 )Nx—x_)e d¥»)

V. (Y—y,x)=
ine? £ 1—(x —x4 )(x—x_)e A¥=»

(56)

Equation (56) solves the problem, allowing one to calcu-
late the inclusive cross section.

B. Large rapidity gap

Dokshitzer, Khoze, and Sjostrand and Bjorken sug-
gested [24] that one consider not the inclusive cross sec-
tion of hard processes such as Higgs boson production
(see Fig. 13), but the cross section for an event with a
very interesting signature, namely, such that no hadrons
are produced with rapidities between y; and y,, except
for the Higgs boson and hadrons from its fragmentation.
To obtain the formulas for the cross section of such an
event, we need to multiply the expression for the in-
clusive cross section [see, Eq. (54)] by the probability that
the partons with rapidity larger than y; do not interact

FIG. 12. Inclusive cross section.
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FIG. 13. Higgs boson production (inclusive cross section).

with partons that have rapidity less than y,. Introducing
the probability P(y, —y,,s,b,) that no inelastic interac-
tion takes place at impact parameters b, in the rapidity
region y, —y, at energy s, one can write the following
formula for the survival probability of the rapidity gap:

fahardP(YI —J’2,S,b, )dzb,
faharddzbt

where ay, 4 is the inclusive cross section [see Eq. (54) and
Fig. 12]. To calculate (|S?|) one needs to estimate
P(y,—y,,s,b,).

(Is?)y= , (57)

1. Eikonal approximation

The above estimate is easy to do in the eikonal ap-
proach [25]. s-channel unitarity can be written in the di-
agonalized form, viz., in the b, representation, as

2Ima(s,b,)=|a(s,b,)|*+G,,(s,b,) , (58)
where
o= [d?,Gy(s,b,) . (59)

In the eikonal approach one can see that from Eq. (20) it
follows that

—20(s,b,)

G, (s,b,)=1—e (60)

From the above equation we can conclude that the factor

e—ZQ(s,br) 61)
describes the probability P(s,b,) which does not depend
on y, —y, within the eikonal approximation. Finally we
can obtain the Bjorken formula [24] for {|S?|) by substi-
tuting Eq. (61) in the expression (57) for ( |S?|).

2. General approach

As has been discussed, the eikonal approximation
oversimplifies the structure of the parton cascade, reduc-
ing the complicated parton cascade with a rich variety of
different parton interactions to the simple picture of Fig.
5. Using the general equation (47) and taking into ac-
count the interaction between Pomerons we are able to
write down a more general expression for the survival
probability of a large rapidity gap than Eq. (61). We can
also examine how important could be the parton interac-

E. LEVIN 49

tions inside the parton cascade for the evaluation of the
survival probability. To find the expression for {|S?|)
we can use Eq. (57) and a general expression for the
opaqueness () [see Eq. (53)]. However, we need to take
into account only inelastic interaction due to the Pome-
ron exchanges and the Pomeron interactions in the rapi-
dity region y, —y,. The solution of this problem looks
very simple and we can summarize the procedure of the
solution as follows (see Fig. 14).

(1) One solves Eq. (47) with the initial condition of Eq.
(50). Thus we found the function ¥(Y —y,x,b, b,,b,).

(2) The next step is to find the solution of Eq. (47)
W(y, —y) with the initial condition

Wy, —y,%,b,b/), =, =W(Y =y, x,b,b)) . (62)

(3) A solution of Eq. (47) ¥(y,x,b,) should be found
which satisfies the initial condition of Eq. (50) but with
g(b,) instead of g(b, —b,).

(4) We specify the function ¥(y, —y,x,b,,b,), extract-
ing the value of x =x,, from the matching condition

V(Y —p2,Xp,b,,0)=Y¥(y,,X,,,b/) . (63)

(5) To calculate the opaqueness Q(y;—y,,s,b,) we
need to substitute in Eq. (53) ¥(y, —y,,X,,,b;,b,).

(6) Equation (57) with the opaqueness Q(y; —y,,s,b,)
allows us to calculate the survival probability in the gen-
eral case.

The described general procedure could be specified us-
ing one of the previous explicit solutions [see Egs. (27),
(39), or (52)]. We do not want to discuss the application
of the above solution since it is better to do it together
with some phenomenological estimates of the value of the
vertices for Pomeron-Pomeron interaction (such as y ¥,
¥, and A). It should be stressed only that the resulting
formula turns out to be much more complicated than the
eikonal formula. I hope to publish a close investigation
of the role of the Pomeron interaction elsewhere rather
soon.

V. CONCLUSIONS

Concluding the paper I would like to repeat once more
than an attempt was made in this paper to regenerate the
Reggeon calculus as a way to take into account the
Pomeron-Pomeron interaction to understand the origin
and the main properties of shadowing (screening) correc-
tions. The approach is based on two principal assump-
tions.

(1) Only “hard” processes with the typical scale of the
transverse momentum of the order of Q,>>u such as
a,(Q3) << 1 contribute to the structure of the Pomeron.

(2) We can introduce vertices for Pomeron-Pomeron
interactions which are local in rapidity and in the impact
parameter.

Both assumptions look very natural from experience in
perturbative QCD calculations as well as from current
experimental information. However, we need a much
more detailed study of the above assumptions.

In particular, we have to redo all description of the ex-
perimental data in the eikonal model to estimate the
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value of the triple Pomeron vertex as well as the
Pomeron-Pomeron scattering amplitude. This task be-
came even more urgent in connection with the new data
from the Collider Detector at Fermilab (CDF) Collabora-
tion on total, elastic, and diffraction dissociation cross
sections [26] that cannot be fitted in the eikonal model in
a natural way [27]. The first estimate of the value of the
triple Pomeron vertex [27] shows that the correction de-
scribed by Eq. (28) is not too small and the ratio ¥ /o, is
of the order of ;. Unfortunately only after finishing this
job will we be able to give a prediction that could be
checked experimentally. However, the first qualitative
prediction is obvious: the shadowing correction in our
approach turns to be much stronger than in the eikonal
model (see Fig. 14). This prediction is in perfect qualita-
tive agreement with the new CDF data [26].

I would like to recall to you that the main goal of this
paper for me was to convince the reader that the calcula-
tion of the shadowing corrections could be formulated as
a theoretical problem with a restricted number of as-
sumptions that could be checked experimentally. I will
be happy if somebody will find arguments against my ap-
proach, since such a discussion will be able to promote a
deeper understanding of the problem. It is worthwhile
mentioning that the above approach is only the first step
in the development of a self-consistent theoretical ap-
proach to high energy interaction based on QCD. The
next step will be an attempt to take into account both
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FIG. 14. Higgs boson production (shadowing corrections).

“hard” and “soft” processes (see Ref. [28] for a hint on
how we could deal with this problem). At the very end of
this paper I would like to note that the technique
developed in Sec. III can be used also in a more phenom-
enological approach without any reference to QCD if we
assume that the slope of the Pomeron trajectory (a’) as
well as the slope of all vertices for Pomeron-Pomeron in-
teraction are much smaller than the hadron radius R.
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