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Optimization of R,+,— and "freezing" of the +CD couplant at low energies
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The new result for the third-order QCD corrections to R,+,—,unlike the old, incorrect result, is
nicely compatible with the principle-of-minimal-sensitivity optimization method. Moreover, it leads
to infrared fixed-point behavior: the optimized couplant o.,/x for R,+,— does not diverge at low

energies, but "freezes" to a value 0.26 below about 300 MeV. This provides some direct theoretical
evidence, purely from perturbation theory, for the "freezing" of the couplant —an idea that has
long been a popular and successful phenomenological hypothesis. We use the "smearing" method
of Poggio, Quinn, and Weinberg to compare the resulting theoretical prediction for R,+, with
experimental data down to the lowest energies, and find excellent agreement.

PACS number(s): 12.38.Bx, 12.38.Aw, 12.38.Qk, 13.65.+i

I. INTRODUCTION

The calculation [1,2] of the third-order (next-to-next-
to-leading order) QCD corrections to R,+,—,

R,+,— = o't~t(e+e ~ hadr no)s/cr(e e+ -+ y+p, ),

provides valuable empirical information on the behavior
of perturbation theory in QCD. This paper is concerned
with "optimized perturbation theory" (OPT) [3], and is
motivated by three questions which the R,+,—calculation
can answer [4].

(1) Does perturbation theory seem to be mell behaved'
Is the third-order "optimized" result in reasonable agree-
ment with the second-order "optimized" result? What
can we learn about the error estimate?

(2) Is the optimized couplant a = a, /vr smaller in tturd
order than in seconds The "induced-convergence" pic-
ture [5] suggests that the optimized couplant a("), as de-
termined by the nth-order optimization equations, will
tend to decrease as the order n increases. In this way
"optimization" could lead to a convergent sequence of
perturbative approximations, even if the perturbation se-
ries in any fixe renormalization scheme is divergent [5].

(3) Does one find infrared fixed point behavio-rF A
third-order calculation is a prerequisite for addressing
this question in "optimized" perturbation theory, and
the answer basically depends upon whether or not the
invariant p2 (defined below) is negative [6].

It is striking that, with the originally published third-
order result [1], the answer to all three questions was
"no", while, with the new, corrected, result [2] the answer
to all three questions is "yes." The purpose of this paper
is to elaborate on these three points, and especially to
discuss the infrared fixed-point behavior [7, 8). We do
not share the pessimistic attitude of Chyla et al. [7, 9] to
the in&ared results. If one believes in OPT, the in&ared
results, though quantitatively uncertain, are qualitatively
unequivocal: We propose to take them at face value and
compare them to experimental data [8].

The plan of this paper is as follows. Section II reviews
OPT, and applies it to R,+,— in third order, with par-
ticular emphasis on the in&ared limit. Section III com-
pares the predicted R,+,— with experimental data, us-
ing Poggio-Quinn-Weinberg (PQW) smearing [10]. Sec-
tion IV brie8y discusses the phenomenology of a "&ozen"
couplant. Conclusions are summarized in Sec. V. Some
technical matters are relegated to the appendices.

II. OPTIMIZED PERTUBATION THEORY
AND FIXED-POINT BEHAVIOR

A. The principle of minimal sensitivity

We begin with a few words about the principle of min-
imal sensitivity, upon which OPT is based. It deals with
any situation where an exact result is known to be inde-
pendent of certain variables, but where the correspond-
ing approximate result depends upon those variables,
and hence is ambiguous. [In the QCD context, physi-
cal quantities are renormalization group (RG) invariant
[11], but perturbative approximations to them are not,
due to truncation of the perturbation series. ] The phi-
losophy is that such a noninvariant approximant is most
believable where it is least sensitive to small variations
in the extraneous variables, because this is where it best
approximates the exact result's vital property of being
completely insensitive to the extraneous variables.

A simple example is perhaps the best way to convey
this idea. Consider the quantum-mechanical problem of
computing the eigenvalues EI, of the quartic-oscillator
Hamiltonian:

IIO —,-'(p' + n'2. "), 0; i —A*' —
—;n'*'. (2.2)

This introduces an "extraneous variable" 0, and the ap-
proximate eigenvalues so calculated will be 0 dependent.

(2.1)

where [x,p] = i. Suppose we do standard perturbation
theory, but with [12)
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For example, first order for the kth eigenvalue gives

E„' ' = —(k+ —,)0+,(2k'+2k+1).(g) 1 3A
(2 3)

~ p +P(a) ~74=0,f 0 0)
Bp Op)

where

(2.8)

However, we knoto that the exact eigenvalues are 0 inde-
pendent. Therefore, it is sensible to choose 0 so that the
approximant E& is minimally sensitive to 0; i.e. ,

2k2+ 2k+ 1

k+,—

(2.4)

(Quite generally, we shall use an overbar to denote an
"optimized" value. ) This gives the "optimized" result

1

(i) 3 2k +2k+1
(2.5)

B. RG invariance and optixnisation

We next review "optimized perturbation theory"
(OPT) [3] as applied to the QCD corrections to the R,+, —

ratio. Ignoring quark masses for the present, we may
write R,+, =3P q, (1—+ 'R), where R has the form

This simple formula fits the ground-state energy to 2%%uo

and all other energy levels to within 1%. The secret of
this success is the "optimal" choice of 0, which is different
for different levels.

One may proceed to the calculation of higher-order
corrections for some specific eigenvalue (e.g. , the ground
state, k = 0). For any fixed 0 the perturbation series
would diverge, but if 0 is chosen in each order according
to the "minimal sensitivity" criterion (which gives an 0
that gradually increases with order), one finds quite nice
convergence [12]. This is an example of the "induced-
convergence" mechanism [5, 13].

One may also use the same method to obtain accurate
approximate wave functions, gq(z), from first-order per-
turbation theory [14]. Here the "optimal" 0 will be a
function of z; in particular, it will be proportional to ~x~

at large ~x], thereby converting the Gaussian dependence
exp( —&Ax ) into the correct large-]x] behavior. A vari-

ety of other examples and applications can be found in
Refs. [3, 13, 15]. Some examples of QCD applications can
be found in Refs. [16, 17].

da 2 2P(a):—p—= ba—(1+ca+ cza +. . .).
dp

(2 0)

The first two coeKcients of the P function are RS in-
variant and, in QCD with Nf massless flavors, are given
by

33 —2' 153 —19'6= C =
6 '

2(33 —2') (2.10)

When integrated, the P-function equation can be writ-
ten as

da'

p(a')

" dp,
'

= in(y, /A),
p

(2.11)

where C is a suitably infinite constant and A is a constant
with dimensions of mass. The particular definition of A

that we use corresponds to choosing [3]
oc d I

ba' (1+ ca')
(2.12)

[where it is understood that the integrands on the left
of (2.11) are to be combined before the bottom limit is

taken]. This A parameter is related to the traditional def-
inition [18] by an RS-invariant, but Nf-dependent factor:

ln(A/A) = (c/b) ln(2c/b). (2.13)

a = a(RS) = a(r, c2, c3 . . .), (2.14)

The A parameter is scheme dependent, but the A's of
different schemes can be related exactly by a one-loop
calculation [19,20]. As is usual, we shall regard AMs (for
four flavors) as the free parameter of QCD [21], where
MS denotes the modified minimal subtraction scheme.

From Eq. (2.11) it is clear that a depends on RS only

through the variables p, /A and c2, c3, . . ., the scheme-
dependent P-function coefBcients. The coeKcients of R
can depend on RS only through these same variables,
because of RG invariance, Eq. (2.7). Therefore, these
variables provide a complete RS parametrization, as far
as physical quantities are concerned [3]. Thus, we may
write

'R = a(1+ ria+ rza + . ), (2.6) where

and depends upon a single kinematic variable Q, the c.m.
energy. OPT is based on the fundamental notion of RG
invariance [ll], which means that a physical quantity is
independent of the renormalization scheme (RS). Sym-
bolically, we can express this by

dR da PR
0(RS) d(RS) Bo,

' (2.7)

where the total derivative is separated into two pieces
corresponding to RS dependence from the series coe%-
cients r,. and from the couplant, respectively. A partic-
ular case of Eq. (2.7) is the familiar equation expressing
the renormalization-scale independence of Z:

r = bin(p/A). (2.15)

c)a—= P(u)/b
BT

(2.16)

The w variable is convenient and also serves to emphasize
the very important point that RS dependence involves
only the ratio of p to A. "Optimization" does not deter-
mine an optimum p,

" but it will determine an optimum
7 .

The dependence of a on the set of RS parameters w

and c~ [3] is most easily obtained [22] by taking partial
derivatives of Eq. (2.11), varying one parameter while
holding the others constant. This yields
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Oa gj+2
= P, (a) = —bP(a) dx (2.17)

—)R =O,B'P(a) B )
( B~ b Ba)

+ p, (a)—
~

R = O (~ = 2, 3, . . .).
(B B)
( Bc, ' Ba)

(2.18)

(2.19)

These equations determine how the coefBcients r; of 'R

must depend on the RS variables. Thus, rq depends on
only, while rq depends on r and c2 only, etc. , with

=1,
87

(2.2o)

Note that the P~ functions begin at order a~+ .
The symbolic RG-invariance equation (2.7) can now be

written out explicitly as the following set of equations:

I[1+ (c + 2r, )a] —a = 0,

where (2.28)

dx
(1+cz + c2z2)2

This integration can be done analytically, and is given by

where now a is short for a~ l, the solution to (2.11) with

P truncated at third order. R~sl depends on RS through
two parameters w and c2, so there are two optimization
equations, coming from (2.18) and (2.19). These can be
reduced to [3]

(3T2 + 2Pic + c2) + (3r2c + 2ric2)a, + 3r 2c2a = 0

(2.27)

BT2 i9f'2= 2ry+c,
OT Bc2

(2.21)

pi(Q) —= & —ri (2.22)

etc. Upon integration one will obtain r;
f (v, c2, . . . , c;) + const, where f is a known function and
the constant of integration is a RS invariant. Thus, cer-
tain combinations of series coeKcients and RS parame-
ters,

with

1 1+ -', a(c+ 6)
2A 1+ -', a(c —6) (2.3o)

where 62 = c2 —4c2. (This assumes that 62 ) 0, which

proves to be true here. ) The procedure for solving these
optimization equations is discussed further in Sec. IID,
but next we discuss the infrared limit.

p2 = r2+ C2 (rl + 2C) (2.23)

(2.24)

where a here is short for a~2', the solution to (2.11) with

P truncated at second order. R~ l depends on RS only
through the variable ~. The optimization equation, from
(2.18), is

a —a (1 + ca) (1 + 2ri a) = 0. (2.25)

This equation, together with the pz definition and
the second-order integrated P-function equation, (2.11),
uniquely determines the optimized result. (For details,
see [3, 16].)

The third-order approximant is

R = a(1+ r,a+ r2a ), (2.26)

etc. , are RS invariant [3, 23]. In the e+e case, pi is a
function of the c.m. energy Q, while p2 and the higher-
order invariants are pure numbers, dependent only on the
number of flavors, Xf.

Although the exact 'R is RG invariant, the truncation
of the perturbation series spoils this invariance. The nth-
order approximant R~"~, de6ned by truncating 'R and the

P function to only n terms, depends on the RS variables
7, . . . , c„q. OPT corresponds to choosing an "optimal"
RS in which the approximant 'R~"~ is stationary with re-
spect to RS variations, i.e., the RS in which R~"~ exactly
satisfies the RG-invariance equations, (2.18) and (2.19).
[Note that only the first (n —1) equations will be non-
trivial in nth order. ]

The second-order approximant is

C. Infrared limit and fixed-point behavior

Suppose we consider 'R at lower and lower c.m. en-

ergy, Q. Since c is positive for Ny & 8, the second-order

P function has no nontrivial zero. Thus, in any RS, the
couplant a~ ~ and approximant 'R~ ~ must become sin-

gular at some Q of order AMs. In third order this may
or may not happen, depending on whether the RS has
a positive or negative c2. If c2 is negative then the cou-

plant remains 6nite and tends to a "6xed-point" value a*,
which is the nontrivial zero of the third-order P function,
i.e., the positive root of

1 + ca* + c2a* = 0. (2.31)

1 + (2r, + c)a* = 0. (2.32)

Then, just by differentiating (2.31) with respect to c2,
one obtains

llill p (a) = Oa

aMa

42

c+ 2c2a*
(2.33)

Since 6xed-point behavior hinges on c2, which is scheme
dependent, it is vital to have a sensible choice of RS [6).
In OPT the optimal c2 is determined by the optimization
equations, and depends on Q somewhat. If c2 is negative
as Q ~ 0, then OPT will give a fixed-point behavior. The
in&ared limit of the optimization process was analyzed
in Ref. [6] and we briefly review the relevant results.

Since P vanishes at a fixed point, the 7 optimization
equation, corresponding to (2.18), reduces to
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1+2ria*+ 3r2a*
a +

c + 2c2a
=0 (2.34)

The two optimization equations yield

1 (1+ca") 2
) r2 = ——C2.2( o,' )' 3

(2.35)

Using the expression for the invariant p2, (2.23), one ob-
tains

[This can also be obtained, more laboriously, as the limit
of (2.17).] Thus, the cz optimization equation, corre-
sponding to (2.19), becomes

Xy
0
1

3

5
6

P2
—8.410
—9.997
—10.911
—12.207
—13.910
-15.492
—17.665

n,'/vr

0.313
0.280
0.263
0.244
0.224
0.208
0.191

TABLE I. p2 invariants and fixed-point couplants for
%y ——0—6.

c2=3l ~z+ 4a*'
y

(2.36)

Finally, substituting into the fixed-point condition (2.31),
one finds [6]

4 + ca* + 3p2a* = 0, (2.37)

which determines a in terms of the RS-invariant quan-
tities c and p2. A positive a exists if p2 is negative, and
the more negative pg is, the smaller a' will be.

D. Implementing the optimization procedure

ri(MS; p = Q) = 1.9857 —0.1153Ny, (2.38)

r2(MS; p = Q) = —6.6368 —1.2001N~ —0.0052N&

—1.2395 q; 3 q; . 2.39

The RS parameters of the MS(p, =Q) scheme are

r(MS; p = Q) = bin(Q/AMs)
= bin(Q/AMs) + cln(2c/b), (2.40)

cz(MS) = 3 1
16 33 —2'

2857 5033 325
f + y

(2.41)

(The latter was first calculated in Ref. [25], and has re-
cently been confirmed independently [26].) Substitution
of these results into (2.22) and (2.23) gives the invariants.
One can see explicitly that pz depends logarithmically on
the c.m. energy Q, and on the free parameter of QCD,
AMs [21]. However, p2 depends only on Ny Since p2.
turns out to be negative, one will find fixed-point behav-
ior in the "optimum" scheme [27, 28]. Table I gives the

Returning to finite Q, we now consider how to obtain
the third-order optimized approximant 'R~ ~ numerically
as a function of Q. As input, we need the values of pi and

p2. Being invariants, they can be obtained from calcula-
tions performed in any computationally convenient RS.
The calculations in the literature have used the "modified
minimal subtraction" (MS) convention, with the renor-
malization point p chosen to be Q. The 'R coefficients
are [24, 2]

fixed-point couplant values, determined from Eq. (2.37),
for various Ny values [29].

Consider a world with Ny massless quarks, ignoring
complications due to quark thresholds for the present.
For simplicity we assume that the value of AMS is given,
and our numerical results use ANIS ——230 MeV for four
fiavors [30]. For any chosen Q we then have definite nu-
merical values for the invariant quantities pi, p2 (and b,
c). We need to solve for the optimum couplant a and the
optimized coefficients rq, r2, and this will involve deter-
mining the RS parameters 7., c2 of the optimal RS. These
five variables are related by five equations: the two op-
timization equations, (2.27) and (2.28), the pi, p2 equa-
tions, (2.22) and (2.23), and the integrated P-function
equation, (2.11), which for the P function truncated at
third order becomes explicitly

1 2 27 = —+cln(ca) ——cln(1+ca+c2a )
—(c —2cz) f(a, c2),a 2

(2.42)

where f(a, c2) is given by (2.30). By substituting this
last equation into the pq equation we can obtain ri ex-
plicitly as a function of a, c2. We can then rearrange the
p2 equation to give r2 explicitly as a function of a, c2.
This leaves a, c2 to be solved for from the two optimiza-
tion equations. Starting from an initial guess for a and
c2, our procedure was to solve (2.28) numerically for a
new a, and then (with the new o) to solve (2.27) for a
new e2. We then iterated this procedure until the dif-
ference between successive solutions reached a specified
tolerance. Further details are given in Appendix A.

At very low Q we encountered technical problems with
slow convergence of the iteration scheme. These are dis-
cussed in Appendix A. Nevertheless, with care it was
possible to obtain accurate solutions at low energies. In
Fig. 1 we show the optimized solution in the a,e2 plane
as it smoothly approaches the fixed-point solution, which
lies on the infrared boundary 1+ca+e2a = 0. The figure
shows two cases: Ny = 3 and Ny = 2. (In the real-world
case we must switch from three flavors to two when we
cross the strange-quark threshold. This requires a match-
ing of A parameters, as discussed in Appendix B.)

The optimized couplant a is shown as a function of Q
in Fig. 2. Note that the efFective couplant below 300 MeV
is nearly constant at about 0.263, which is the Ny ——2
fixed-point value. Figure 2 also shows the second- and
third-order optimized results for Z. . The second-order
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N, =2
result diverges at Q 400 MeV, where pi(Q) vanishes.
However, Rl ) remains finite, rising only to 0.33 at Q = 0.

—20

—24

0, 175 0.200 0.225

a
0.250 0.275 0.300

I I I I I I I I I I I I I I I I I I I I I

I

I

0.1—

Nf =3 N, =4

0.0
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1 2 3 4 5 6

Q (GeV)

FIG. 2. The optimized third-order results for a = o., /z'
snd R~ I. Also shown is the second-order result, R . Quark
thresholds are indicated by the vertical lines.

FIG. 1. The optimized solutions in the a, c2 plane for two-

and three-quark Qavors, in the low-energy region. The open
squares represent the fixed-point solution, Eqs. (2.37) snd
(2.36), which lies on the infrared boundary 1 + ca + cza
0. The boundary is shown by the solid line (Ny = 2) or
the dashed line (Nf = 3) at the right. The dotted vertical
lines are to indicate ss threshold at Q = 0.40 GeV where

Nf changes from 3 to 2. [The A parameters are matched so
that R is continuous (see Appendix B), but there are then
slight discontinuities in a snd c2.] The dotted line shows the
solution for s three-fisvor world down to Q = 0, while the
dashed line shows a two-Savor world extending up towards 1
GeV. The points shown are spaced at 0.05 GeV intervals from

Q = 0.40 GeV.

E. Illustrative results

We pause for a moment to consider a comparison be-
tween the second- and third-order optimized results at
moderately high Q. This exercise was performed by sev-
eral authors [31, 32] when the "old" third-order result

[1] was first published, and the results were disquieting.
However, the new result [2] has transformed the situ-
ation, which is now very satisfactory. In Table II we
give details for the two illustrative cases considered by
Maxwell and Nicholls [31],namely 1' = 5, Q = 34 GeV,
with either AMs ——100 MeV or AMs ——500 MeV. (Note,
though, that the results depend only on the ratio of Q
to AMs. ) From Table II we see that between second and
third order the optimized prediction 'R decreases only a
few percent. With the "old" result there had appeared
to be a disconcertingly large increase [31,32]. The new
situation is much more satisfactory in other ways, too: In
both examples the coefEcient P2 now has a more reason-
able magnitude, and the rq coeKcient has not changed
so drastically &om second to third order.

The optimized couplant a now shows a marked de-
crease &om second to third order. This is just what
one would expect in the "induced-convergence" picture
of Ref. [5]. In that picture "optimization" induces con-
vergence through a mechanism in which the effective ex-
pansion parameter a shrinks &om one order to the next.
Note that the "old" result gave the opposite behavior,
with a apparently increasing from second to third order.

The results also shed some light on the error-estimation
question: If we knew just R~2) = a(l+ria), how might we
estimate the errors Two estimates suggest themselves:
(i) nas, where n is an order-one number, which presumes
a well-behaved converging series, or (ii) ~I"ia [, the mag-
nitude of the last calculated term, which is a typical error
estimate for an asymptotic series. Knowing 'R~ ~ we can,
presumably, get a much better idea of the actual error
in Ri2) from the difFerence b—:R~ ) —R~ ). We have
compared b' with estimates (i) and (ii) over a wide range
of Q/AMs values.

Estimate (i), if we had assumed n = 1 or 2, would
have been rather too optimistic. In fact, ~h[ is between 7
and 14 times as (for 1' = 4 and Q/AMs & 5). This is
directly related to the size of the invariant p2 (which is
about —14 for four flavors). [One can show analytically
that b = pzas + O(a4) in the large-Q limit. ] Of course,
we could not know p2 until a third-order calculation was
done. Arguably, though, 14 can still be considered an
"order-one" number, especially in a theory that naturally
involves numbers such as four (flavors), three (colors),
eight (gluons), etc.

Estimate (ii), based on the last calculated term, agrees
with ~b~ to within a factor of 2 either way for Q/AMs be-
tween 5 and 1000. At higher Q/AMs values this estimate
would be overly pessimistic. However, we think that for
present energies the estimate (ii) is perhaps the safest
way to estimate the error. We suggest that it be used
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TABLE II. Comparison of second- and third-order optimized results: "old" refers to third order
with the old, incorrect result.

Ny ——5, Q=34GeV Order Change

AMs
——100 MeV

(AMs ——87 MeV)

Second
Third
Old

0.0415
0.0394
0.0452

—0.599
—0.301
+1.363

7.64
—29.48

0.0404
0.0394
0.0453

—2.4%
12%

~Ms = 500 MeV

(AMs = 436 MeV)

Second
Third
Old

0.0569
0.0526
0,0690

-0.588
—0.405
+1.988

7.71
—27.59

0.0550
0.0526
0.0694

—4.4%
26%

in QCD applications where only second-order results are
known.

F. Credibility of the infrared results

We have stressed that OPT yields finite results for 'R

down to Q = 0. The crucial question is, of course: How
meaningful are these results? We would like to explain
why, in contrast with other authors [7, 9, 33], we take a
positive attitude on this issue.

First, suppose we adopt the philosophy that the last
calculated term in the "optimized" perturbation series is
a measure of the error. As we saw in this last section, this
proved to be reasonable in the second-order case. In third
order this gives ~r2a

~

as the error estimate. Since 'R = o, ,

this implies a &actional error of ~r2a ~. In Table III we

show some illustrative results at low energies, together
with their estimated error. From this one can see that
the behavior of the series is quite satisfactory above Q =
1 GeV. The situation undoubtedly deteriorates at lower

energies; by the time we reach Q = 0 we have a series of
the form 0.26(1 —0.76+ 1.01) in which the higher-order
terms are comparable to the leading term. While this is

hardly a good situation, it is not completely disastrous;
the corrections alternate in sign, and they do not dwarf
the leading term. We believe that our error estimate,
which grows to 100/&& at Q = 0, is not unreasonable: the
result may well be off by a factor of 2, but is unlikely to be
o8' by an order of magnitude. The qualitative conclusion
that 'R remains small (say, 0.3 6 0.3) at low energies is

hard to escape.
Second, it is instructive to view the use of QCD per-

turbation theory in the infrared limit as an extrapolation

away from Ny = 33/2 [34]. At Ny = 33/2 the leading P-
function coefficient 6 vanishes (and hence c goes to —oo).
For Ny = 33/2 —e, with e small and positive, there must
be an infrared fixed point at a' —1/c = O(e) [34]. Per-
turbative calculations, even in the infrared, should then
be meaningful if ~ is suKciently small. Furthermore, one
could naturally expect that the more orders in perturba-
tion theory one has, the further one can extrapolate from

Ny = 33/2. With sufficient orders one should be able to
get infrared results down to Ny ——0, unless there is some
unknown reason for the behavior of the theory to change
fundamentally at some critical Ny between 33/2 and 0.
What does happen? Well, at second order, of course, one
finds fixed-point behavior, with a* = —1/c, provided c is
negative, which requires Ny ) 153/19 8, though Ny
needs to be still larger if a* is to be reasonably small.
In third order our results imply that, in the B,+,— case,
fixed-point behavior, with moderately small a* values,
does extend to Ny ——0.

In the e ~ 0 limit, a* tends to —1/c, and hence to
(8/321)e. The small coefficient suggests that the natural
expansion parameter of an extrapolation from Ny = 33/2
is not e but approximately e/40. One can verify that the
third-order OPT results smoothly approach the limiting
form as c ~ 0. For Ny

——16 one has p2
———1724.4,

and one gets a series of the form 0.012(1 —0.03+ 0.04).
As Ny decreases, the behavior of the series deteriorates,
but it does so quite steadily; there is no dramatic change
around Ny ——8 or any other Ny.

In conclusion, our view is that the Ny ——2 infrared
results, while quantitatively uncertain, are qualitatively
credible. Having made this case in theoretical terms, let
us now see what experiment has to say.

TABLE III. Illustrative third-order optimized results at low energies. AMs(4 flavors) = 230
MeV. The estimated fractional error is ~r2a

Q (GeV) r2 Error

3.0
1.0
0.4
0

0.076
0 ~ 126
0.221
0.263

—0.53
—0.79
—1.77
—2.89

6.9
6.3
8.8
14.6

0.076
0.126
0.229
0.330

4%
10%
43%
100%
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III. COMPARING THEORY TO EXPERIMENT

A. R + including quark masses

In this section we construct the theoretical prediction
for R,+ (allowing for quark masses) and discuss its
comparison with experiment using the PQW smearing
method. We limit ourselves to the region below 6 GeV,
and we shall be particularly interested in the region below
1 GeV.

To allow for quark masses in R +,—,we used the ap-
proximate formula [10]

R,+, = 3) q, T(v;)[1+g(v;)'R], (3.1)
z

where the sum is over all quark Havors that are above
threshold (i.e., whose masses, m;, are less than Q/2),
and

v; = (1 —4m, /Q )

T(v) = v(3 —v )/2, (3.2)
4n ~ 3+v (x 3&

g(v) = ———
/

———
I

~

3 2v 4 (2 4ir)

The coeKcient T(v;) is the parton-model mass depen-
dence and g(v;) is a convenient approximate form for the
mass dependence of the leading-order QCD correction
[10, 35]. The higher-order corrections have been calcu-
lated only for massless quarks, so we simply evaluate 'R

with Nf equal to the the number of above-threshold fla-
vors.

In our numerical results we used standard values for
the current-quark masses [36]: m„= 5.6 MeV, mg = 9.9
MeV, m, = 199 MeV, m, = 1.35 GeV. For AMS we used a
four-flavor value of 230 MeV above charm threshold (Q )
2m, ). Then, each time a flavor threshold was crossed as
we decreased Q, we reduced Ny by 1 and computed the
new AMS parameter appropriate to the new Nf. The
matching of A's is discussed in Appendix B.

In this way we obtained the "raw" theoretical predic-
tion for R +,— shown in Fig. 3. For comparison, the

I I I I I I

R, ,—

mme R 0

r
t 4

I
I

W I

figure also shows the parton-model result (i.e., with the
QCD correction term R set to zero).

B. PQW smearing

A direct comparison of the theoretical prediction with
the experimental data is not possible, because there is no
direct correspondence between the perturbative quark-
antiquark thresholds and the hadronic thresholds and
resonances of the data. However, a meaningful com-
parison is possible if some kind of "smearing" procedure
is used [10, 37]. We used the smearing inethod of Pog-
gio, Quinn, and Weinberg (PQW) [10], who define the
"smeared" quantity

R,+, (~s')—
(Q )= —

(,, Q) +~, . (3.3)

In terms of the vacuum-polarization amplitude II, one
can write Rpqw as [10]

2iRpqw(Q; 6) = II(Q + i6) —II(Q —iA). (3.4)

In the limit 6 ~ 0 this reduces to 2iR,+,—,which is
the discontinuity of II across its cut. However, a 6nite 6
keeps one away &om the in&ared singularities and non-
perturbative effects that lurk close to the cut. The idea
is to apply this smearing to both the theoretical and ex-
perimental R,+,—'s and then compare them.

In principle, the more orders in perturbation theory
one has, the smaller one can take 6 [10]. However, this
requires the full mass dependence of the higher-order cor-
rections, which we do not know. In their leading-order
study of the charm-threshold region, PQW used a value
6 = 3 GeV2, and we shall use values of the same order of
magnitude. We take a pragmatic view: the best choice
of 4 is the smallest value that will smooth out any rapid
variations in either the experimental or the theoretical
R,+,—.It turns out that this depends upon the energy
region one is interested in. Around charm threshold a 6
of 3 GeV or more is necessary, while in the lowest-energy
region a 6 as small as 1 GeV2 can be used.

The integral in Eq. (3.3) was evaluated by numerical
integration, after Grst making a change of variables 8'—
Q = 6 tan 0. The computer routine was designed to
take an input R,+,—,specified over a range 0 to Q
and to evaluate the integral over this range. A term was
then added to account for the contribution from Q „to
oo, assuming that R,+,— remained constant above Q
The accuracy of the numerical-integration routine was
tested against analytic results for several simple input
functions.

1

0 I

0.00 0.02 0.04- C. Experimental data and resonances

0 i I

0
q ((:eV)

FIG. 3. The perturbative +CD prediction for R,+, from
third-order OPT (solid line). The inset shows the region
around u and d quark thresholds. The dashed line is the
parton-model prediction.

The experimental data we used come &om a variety of
sources: e+e ~ 7r+vr data in the p region and above
from the OLYA/CMD and DM2 Collaborations [38, 39];
Fraxati's ADONE collider pp2 data from 1.4 to 3 GeV
[40]; SLAC Mark I data Rom 3 to 6 GeV [41]; and Crys-
tal Ball data above 5 GeV [42]. For useful compilations
and reviews see Ref. [43]. We used simple fits to the
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data in some regions, particularly when the data had a
lot of structure and/or had large statistical errors. This
was more convenient for the numerical integration rou-
tine and made it easier for us to examine the efFect of the
experimental uncertainties on the smeared result. Fig-
ure 4 shows our data compilation, up to 6 GeV, exclud-
ing narrow resonances. In fact, we used data going well
beyond b threshold, but they have no real effect on the
results we present.

The sharp resonances ~, P, J/@, g', and Q(3770) were
not included in the data compilation so that their contri-
bution to Rpg~ could be put in analytically. They have
a relativistic Breit-Wigner form [44]

PQw 1.0

0.5 ——

0.0

O. B '-—

8, =1.0 ( eV

(a)

6=-3.0 GeV

9 m' r'
o.2 (s —M2)2 + M21'~ ' (3.5)

06

R PQy 04-

1

(s —M ) +M2r Mr (3 6)

which gives a contribution to Rpq~ of

9B))BgAMI'
n [(8 —M )2+ 4 ]' (3.7)

is a pretty good approximation. ] In Fig. 5 we show, for
two different 4 values, the contributions of the various
resonances to the experimental Rpq~. The p's contri-
bution is shown by a dotted line. However, since p is
rather wide and asymmetric, it was actually treated, not
in this manner, but by numerical integration, using the

10

Experimental Data Points

q (cev)
FIG. 4. Compilation of experimental A,~ data (exclud-

ing narrow resonances). A few representative statistical error
bars are shown. The solid line represents an "eyeball fit."

where M, I', B~t, and Bh are, respectively, the mass,
width, leptonic branching fraction, and hadronic branch-
ing &action of the resonance. The parameters for the res-
onances were taken &om the 1992 Particle Data Group
[36]. For Bt~ we used the weighted average of the ee and

pp branching ratios.
The contribution of such a Breit-Wigner resonance to

the smearing integral (3.3) can be evaluated analytically
using partial fractions. [The resulting expression is too
cumbersome to quote, but we may note that the narrow
width approximation,

0.2—

00I
(}

Q (~ev)

FIG. 5. The contributions of narrow resonances to Rpq~
for two values of the smearing parameter A.

The results obtained by applying PQW smearing to
both theory and experiment are shown in Fig. 6. For
the smaller b, (1 GeV2) there is good agreement be-
tween theory and experiment below 1 GeV, but in the
charm-threshold region there is clearly insufhcient smear-
ing for the comparison to be meaningful. Increasing 4
to 3 GeV smooths out the experimental curve almost
completely. The agreement between theory and experi-
ment is excellent below 2 GeV. In the charm region the
agreement is less good, but this can be attributed mainly
to the sizable systematic normalization uncertainty (10—
20%) in the data in this region, which produces an uncer-
tainty of about +0.4 in the experimental Rpg~ at around
Q = 4 GeV. For comparison, Fig. 6(b) also includes the
naive parton-model prediction. One can see &om this
that the /CD correction term R provides about a 20%
increase which is vital to the good agreement with the
data.

Using Q, rather than Q as the variable, we can con-
tinue Rpclw(Q ) into the negative Q region (cf. Ref.
[45]). As shown in Fig. 7, for 4 = 1 GeV, the good
agreement persists.

To quantify the good agreement at low energies, we

discuss how various uncertainties would affect Rpq~ at
Q = 0. First we discuss the experimental uncertainties.
There is about a 5% uncertainty in the p, ~, and P con-
tributions, due to the uncertainty in their total and lep-
tonic widths. For 6 = 1 (3) GeV this gives an error in

Rpclw(0) of about +0.04 (+0.02). Uncertainties in the g
resonance parameters affect Rpclw(0) by +0.01 or less.

data points &om Ref. [38] as part of the data compilation
(Fig. 4).

D. Results and uncertainty estixnates
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b, =1.0 GeV
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Theory
Experiment
Parton

5=3.0 GeV

p I I

0
I I I I I I I I I

1 2
I I I I I I I I I I I

3 4 5

(GeV)

FIG. 6. Comparison of "smeared" theoretical and exper-
imental results. The parton-model result is shown by the
dotted line in (b).

and AMs), and (ii) truncation of the perturbation se-
ries. We varied each quark mass by its quoted error
[36]. Varying the u and d masses had negligible eifect.
Rpclw(0) changed by +0.004 (+0.001) on varying the s
mass, and by +0.005 (+0.013) on varying the c mass for
b, = 1 (3) GeV2. Changing AMs by 50—280 MeV in-
creased Rpclw(0) by 0.019 (0.014) for 4 = 1 (3) GeV .
The series-truncation error can reasonably be estimated
from the last term in the optimized series, as we argued
earlier. At 1 GeV this suggests that R is accurate to
about 10%%uo, and is considerably more accurate at larger
energies. This is corroborated by the good agreement
between second- and third-order results. The theoreti-
cal uncertainty in 'R above 1 GeV contributes an error
in Rpclw(0) of less than +0.006 (+0.009) for b, = 1 (3)
GeV2. Below 1 GeV the prediction for X is much more
uncertain. However, as discussed in Sec. IIF, we think
that even at Q = 0 the result is reliable to within a factor
of 2. Conservatively, we considered the efFect of increas-
ing the predicted R by a factor of 2 over the whole range,
0 & Q ( 1 GeV. This aifects the low-energy Rpqw by
0.033 (0.011) for b. = 1 (3) GeV2. If we linearly add all
the above-mentioned uncertainties we get a total uncer-
tainty of +0.07 for 6 = 1 GeV2 and +0.05 for 6 = 3
GeV2. Thus, the theoretical uncertainties are compara-
ble to the experimental uncertainties.

2 0

1.5

R,1.0

0.5

p 0 I I

—1.5
I I I I I I I I I I I I I I I

—1.0 —0.5 0.0 0.5
Q (GV)

FIG. 7. Comparison of "smeared" results extended to
spacelike Q . The dotted line shows a "straw-man" model
in which the couplant becomes large at low energies (see Sec.
III E).

We considered the efFect of a 15%%uo normalization change
in the continuum data in the 1.5 —3 GeV region: The ef-
fect on Rpclw(0) was about +0.03 (+0.06) for b, = 1 (3)
GeV2. We also allowed for a 15% normalization change in
the 3 —5 GeV region. The effect on Rpqw(0) was about
+0.02 (+0.065) for b, = 1 (3) GeV2. Combining these
four distinct sources of error in quadrature, we estimate
an overall uncertainty in the experimentally determined
Rpclw(0) of +0.06 for b, = 1 GeV2 and +0.08 for b, = 3
GeV2.

On the theoretical side, errors arise &om two sources:
(i) uncertainty in the input parameters (quark masses

E. Signi6cance of the results

We can now discuss the significance of the agreement
between theory and experiment. We first ask: How re-
strictive are the data? To quantify the discussion we de-
fine a "straw-man" model for R in which R is the same
as the OPT result down to 2 GeV, but then follows the
one-loop, three-flavor form, (12/27)(1/lnQz/AII), with
Ao 0.2 GeV, until it reaches a value K, at which it re-
mains f'rozen down to Q = 0. If the "&eezeout" value H
is about 0.3, then this "H model" is essentially equivalent
to the OPT result. If H is much larger then this model
gives a result for Rpclw(0) that is too large by more than
the uncertainties just estimated. We find that K's above
2 are disfavored by the data. (As an illustration Fig. 8
shows the result with H = 4.6, which is clearly ruled
out. ) At the other extreme, the data disfavor an H less
than 0.09. Thus, although a wide range of H values can
be tolerated, the data do imply that the couplant cannot
grow very large in the infrared region, nor can it remain
too small.

Next we ask: How predictive is the theory? Because
of the need for smearing, the theory tells us almost noth-
ing about the shape or structure of the e+e data in
the region below 1 GeV. However, it does tell us some-
thing about the average magnitude of the cross section.
The low-energy data are, in fact, dominated by the p
peak. After smearing with A = 1 GeV2, this contributes
about 0.7 to Rpqw below 1 GeV. Thus a 10%%uo change
in the area under the p peak would change Rpg~ by
the +0.07 estimated uncertainty in the theoretical pre-
diction. We conclude that perturbative QCD can tell us,
at least crudely, the size of the p resonance.
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order, three-flavor couplant to

n. (Q')
vr 27 ln[(Q'+ 4m,')/A', ]

' (4.1)

----- EXPerImen
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I I I I I I I
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a form that has been used in many phenomenological pa-
pers. For ms a little larger than Ao this gives a zero-Q
value comparable to ours. Note, though, that the vari-
ation with Q at low energies is somewhat diiferent from
ours in Fig. 2.

Another commonly used form is the "hard-freeze" form
in which

6,=4, 0 GeV n, (Q ) (12/27)(1/lnQ2/Ao2) for Q2 ) Qo2,

const—:H for Q2 ( Qo2,
(4.2)

—0. 1

1 2 3

Q (Gev)

FIG. 8. Comparison of theoretical and experimental re-
sults for the "smeared derivative" [Eq. (3.8)] for two values
of A.

F. The smeared derivative

As an extension of PQW's ideas we also considered a
quantity

2A „,R.+.—(v s') (s' —Q')
((sl Q2)2 + Q2)2

which represents a "smeared derivative, " in the sense that

lim D(Q, 6) = dR, +,-/dQ .
A —+0

(3 9)

This provides a somewhat different test, though obvi-
ously not an independent test, of the relationship be-
tween theory and experiment. Its calculation requires
only straightforward modifications to the procedures
used to calculate Bpq~.

In Fig. 8 we compare the smeared derivatives from
theory and experiment for 4 = 2 and 4 GeV . For
6 = 2 GeV2 there is good agreement at low energies,
and the theory qualitatively gives the first peak just be-
low 3 GeV. However, there is clearly insufIicient smear-
ing in the charm region. Increasing A to 4 GeV greatly
smooths out both curves and gives quite good agreement.

IV. PHENOMENOLOGICAL VIRTUES
OF A FROZEN COUPLANT

The idea that the strong coupling constant n, (Q2)
"&eezes" at low energies has long been a popular and
successful phenomenological hypothesis. We first note
that a freezing of n, (Q ) is a natural consequence of a
picture where the gluon aquires an effective, dynamical
mass m~ [46]. Naively, this would modify the leading-

with H = (12/27)(1/»QII/A, '). This is the "H mode&'
that we mentioned in Sec. IIIE. For H = 0.26 (j.e. ,

Qp /AII 2.3) it is a close approximation to our n, (Q2)/z'
shown in Fig. 2 ~

We now briefly survey some of the phenomenologi-
cal literature in order to make two points: (i) a frozen
o., provides a way to understand many important facts
in hadronic physics, and (ii) the values extracted phe-
nomenologically are very much in accord with our low-Q
value n, /7r = 0.26. (Note that we quote n, /m rather
t, han n, values. )

(a) Total hadron hadron -cross sections, although
slowly rising at very high energies, are remarkably con-
stant over a wide energy range, and their relative sizes
correlate with their quark content in a very suggestive
way. A simple and successful description is provided by
the two-gluon-exchange model [47], based on the Low-
Nussinov model of the Pomeron [48]. This model re-
quires a finite couplant at low momentum transfer, and
Ref. [47] found a value n, /7r 0.17. A recent version of
this model, framed in terms of a dynamical gluon mass

(ms = 0.37 GeV, for AII ——0.3 GeV), is given in Ref.
[49]. Another recent version of this model [50] uses the
"H-model" form of n, (Q )/m. In order to fit the abso-
lute magnitude of the 7r-nucleon cross section, QII needs
to be about 0.44 GeV [50] if AII

——0.2 GeV. This cor-
responds to 0 = 0.28. The same frozen couplant has
been used successfully in subsequent work on deriving
nucleon structure functions from the constituent-quark
model [51].

(b) Hadron spectroscopy also points to a low-energy
couplant of around 0.2 —0.25 [52]. Godfrey and Isgur
[53] provide a unified description of light- and heavy-
meson properties in a "relativized" potential model with
a universal one-gluon-exchange-plus-linear-confinement
potential. For the model to work for light mesons it is
crucial to incorporate relativistic efFects, and to employ
a form of the couplant that freezes at low energies. Their
fits yield a form of n, (Q ) jn that freezes to about 0.19,
and has a shape similar to ours. In a fully relativistic
treatment Zhang and Koniuk [54] can naturally explain
why n is so much lighter than p. The 7r/p mass ratio is
a steeply falling function of the strong couplant, and the
experimental value occurs at n, /vr = 0.265 [54].

(c) Hadron form factors at low energies can be suc-
cessfully treated assuming a frozen couplant, as shown in
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Ref. [55], which used the form (4.1) with ms = 0.1—0.5
GeV, for Ap 0.1 GeV.

(d) Chiral soliton models of the nucleon can fit a wide
variety of nucleon properties if one includes one-gluon-
exchange corrections with an n, /vr of about 0.2 [56, 57].
Reference [56] finds that the experimental deviation &om
the Gott&ied sum rule, the 4-nucleon mass difference,
the first moment of the polarized proton structure func-
tion, and the neutron-proton mass difference all require a
common o., /rr value. (However, the actual value found,
0.2, could be rescaled by making a different choice for
another parameter in the model [56].) Other nucleon
properties are consistent with an a, /rr of this size [57].

(e) The pz spectrum in W, Z production in pp or pp col-
lisions can be successfully predicted by QCD right down
to pz ——0 if multiple gluon radiation effects are appro-
priately resummed [58]. However, it is essential in the
low-p2. region to invoke a &eezing of o., (p&~). The form
(4.1) has been used, with 4m2/As 2denoted by a. Unfor-
tunately, the results are very insensitive to the parameter
a; anything in the range 3 —100 gives an acceptable fit
to current data [59, 60]. This corresponds to a range 0.1
—0.4 for the zero-Q couplant. Perhaps future data will
make it possible to narrow this range.

(f) Jet properties can be quite successfully described by
the "modified leading log approximation" [61,62], but to
obtain predictions at small momenta it is necessary to
invoke a &eezing of the couplant. Fits to data on heavy-
quark-initiated jets give zero-Q values of a, /rr around
0.22 [62]. This value depends somewhat on the form of
a, (Q~) assumed in the fit, but it was found einpirically
that the result for the integral,

f
1 GeV efF I 2

dk ' —0.2 GeV,
0 7r

(4.3)

was fit invariant [62]. Integrating our a, /rr in Fig. 2 leads
to precisely 0.2 GeV.

(g) Hadron hadron scatte-ring at very high energies
where the cross sections rise asymptotically, but must
satisfy unitarity, seems to call for the "critical Pomeron"
picture [63], at least as a first approximation. It seems
that one could only hope to derive such a picture &om
QCD if there is an in&ared fixed point [64]. In fact,
White has argued for additional quarks, or color-sextet
quarks, in order to have Ny efFectively equal to 16 [64].
(See the discussion in Sec. IIF above. ) However, our re-
sults imply that the in&ared fixed point persists down to
low Nf. This may mean that one can have all the virtues
of White's picture without the need for more quarks.

V. SUMMARY AND CONCLUSIONS

We have applied OPT to the third-order QCD calcu-
lation of R,+,—.At energies above about 1 GeV there is
every sign that the approximation is healthy: the pertur-
bation series in the optimized" scheme is well behaved,
and there is good agreement between second- and third-
order results. This was not true of the situation created
by the old, incorrect R,+, calculation [1,31,32] (see Ta-
ble II). The contrast between the "old" and "new" results

emphasizes the point that the third-order B +,— calcula-
tion provides a very real, empirical test of "optimization"
ideas. At the time, the statements [32] that the "old"
third-order results [1] tended to cast doubt on the use-
fulness of "optimization" were perfectly fair comments.
Because of this history we take special satisfaction in the
transformed situation produced by the new result [2].

Furthermore, contrary to the old situation, the opti-
mized couplant now shows a marked decrease &om sec-
ond to third order. This is in accord with the "induced-
convergence" conjecture that "optimization" naturally
cures the divergent-series problem [5, 13].

The third-order OPT results remain finite down to Q =
0, with the optimized couplant, a, /rr, "&eezing" to a
value 0.26 below 300 MeV. No ad hoc assumption was
used to obtain this result: it is the direct consequence
of using the calculated R,+,— and P series coefFicients as
inputs to the "optimization" procedure specified in Ref.
[3]

It must be admitted that, at very low energies, the
prediction for R (the QCD correction term in R,+,-)
has a large uncertainty. Since third order is the lowest
order at which it is even possible to get finite in&ared
results, one should not be surprised if the approximation
is somewhat crude. Nevertheless, as we discussed in Sec.
II F, the qualitative conclusion that R remains small (say,
0.3 6 0.3 at Q = 0) is inescapable in the context of OPT.

The OPT prediction is supported by the data. As
we showed in Sec. III, the PQW-smeared R,+,— data
are consistent with a perturbative QCD description, pro-
vided that the couplant freezes to a modest value at low
energies.

The hypothesis that the couplant &eezes at low ener-
gies has been used very successfully in a wide variety of
phenomenological work, where the low-energy couplant
is treated as a &ee parameter to be fitted to experiment.
The values that emerge are quite comparable to ours.
There are some other theoretical indications of a &eezing
of the couplant [46, 65], but our evidence is remarkable
in that it comes solely &om perturbation theory and RG
invariance. The predicted value, a, /rr = 0.26, for the
&ozen couplant is a purely theoretical number. It does
not depend on knowing the value of AMS, but only on
knowing the number of light quarks.
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APPENDIX A: NUMERICAL SOLUTION
OF THE OPTIMIZATION EQUATIONS

After expressing rq and r2 in terms of a and c2, us-
ing the pi, p2 definitions and (2.42), we have to simul-
taneously solve the optimization equations, (2.27) and
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1—
Py 3 C2G r2 —3c2 + 9CC2a. (A2)

(One may note that in 'R( ) there is a near cancellation
between the second- and third-order terms, r~a and r2a .
Thus, 'R( ) turns out to be closely equal to a(s).)

The "spiralling" method worked well for Q & 0.3 GeV
starting from the PWMR solution. However, at lower en-

ergies the PWMR approximation breaks down, and does
not provide a satisfactory initial guess. In fact, at the
infrared fixed point one has instead, from (2.35),

1— = —2-
2 C2Q T2 = —

3 C2. (A3)

We therefore proceeded to low Q in successive stages,
utilizing the solution at the previous Q as the initial
guess for the next lower Q. We also encountered a
"creep" problem: At low Q the two cur~es represent-
ing the "optimization" equations become almost parallel
(each being almost parallel to the infrared boundary line
1 + ca + cza = 0) and they cross at a very small an-
gle. Thus, instead of "spiralling in" to the solution, one
creeps towards it stepwise. The convergence is very slow
and the danger is that the solution can appear to have
converged within the specified tolerance, when in fact it
still has a considerable way to go. To avoid this pitfall
we would repeat the procedure from a difFerent starting
point, so as to creep towards the solution from the other
side. In this way we could bracket the true solution, and
hence ensure reliable accuracy.

(2.28). These define two curves in the a,c2 plane whose
intersection point me seek. In what we call the "spi-
ralling" method, (2.28) is first solved for o, ; then, with
this a, (2.27) is solved for cz, then, with this c2, (2.28)
is solved for a; and so on. Which equation is solved for
which variable is crucial; the other choice would "spiral
out" from the desired solution. (The standard "secant
method" [66] was generally sufficient for solving the in-
dividual optimization equations. )

A convenient starting point for this iterative procedure
was provided by an approximate solution to the opti-
mized equations due to Pennington, Wrigley, Mignaco,
and Roditi (PWMR) [67]. This approximation expands
the optimization equations (2.27) and (2.28) as a series
in a and keeps only the lowest nontrivial term. Noting
that I = a(1 —ca+ ), it is easy to check that this gives

Pg ~ 0) P2 ~ 3C2 ~ (A1)

One can improve this approximation by writing each r,.
as a series in a and successively equating coefficients of
difFerent orders in a to zero. To next order this gives

We also tried the "intersection" method as an alter-
native. Taking an initial guess for c2, one solves for a
in each of the two optimized equations. For each a one
then solves the other equation for C2. This gives a pair of
points on each of the two curves. The straight lines that
join up each pair should approximate the curves them-
selves, and hence their intersection should approximate
the desired solution. The procedure can then be iterated.
This method also worked well for Q & 0.3 GeV starting
from the PWMR solution. At lower energies, where the
two curves become nearly parallel, this method did not
sufFer from the "creep" problem, but it had the opposite
vice: it tended to make such a large extrapolation in each
iteration that it would become unstable and erratic.

APPENDIX B: FLAVOR THRESHOLDS

Since 'R has been calculated only with massless quarks,
we are really approximating "full @CD" with a set of ef-

fective theories, each with a difFerent number of massless
quarks. The AMs parameters of these theories need to
be appropriately matched, so that they correspond to a
single, underlying "full @CD" theory The. point is well
explained by Marciano [68], who provides explicit formu-
las for matching AMs across thresholds. Unfortunately
his analysis uses a truncated expansion of a(p, ) in powers
of 1/In(p, /A), which would not be a valid approximation
at low energies, in particular at 8-quark threshold.

Our procedure was simply to require the optimized
'R~ ~ to be continuous at a threshold. This was done
numerically by running our optimization program at the
threshold energy (Q = 2m~) with both values of Nf and

adjusting one of the AMs parameters until the two 'R~ ~

results agreed. Starting with A = 230 MeV for 4 fia-

d AMs 281 MeV, and AMs

(In terms of A the corresponding values are 257, 308,
and 277 MeV for 4, 3, and 2 flavors, respectively. ) Es-
sentially the same results were obtained if we required
instead that a be continuous. We checked that this pro-
cedure agreed very closely with Marciano's formulas at
both c- and 6-quark thresholds.

It is noteworthy that we find A to be smaller than(&)

A-—,contrary to the pattern at the higher thresholds.

Our final results are very insensitive to the A--- value,

however, because at energies below 8 threshold the 'R re-
sults are essentially governed by the infrared fixed point.
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