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Chiral transitions in QCD at finite temperature and density are discussed within a composite operator
formalism. For massless quarks the phase diagram in temperature and chemical potentials presents a
tricritical point at the intersection of the critical line for first-order phase transitions and second-order
transitions. The overall picture is not sensibly affected by small quark masses, except that the quark con-
densate no longer vanishes for large temperatures and/or chemical potentials, and for first-order transi-
tions it remains discontinuous only for small quark mass values. Such effects are discussed by Clausius-
Clapeyron-like relations. The Landau expansion is used around the tricritical point and for second-
order transitions.

PACS number{s): 12.38.Aw, 11.30.Rd

I. INTRODUCTION

Strong-interaction physics at low energy is well de-
scribed by flavor chiral symmetry spontaneously broken
with the related appearance of pseudo Goldstone bosons.
On the other hand, at a sufficiently high temperature
and/or density it is generally believed that this spontane-
ously broken symmetry is restored much like as in fer-
romagnets where condensed states (broken symmetry) be-
come normal (symmetric) above a critical temperature
[I]. For instance, in QCD-like gauge theories one expects
that by increasing the temperature and/or the quark den-
sity the interaction among quarks and gluons becomes
less strong and chiral symmetry is restored. Most of the
theoretical insight into this phase transition comes from
Monte Carlo simulations for a pure gauge theory
(deconfinement) and from model calculations with mass-
less quarks.

At this stage it is therefore relevant to investigate the
temperature and density effects on hadronic matter by us-

ing methods alternative to lattice simulations. In this ap-
proach one tries to incorporate the main known features
of QCD and to evaluate analytically quantities such as
the fermionic condensate as a function of (p, T) where p
is the chemical potential. Such a dependence might be
tested in heavy-ion collisions at high energy. In fact, the
existence of a critical temperature and chemical poten-
tials may already be suggested by certain high-energy
cosmic-ray events [2] and it might be indirectly tested at
future accelerators for heavy ions [3].

We shall refer here to previous attempts based on phe-
nornenological chir al models, indicating the possible
phase diagram of QCD in the (p, T) plane of the chemical
potential and temperature [4]. In the more realistic case
of quarks with finite current masses, chiral symmetry is
already broken explicitly and, strictly speaking, there is
no transition, as happens in a ferromagnetic case in the

presence of an external magnetic field. We have thus to
better specify to what extent one can still speak of a
phase transition.

In this work we extend the analysis previously per-
formed in a QCD model considered in the chiral limit
[4,5] to the case of massive quarks. A preliminary study
of the model for massive quarks, but taking into account
only the effects of the temperature, has been described in
Ref. [6].

This paper is organized as follows. To make it self-
contained we give a short review of the composite opera-
tor formalism and we derive the effective potential at
finite temperature and density in Sec. II. In Sec. III we
briefly discuss the phase diagram in the chiral case. We
find that, moving along the critical line for increasing
chemical potential, one encounters a tricritical point di-
viding the critical line in two parts L&& and L, , by cross-
ing which chiral symmetry is restored through a second-
order or a first-order phase transition, respectively.

Section IV is devoted to the general study of the mas-
sive case. Here chiral symmetry is already broken in the
Lagrangian, but we can still retain, for small masses at
least, the notion of phase transition, by looking at the re-
gion of (p, T) where the condensate has a rapid variation.
On the contrary, for a quark mass of about 100 MeV the
temperature or density evolution is quite smooth on large
intervals of (p, T). A mean field expansion in the manner
of Landau of the effective potential allows us to evaluate
the various critical exponents describing how quantities
such as the chiral condensates approach the critical
points, both in the region of the second-order phase tran-
sition and near the tricritical point. We study the region
of the first-order phase transition and therein we recall
briefly the generalized Clausius-Clapeyron-like relations.
In principle, these equations allow us to relate discon-
tinuities of the thermal averages of different observables
at the critical points of a first-order phase transition, for
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instance, the values of the condensate for different
quarks. At this stage of the model, where the effective
potential turns out to be factorized into independent
flavor contributions we cannot use the Clausius-
Clapeyron equations in its general content; for this it
would be necessary to include in the theory some mecha-
nism of flavor mixing, such as, for instance, the fermionic
't Hooft determinant arising from the anomaly. Howev-
er, we can try to get some useful information from these
equations by relating the discontinuity of the order pa-
rameter to some other discontinuity of physical quantities
(for instance, the entropy density) through the variation
of the critical points with the external parameter conju-
gate to the condensate, i.e., the current mass mo.

Finally, in Sec. V, we study in some detail the limiting
situation T =0, p/0. Here the quark condensate shows
the typical behavior for a first-order phase transition; i.e.,
it has a jump at some critical chemical potential; then it
approaches a constant value depending on the current
quark mass. We shall also give estimated values of the
critical points.

II. EFFECTIVE ACTION
FOR COMPOSITE OPERATORS

Following Ref. [7] the zero temperature and zero
quark density Euclidean effective action for an SU(N)
QCD-like gauge theory is

I'[X]= —Tr ln(S —X)——Tr(SX)
—1 1
0 2

= —Tr ln(SO ' —X)+I z[S]

with 8 related to X by

(2.5)

X(q)= —3g Cz f 4 2(2m. ) (p —q)
(2.6)

In Eq. (2.6) g is the gauge coupling constant and C2 is the
quadratic Casimir of the gauge group. The variational
method consists in choosing a parameter-dependent test
function for X to investigate the stability of the theory;
then we have to invert the relation in Eq. (2.6) to get
8 (p) in terms of X(p) just to express the effective action
as a functional of the self-energy X only.

To extend the zero-temperature theory to finite chemi-
cal potential p, we have to perform the integrations over
shifted Euclidean energies, po —+pa+i p. This procedure
modifies the structure of the singularities of the propaga-
tors, giving rise to typical additional contributions with
respect to the case of zero chemical potential. The addi-
tional terms will contain step functions since they appear
just beyond the Fermi energy.

As far as the temperature is concerned, in the imagi-
nary time formalism, we can still work with continuous
energies by substituting for the sum over discrete energies
co„=(2n + 1)~/P (where P= I /T) a sum of integrals over
continuous energies by means of the Poisson's formula

I2I' [S]=—I [S]+Tr S2 5S

5I'2—Trln So '+

So(p) '=iP —mo . (2.2)

The dynamical variable of the theory is defined by the
equation

X= —5r, /5S (2.3)

and at the physical points Eq. (2.3) is nothing but the
Schwinger-Dyson equation for the fermionic propagator
with X the fermion self-energy. By taking I 2 at the two-
loop level (single gluon exchange) and parametrizing the
fermionic propagator as

S (p) =i A (p)P+8(p), (2.4)

one finds that in the Landau gauge no renormalization of
the wave function is required at this order [I z does not
depend on A (p)] and the effective action is completely
expressed in terms of X [7]:

(2.1)

where So and S are the free and the full quark propaga-
tor, respectively. I z is the sum of all the tao-particle ir-
reducible vacuum diagrams of the theory evaluated with
a fermionic propagator equal to S and So is given by

(
—)"f,f(po, p)e

(2n. )
(2.7)

(2.8)

The factor 1/(p —q) on the right-hand side (RHS) of the
previous equation, which comes from the gluon propaga-
tor, is not affected by the introduction of the chemical
potential since it depends only on the difference (p —q).
This reflects the fact that gluons do not carry a chemical
potential. Then the inversion of Eq. (2.8) is obtained, as
in the case T =p=O, by applying the differential opera-
tors getting

g( —)"8(P)e 4m
~X(p) .

2C
(2.9)

In conclusion, the final form for I [X] is (see also Refs.
[4,6])

Thus, introducing the four-vectors k "=(ko+ip, k), at
finite p and T Eq. (2.6) must be read as

2C y ( )n f d'P ~ (P ) e'"~~0
(2n. ) (p —q)

I [X]=—0 2N g ( —)"f Indet{p'+[m +X(P')]']e '+, f tr[X(p')U X(p ')] . (2.10)
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We recall that both the current mass mp and X are, in

general, matrices in flavor space. Nevertheless, as dis-
cussed in Refs. [6,7], if we neglect the mixing between the
different Aavors originating, for instance, from terms
such as the 't Hooft determinant, it follows that only the
Aavor diagonal elements of the fermion self-energy and
mass can be different from zero at the minimum. There-
fore, the effective potential decomposes into the sum of
nf contributions, one for each Qavor, and to study the
minima it is formally sufficient to consider a single contri-
bution. Of course, the choice of a given Aavor number
will reflect in the particular parameters assumed. In the
present paper, as in Refs. [6,7], we will take nf =3 and a
number of colors X =3. The value of the parameters will

be specified later on.
As far as the dynamical variable X is concerned we will

adopt here the variational ansatz

M
M +

(2.11)

3M(yq)„,= —, g(~, T),
g'((u, T)

(2.12)

which generalizes in an obvious way the corresponding

}M
= T =0 relation [4,7]. We have also assumed the

momentum dependence of X in the ultraviolet region as
predicted by the operator product expansion (OPE)
analysis (up to the logarithmic corrections coming from
renormalization group) and a constant behavior for

p ~(}.
Let us now comment on the choice for the gauge cou-

pling constant. As suggested by asymptotic freedom and
renormalization-group considerations, we expect the
strong forces to weaken at high temperatures and/or den-

sities [8]. We shall then assume that in the UV region the

In Eq. (2.11) M is a momentum scale (see Ref. [4]) and g
is a constant field to be taken as the variational parame-
ter. Its value at the minimum of the effective potential is

related to the fermion condensate, renormalized at the
scale M:

coupling constant g depends logarithrnically on the tem-
perature T and on the chemical potential p. We take into
account this assumption by writing

g (pT) 1 1

c (}M, T) c(}+c }(}(2,T)

+ariz(s, r)+ A (s, r), (2.14)

where a=m0/M, r =T/M, and s =p/M The RH.S of
Eq. (2.14) is composed of six terms: the first one comes
from the evaluation of I 2 at T =@=0and is given by

cy(2 } +2
Cp

Q (2.15)

whereas the second is the one-loop contribution again at
T=p=O:

1

c0+(m/b .)ln(1+gT /M +gp /M )

(2.13)

where b =24m /(llN —2nf), c0=0.554, M=280 meV
(see Ref. [4) where these values for c0 and M are obtained
by fitting at T =p=O the mass spectrum and the decay
constants of the pseudoscalar mesons), and the two pa-
rameters g and g have to be determined on phenomeno-
logical grounds. If we compare our model in the low-T
regime (with }u=0) with the results of Ref. [9] we find
(=0.44 (nf —1)/nf, for nf flavors, which gives (=1 for
nf =3 [5].

Because of the fact that the variational parameter y
does not depend on the quark momentum, we can study
the various phases of the theory by minimizing the
effective potential V = I /0 with respect to y. Its evalua-
tion comes from Eq. (2.10), after having inserted the an-
satz (2.11). We also define V=4m V/NnfM, and, as we
said, we consider the case X =nf =3.

With these assumptions the final expression for the
effective potential is

&(y a s r) =V(2}+V"s+V(2}+V"s

1 y}d 1 —y
1 1+Xy +2aXy

P 2
3'

2Q+ (2.16)

The corrections which arise from the introduction of chemical potential and temperature are

~(2} C(s, r) 2 } ~ 2 (2s +3)V (s —1)
3 c(s r) 2s'

which comes from the two-loop term, with

c, (s, r)= —', ln(1+r +js ),
c(s, r) =c0+c,(s, r),

(2.17)

(2.18)

2+x —s) /r
V,'~s= 4r g J dyy—ln(1+e " }+(s~—s), (2.19)

which comes from the one-loop term and where the z& 's are defined through the equation
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3

x +(2+a )x +(1+2a +2')x+(a+g) = g (x+zI, )=0.
Ic =1

(2.20)

Notice that the first term in square brackets of Vo in Eq. (2.16) is UV divergent for aAO and it is regularized by the
second one. The renormalization at T=p=0 can be performed by adding a counterterm and requiring that the deriva-
tive of the effective potential with respect to the term which breaks explicitly the chiral symmetry, evaluated at the
minimum, satisfies for each fiavor the normalization condition [7]

av
lim =1

@mo ( A'~o) min

(2.21)

At finite T and LM we do not have any additional divergence with respect to the case T =p=0; nevertheless, we have to
add a finite counterterm ayz(s, r), in order to satisfy the generalization of this normalization condition at finite T and p, .
This term turns out to be

z (s, r) =2c (s, r) f dt- y (s, r}t
1 —t +j'(s, r)t'

3 2

, f dy +(s~ —s)
Qy +zan[1+exp[(gy +zi, —s)/r]]

(2.22)

where y(s, r} is the minimum of the effective potential at
a=O, and consequently the zi, 's are the zi, 's of Eq. (2.20)
evaluated at a =0, i.e.,

m (Tp)f (T,p)= —2mo(gg)~„. (2.26)

p(s, r)= —V (2.23)

The term A (s, r) has the expression

g(s r)=Sr f dyy ln(1+e ' +' ' ")
0

+(s —+ —s) . (2.24)

Because of Eq. (2.23) the normalization condition for the
effective potential can also be written as

—lim
mp 0 8m 0

(2.25)

We want to stress that a thermodynamical relation of
this kind between conjugate variables such as the fer-
mionic condensate and the mass m0 has to be verified in
QCD for any finite quark mass [10,11]. However, be-
cause of the fact that we are using an effective potential
approach (suitable for light quarks) we can satisfy this re-
lation only in the limit of vanishing quark masses.

Finally, we recall that with an appropriate normaliza-
tion for the pion field [7] Eq (2.21) [or. (2.25)], is also
equivalent to the Adler-Dashen formula

3

x +2x +x+y = g (x+z )=0 .
14 =1

Finally, in the expression (2.14} for the effective poten-
tial a term A (s, r) is also present (depending only on T
and p but not on the field g} coining directly from Eq.
(2.10}. This term is irrelevant for the study of the sym-
metry breaking but it has a thermodynamical meaning.
In fact, we recall that the effective potential evaluated on
the minimum is related to the pressure of the system
through the relation

III. FINITE TEMPERATURES
AND DENSITIES: MASSLESS QUARKS

Let us recall that at T =p=0 chiral symmetry (CS) is
spontaneously broken by a vacuum expectation value
(VEV) of the condensate different from zero. We first dis-
cuss the massless case mo=O (a=O) where the effective
potential (2.14) is a function of y only. By choosing the
negative solution (for continuity with the case aAO), we
find that the absolute minimum is y0= —4.06 and it cor-
responds, by Eqs. (2.12) and (2.13), with M=280 MeV
and c0 = —-0.554, to a condensate

(QQ)o-—(
—197 MeV) (3 1)

By studying the evolution of the absolute minimum

g( T,p ) for growing temperatures and/or chemical poten-
tials, we find that the condensate vanishes and that the
phase diagram for chiral symmetry restoration in the
((M„T) plane shows a tricritical point t =(p„T,) where the
line L&& of second-order phase transitions starting from
the point (O, T, ) merges with the line of the first-order
phase transition Li ending at the point (p„O) (see Fig. 1

which is obtained with /=0. 3). The structure of the
phase diagram is qualitatively the same for other values
of /%0 that we have also considered. The line y froin
(0, T, ) to (p&, 0) is defined by the changing of the curva-
ture at the origin (i.e., by the appearance of a minimum
in the origin) and it is sufficient to describe CS restoration
as long as the phase transition is second order. For
p p„even when the origin has turned into a minimum,
another minimum survives deeper than the one at g =0
and they become degenerate along L&, the line of the
first-order phase transitions. Finally, the line 5 is the bor-
derline of the metastable phases, beyond which the
effective potential is an increasing function of g. This
phase diagram has already been discussed in Ref. [4]. In
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the transition.
To study these effects it is convenient to separately dis-

cuss the case of second-order phase transitions where
they are well described in terms of critical exponents, and
the case of first-order phase transitions, where eventually
one can be helped by considering Clausius-Clapeyron-like
relations, as we shall see in the following.

A. Continuous transitions and critical exponents

50

50 100 150 200 2&0 300 350

p {MeV)

FIG. 1. The phase diagram in the (p, T) plane for ma=0 and
(=0.3. The tricritical point t has coordinates (p,„T,) =(75,91)
MeV while T, =103 MeV, p, ~=151 MeV, p, =286 MeV, and
pq= 555 MeV.

that work the term

c(r, s) z z (2s +3)(/(s —q)
3

S
2s'

(3.2)

appearing in Eq. (2.17) was lost in inverting the relation
(2.8) by means of the Poisson formula involving both T
and p. The general structure for CS restoration is, how-
ever, not modified by this term, which is active only
above the mass scale value M =280 MeV and thus it rare-
ly has an effect since most of the critical values of the
chemical potentials in the (p„T) plane are well below the
mass scale value. %henever p, &M, i.e., only for T=0
and g ~ 0.3, the presence of the term (3.2) lowers the criti-
cal value p, . Under the same conditions it also makes
smoother the function p, , (g). As to the critical points in
the phase diagram, only the points (p,„O) and (ps, 0) vs g
for (~0.3 are modified (see Sec. IV), since all the others
are unchanged with respect to Ref. [14].

+ +b, (T„p,, )a&+ (4.1)

where V=4m2/NnfM . V. The coefficients of this expan-
sion are evaluated at +=0, and, as already discussed in
Ref. [5], IR finite. The coefficients ao, a4, and a6 are the
same as in Ref. [5]. The coefficient a~ is, however,
different due to the presence of the new term which
comes from I 2 and that modifies the coefficient of g in

the eff'ective potential [see Eq. (3.2)]. However, because
of the fact that this term is active only for s &1 (i.e.,
p, &280 MeV) and that p, is always ~ 100 MeV [5], we

can easily understand that the addition of this new term
does not play any role as far as the Landau expansion of
the effective potential is concerned. In view of Eqs.
(2.12), (2.23), and (2.25), which specify the normalization
condition we have chosen at finite T and p, and due to
Eq. (2.12), we get, for b, ,

b, (p„T, ) =2c (p„T, ) (4.2)

for any point lying on L„and where c has been defined in
Eq. (2.13).

The equation for the line L&i is

At I0
=0, if we fix a value for the chemical potential

P ~ p, (and respectively for the temperature T & T, ) and
we let T (respectively p) grow, we always cross the line
Lii. In this case, as has already been shown in Ref. [5]
for the chiral case, and in Ref. [6] (for m040 but p, =O),
we can expand the effective potential around y=0. Thus
we can now consider the situation with the full set of pa-
rameters (p, , T, mo). We get, for small a= ma/M, around
any critical point along L«, including t =(p,„T,),

V=ao(T„p, )+a&(T,p)g +a4(Tp)y +a6(T„p, )y

IV. FINITE TEMPERATURES AND DKNSITIKS:
MASSIVE QUARKS a2(T„p,, )=0 (4.3)

By introducing a bare mass term mo in the model, we
can try to study a more realistic situation, where the sym-
metry is exphcitly broken from the beginning. Neverthe-
less, for small bare masses, as is the ease for the u and d
quarks, the mechanisms of dynamical mass generation
and of CS restoration continue to play a basic role. Actu-
ally, the insertion of the mass term produces effects on
the condensate below and beyond the transition; for
mo((M, they are both of order mo, and consequently
negligible with respect to the dynamical mass. Thus the
jump of the condensate from the low to the high T
(and/or p) region is still a very strong eff'ect. In this case
mo/M is a perturbative parameter which mainly affects
the curvature of the condensate function going across the
phase transition point, or in other words, the "speed" of

and a4( T„p, ) & 0 so that we can neglect in this case the
term a6y . The tricritical point t is defined by the equa-
tions

a2(T„p, }=0,
a4(T„p, )=0, (4.4)

and a6(T„p,, ) &0. Let us notice that the parameter a
plays here a role analogous to a small external magnetic
field h in a magnetic system, and the order parameter
(fg) that of the spontaneous magnetization.

Excluding the point t and working at fixed p=p„ the
critical behavior is described exactly in the same way of
Ref. [6] which corresponds to the particular case p,, =0;
actually only the values of the eoefficients of the expan-
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sion change, since they depend now on p, . Of course, we
can approach the critical line following a generic direc-
tion, namely, by expanding

&y ~/~ ~,
2.5

a2 —az-
T —Tc

+a„
C

P Pc

Pc
(4.5)

2.0

1.5

Anyway, if we limit ourselves to consider orthogonal
directions in the (p, T}plane, we can now fix T = T„and
so we find the same critical exponents in the chemical po-
tential as in the temperature, since they come out from
the powers of the field y present in the expansion (4.1),
and not from the (p, T) dependence of the coefficients.
We assign the classical definitions for the critical ex-
ponents: the exponent P by the behavior of the order pa-
rameter at mo=0 and 8~8C (where 8 can be either T at
)tt, fixed or)M at T fixe},

g(8)=ar 1—0 '.
C

the 5 exponent by the behavior of the order parameter at
8=8c and mo~0

g(8, ) =b,m,'";
the y exponent in analogy with the magnetic susceptibili-
ty at mo =0 and 8~0c,

ag(8} „, 8
~m0 mo=0 8c

The results, along L t t excluding point t, are P=
—,', 5=3,

and y =1. It is easy to find that approaching the tricriti-
cal point again y =1, but the other coefficients change to
P= —,

' and 5=5.
The critical behavior is therefore in our model the

same as in any classical mean field theory, extensively
studied in many textbooks. We want to stress that we are
particularly interested in looking up to what extent we
can retain the notion of a second-order phase transition
once the current quark mass is introduced in the model.
In other words, even if in this case chiral symmetry is
broken explicitly, for the lightest quarks u and d we still
expect abrupt changes of the condensates across some
critical point, whereas the same behavior is no longer ex-
pected for the s quark. Actually, by considering
mo ((M, both the low- and the high-8 values of the con-
densate will change for an amount of order a =mo/M
with respect to the massless case. Anyway, not only the
ratio of the condensate from the low-8 to the high-0 re-
gimes will reduce for increasing m 0, but also the
difference between them. This last feature, which can be
observed directly in the model from the numerical results
or by evaluating the coefficients of the a expansion of the
condensate, is better clarified by looking at the coefficient
dz of the susceptibility before and after 8=8&. This
coefficient doubles in value by approaching a point of L

&&

from 0) 0~ instead of 0&0c, and it quadruplicates by
approaching the tricritical point. Thus, for example, if
we fix T ~ T, (respectively, p ~ p, z-) so that 8=@ (respec-
tively, 8=—T), and we consider two points symmetrical

1.0

0.5

0.0
30 60 90

I

120 150

T (MeV)

FIG. 2. Normalized fermion condensate vs temperature at
)M,

=p, =75 MeV and (=0 3 for mo =5, 9 5, and 180 MeV (from
the lowest to the highest full curves, respectively) normalized to
(Pg)0=( —197 MeV) . The dashed line is the normalized con-
densate in the chiral limit mp =0.

and close to 8c, we find that the difference between the
values of the condensate evaluated at these points de-
creases (and consequently the transition becomes less and
less steep) as a increases. This situation is shown in Fig.
2, where we have plotted the condensate vs temperature
at )M=)M, =75 MeV, /=0. 3 for different values of the
mass parameter. It is also evident that the picture emerg-
ing from this approach is that we can retain the notion of
the second-order phase transition for a light quark and
not for a very massive quark. In Fig. 3 we show the
behavior of the condensate for

~~/&y ~,
1.2

1.0

0.8

0.4

0.2

0.0
30 60 90 120

I

150

T (MeV)

FIG. 3. Behavior of the normalized condensate (as in Fig. 2)
at finite T and p for /=0. 3 and mo =(m„+md )/2=9. 5 MeV.
The curves are found for increasing temperatures at different
chemical potentials, i.e., p=0, p=p, =75 MeV, and p=150
MeV.

mo=(m„+md )/2=9. 5 MeV

for growing temperatures at different value of the chemi-
cal potential for (=0.3.
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B.Discontinuous transitions
and Clausius-Clapeyron relations

V=azy —la41y +as' +b, ay+ (4.6)

since we are interested in evaluating the two degenerate

Let us now study what happens by crossing L& when a
small quark mass parameter is present. What one finds is
that there still exists a finite jurnp in the quark conden-
sate, even if at different values of T and p with respect to
the chiral case. In practice, we can again define critical
temperatures and chemical potentials and consequently

critical lines L, (L, will continue to indicate the curve
of the ease mp =0). We have to distinguish roughly two
regions of first-order phase transitions, one near the tri-
critical point and the other far from it (low temperatures
and high chemical potentials). In fact, differently from
the case of continuous transitions, where the critical
features are nearly invariant along L „(apart from the tri-
critical point), the situation is different when we turn our
attention to the study of first-order phase transitions.
Actually, in the first region, because of the expansion
(4. 1) of the effective potential, we still have some analyti-
cal control on the dependence of the discontinuities of
the various physical quantities (condensate, energy densi-

ty, etc. ) on the parameters (mass, temperatures, etc. ),
whereas this is no longer true far from t.

Thus close to t let us consider again the expansion (4.1)
written with the simplified notation

absolute minima and thus a 2 )0 and a 4 & 0 near the criti-
cal point, whereas a6, b& )0. If a=mo/M=O there are
two minima (from the negative side of g):

1 a, 1
+Q 1 a, 1' —3a,a,

12=——
3a6

1/2 (4.7)

which become degenerate when the critical condition is
satisfied,

a~ = la41'/4a6,

and thus the discontinuity of g for a=0 is

disc/ =y,'—g, = —Q la, 1
/2a, .

(4.8)

(4.9)

a2 = la41'/4a6+~bi02as/la41, (4.11)

and consequently to Eq. (4.9) for the dependence of the
discontinuity of g on a at the new critical point, which
turns out to be

With a « 1, one can easily evaluate the corrections at the
leading order both to Eqs. (4.7) and (4.8):

1
b

202
(4.10)

la4 +la4 3apa6

8a2V a~l' —3a~a6

discX =
V2

in

2Q6

1/2

1 —a
2a6

'~ 1/2
la4 5+ — Q! .
2a6 2 la41

(4. 12)

Thus the absolute value of the discontinuity decreases for
increasing a. The jump of ( p1( ) is then simply related to
that of g by Eq. (2.12) and so these arguments are valid
for the condensate as well.

In practice, if we do not move too far from the point t,
the dependence of the so-called critical features of the
condensate on ( T,p, m p) are very well described in terms
of the simple expansion (4.1).

On the other hand, far from t, even with a small mo we

can only rely on the numerical study, which shows that
the jump of the condensate grows by approaching the
point (p„0). As far as the dependence on mo is con-
cerned, we find that in this region the discontinuities are
so large that even a quite heavy quark suffers a big

discontinuity crossing L, , although the ratio of the con-
densate from the "broken" to the "restored" regions still
decreases for increasing masses. We have to remember
that our effective potential is reliable for light quarks
only, and also that without a mixing between the flavors
u, d, and s our model is equivalent to studying a single
flavor theory. In any case, it does not make much sense
to speak about chiral symmetry breaking and restoration

for a relatively massive quark.
Let us now conclude this section by discussing

Clausius-Clapeyron-like relations, as derived in the
framework of the model.

At any critical point along L, , ' the following condition
on the effective potential (2.14) holds

~[X[T (mp) p (mp), mp];T, (mp), p, (mp);mp1 1

= [same]- —, (4.13)
Y2

where g& and g2 are the two degenerate minima of the
effective potential. Generally speaking, this constraint, in
view of Eq. (2.23), is nothing but the condition of con-
tinuity of the pressure at the boundary of two different
phases of a system. Thus, from Eq. (4.13), one could in

theory follow the same procedure described in Refs.
[10,11] to derive Clausius-Clapeyron-like relations in a
general way.

However, in the present case we have to limit ourselves
to deriving these relations only in the limit mo«M.
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Indeed in our context the relation (2.25) holds only for
vanishing quark masses, differently from realistic QCD in
which it should be verified for any finite mo as we have
already discussed.

So, let us briefly describe the procedure to derive
Clausius-Clapeyron-like relations in the present case by
taking into account the leading order of the expansion of
Eq. (4.13) for mo~0:

aV ' aV "dT, aV "dp, aV "dryV, 0+mo
Bmo BT , dmo Bp , dmo 3y , dmo

=0= [same] (4.14)

where the subscript ~, reminds us of the evaluation at a
critical point. One has to notice that the first term in the
left-hand side (LHS) is canceled by the analogous one in
the RHS and also that the terms which contain the
derivatives of V with respect to y vanish since they are
evaluated at the two minima of the effective potential.
Thus, by taking into account again Eqs. (2.23) and (2.25)
one gets

as remarked in Ref. [10],can be especially useful whenev-
er the equation of state is not known analytically (as in
lattice simulations} and one wants, for instance, to evalu-
ate the latent heat through the discontinuity of (gg)
rather than by using the discontinuity of the entropy den-

sity. Nevertheless, they can also be more generally
predictive. In fact, one also has further relations such as
[11]

disc( Pg)
0

dT dp
disc s+ disc n

dmO dmo m0=0
disc(uu ) disc(dd ) disc(ss )

dT, /Bm„[„BT,/Bmd [„BT,/Bm, [„
(4.19)

disc( PP)
0

Tc
disc s

Bmo P
m0=0

Bp
disc n

Bmo m0=0
(4. 16}

where the subscripts ~„and ~ r mean that the derivatives
are taken for fixed p and T, respectively.

Equations (4.16) are similar to the Clausius-Clapeyron
equations for a liquid-vapor transition, as remarked by
Leutwyler in Ref. [10]. In addition, as already shown in

Ref. [11],one can express the latent heat (for vanishing

mo)

(4.15)

where s =S/V=Bp/BT is the entropy density,
n = (N)/V=Bp/Bp is the particle number density, and
all the discontinuities of the physical quantities are evalu-
ated at a critical point. However, as discussed in Ref.
[11],if we take into account that dT, /dm0 and dp, /dm0
are not independent quantities, as all the possible points

(p„T, ) have to lie on some L& ', we can rewrite Eq.
(4.15) in the form

or analogous relations with the partial derivatives of the
critical chemical potential at fixed T.

As one clearly expects that [10]

8T~ 8T~

Bm„d Bm,
(4.20)

V. ZERO TEMPERATURES
AND FINITE DENSITIES

one finds from Eq. (4.19} that the discontinuity for the
lightest quarks is certainly bigger than that of the strange
quark. This result, especially when considering the ratio
of these discontinuities to the different condensates, al-
lows us to draw the same conclusions discussed for the
case of continuous transitions, namely, that chiral sym-
metry restoration is a phenomenon relevant only for the
two lightest quarks.

In our model we have limited ourselves to study the
variation of the critical temperatures (or chemical poten-
tials) with respect to a quark bare mass mo. Actually, the
numerical analysis we have done shows that the critical
temperatures (or chemical potentials) are more sensitive
to the light masses than to the heavy one according to
Eq. (4.20}.

disc e~ 0=(T,disc s+p, disc n)~
0 0

(4.17)

as

dxsc E(
1 1

B(lnT, )/Bmo („B(in@,)/Bmo ( T

Xdisc( g) g) m0=0
(4.18)

This type of relation among the various discontinuities,

Let us now consider the limiting situation of zero tem-
perature and finite chemical potential. We have to distin-
guish between the case in which Eq. (2.20) has real roots
and that in which it has complex roots.

In the first case it is possible to get the analytic expres-
sion for the density correction to the effective potential
by taking the r ~0 limit in Eq. (2.14). The terms which
require some straightforward calculations to be evaluated
are
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3
Vlog —y Vlo~

k=1

3 2

= g 8(s —zk) —Qs —
zk —z„—s + ln

k=1

Qz„
s+Qs' —z,

(5.1)

and

j '(s)t' Qz„'
z (s) =2c (s) —f dt —2 g sos —

zl, +ln
t+X (s)t /;=1 (1 3zk) s+/s' —z'

(5.2)

when the zk's are the real solutions of Eq. (2.20).
On the other hand, when Eq. (2.20) admits one real and two complex roots we obtain, after some algebra,

i 3/2

z zzR Izz I Z2IV"g=V"I'+88 s— S S Z
2 2 2R

4

1 s z2g z21 ~42 2, 2

+ f dx x Q(x +z~~ ) +z~t+(x +z~~ )
0

1/2
(5.3)

for the one-loop term and the expression for the counterterm is modified as

j' (s)t 8(s —z, )
z(s)=2c(s) —f dt —2 sos —

z& +ln
1 t+y'—(s)t' (1 —3z', )

Qz',

s+Qs' —z',

0
Z2R—2&28 s—

2

&s —
zing (zpi ) /4s

dx
2 0

X 2

[Q(x'+zo„)'+(z,' )'+(x'+z' )]'" (1—3z'„)'+(3z'„)'

(x +z~~) 3( 0 )2

V (x'+zygo )'+(zest )' /(x'+z, 'g )'+(z,', )'
(5.4)

where zzz (zest) and zztt (zest) are the real (imaginary)
parts of z2 and z2, respectively. As we are moving along
the horizontal axis in Fig. 1, by studying the evolution of
the absolute minimum g(p) for growing chemical poten-
tials, we find that CS restores through a first-order phase
transition, and that the transition proceeds in the follow-
ing typical steps: first there are two symmetrical minima
and the origin is a relative maximum. At a certain value

p the curvature at the origin changes, but f(p) is still lo-
cated away from the origin. The critical point p, occurs
when the two minima (in the origin and off the origin) are
degenerate. Finally, we can evaluate also the value p&
beyond which the effective potential is a convex function,
which we can call the ending point of metastable phases.
This structure is exhibited for any value of the parameter
g in Eq. (2.13) that we have considered (i.e., in the inter-
val (0,1]), except for /=0, where numerical studies show
that in such a case we still find the corresponding value

p~, but also that the minimum out of the origin remains
almost degenerate, but always deeper than for g=O.
Thus we do not find CS restoration in this particular case,
which corresponds to neglecting the running of the cou-

b'av

nz= ——

Xnf p3
(5.5)

I

pling with the chemical potential.
In Table I, we list the critical values obtained with the

calculations presented here. Even if for more quantita-
tive analysis we would like to improve our model, a sug-
gestion for the order of magnitude of the parameter g can
be obtained by looking at the baryonic density in the
chiral case. In this case the baryonic density for p p, is

that of a gas of free and massless quarks, as it can be
verified by taking the derivative of the effective potential
V with respect to p at the minimum [we recall that the
effective potential evaluated at the minimum is nothing
but that the pressure changed on sign, see Eq. (2.23)]. Be-
cause of the fact that the baryonic density is related to
the quark density by n~ =n& l3, and through Eq. (2.14)
and the relation between V and V, we find
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TABLE I. The points )Mr, p„and )us (MeV) vs g.

Pc

cy ~„l~~.
1.2

0.0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

158
156
153
151
149
147
145
143
141
139
137

465
338
286
238
223
213
204
197
192
186

975
675
555
485
440
410
390
375
360
345

1.0

0.8

0.4

0.2

0.0

I
i

I
I
I

I

I
I
I
i

I

50 100 150 200 250 300 350 400

I I

450 500

The previous equation suggests quite a small value for
the parameter g if we require that the ratio
ns[@,(g)]/ns be of order unity where ns =0.15 fm is

the ordinary nuclear density. For instance, by using the
values for p, given in Table I we find that this ratio will
change from ns [p, ( g }]/ns =9 to ns [p, (g) ]/nit ——2

when g varies from (=0.1 to 0.3. Finally, in Fig. 4 we

compare (with (=0.3), the behavior of the condensate for
m0=0 (p, =286 MeV) and for me=(m„+me)/2=9. 5
MeV (p, =303 MeV).

IV. OUTLOOK AND CONCLUSIONS

The analysis we have done by using the effective poten-
tial approach to study the phase diagram of the theory is,
in our opinion, especially relevant only in the regions
near the critical points. We note that our effective poten-
tial contains only the constant field y and i' chiral
partner ~ related to the scalar and pseudoscalar conden-
sates, respectively. On the other hand, one expects that
at low temperature and zero density the main contribu-
tion to the partition function comes from the dynamical
pions [9]. It would thus be suspicious, in our opinion, to
extrapolate our resul« to the region of low T or p. To
correctly study such a region one would have to evaluate
the efFective action (and not the effective potential) for the
pions and the nucleons, with their parameters derived
from the basic underlying theory in terms of quarks, and
then analyze the thermodynamics of such a physical sys-
tem.

In conclusion, we have studied chiral transitions in
QCD in the framework of a variational approach to the
effective potential for composite operators. For massless
quarks, the phase diagram (in the plane of chemical po-
tential p and temperature T), derived from the efFective

potential, shows the existence of a tricritical point
t =(p„T,},dividing the critical line in two parts L» and
L&.. by crossing them the chiral symmetry is restored
through a second- or first-order phase transition, respec-

p, (Mev)

FIG. 4. Normalized condensate (as in Fig. 2) vs chemical po-
tential at T=O for ma=0 (lowest curve) and ma=9. 5 MeV
(highest curve). Here (=0.3 and the critical chemical potential
changes from p, =286 to 303 MeV.

tively. Phase diagrams with similar structures have been
found in other theories such as the Gross-Neveu model
but they have never been suggested for QCD.

In the realistic case in which a quark mass term is
present, for small enough mass, the order parameter (re-
lated to the quark condensate} maintains the main
features of the massless case up to the critical points.
However, because of the current quark mass, the quark
condensate does not vanish any more for large T and/or
p and approaches a constant value depending on the
current quark mass term itself. Furthermore, the
behavior of the condensate close to the phase transition
points is sensibly affected by variation of the mass param-
eter mp ~ The current quark mass plays a role analogous
to that of an external magnetic field in the ferromagnetic
transition, as it explicitly violates the chiral symmetry
whose restoration characterizes the phase transition.

All these effects can be easily studied if we treat sepa-
rately the points of L» and those of L, . Actually, the
effective potential admits a Landau expansion around the
critical line L&& and thus the behavior of the condensate,
with mp inserted, is well reconstructed knowing the
coefficients (which are infrared safe) and the critical ex-
ponents. In the case of first order phase transitions, it
turns out that a discontinuity of the condensate survives
for small mp, and that the relevant effects are described
in terms of Clausius-Clapeyron-like relations.

Analogous results can be found for other related physi-
cal quantities such as f (T,p), showing again the typical
behavior coming from a mean field theory near the criti-
cal point for a second-order phase transition.
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