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The massive Schwinger model with two flavors is studied in the strong coupling region by using the
light-front Tamm-Dancoff approximation. The mass spectrum of the lightest particles is obtained nu-

merically. We And that the mass of the lightest isotriplet ("pion") behaves as m ' for strong coupling,
where m is the fermion mass. We also 6nd that the lightest isosinglet is not in the valence state ("g")
which is much heavier in the strong coupling region, but can be interpreted as a bound state of two

pions. It is 1.762 times heavier than the pion at m =1.0X10 '(e/&~), while Coleman predicted that
the ratio is &3 in the strong coupling limit. The "pion decay constant" is calculated to be 0.3945.

PACS number(s): 11.10.Kk, 11.10.St, 11.15.Tk

I. INTRODUCTION

The light-front Tamm-Dancoff (LFTD) approximation
has attracted much attention recently as an alternative
nonperturbative method to lattice theory [1). It is the
Tamm-Dancoff approximation [2] applied to field theory
quantized on the light cone [3,4]. The light-cone quanti-
zation provides a cure for one of the most serious prob-
lems of the Tamm-Dancoff approximation; in the applica-
tion of the Tamm-Dancoff approximation, one must first
specify the ground state, while in the light-cone quantiza-
tion the ground state is relatively simple because the
Fock vacuum is an eigenstate of the light-front Hamil-
tonian. The LFTD field theory is a very attractive and
eScient numerical method for relativistic bound state
problems and is intuitively appealing because it is based
on diagonalization of Hamiltonians with the eigenstates
being wave functions for bound states.

There are, however, several problems in LFTD field
theory: (1) (nonperturbative) renormalization, (2) spon-
taneous symmetry breaking (or the "zero-mode prob-
lem"), and (3) recovery of rotational symmetry. These
problems are very important in the development of
LFTD field theory. We think, however, that it is useful
to see how far the LFTD field theory goes by studying
simple models for which we can circumvent these prob-
lems.

In this paper we study the massive Schwinger model
with two flavors in the strong coupling region nonpertur-
batively in the LFTD approximation. Because it is a
two-dimensional model, there is no renormalization prob-
lem. Because the fermions are massive, spontaneous sym-
metry breaking does not come into trouble [5,6]; the glo-
bal SU(2)„symmetry is explicitly (and softly) broken.
Because there are no transverse directions, the rotational
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symmetry is not broken from the outset. As we will see,
in the strong coupling region, the structure of the mass
spectrum is relatively simple.

The massive Schwinger model [7,8] is a generalization
of the massless Schwinger model [9—11] with the massive
fermion. Both of them have been playing a unique role as
simple toy models for QCD [12]. Although the massless
Schwinger model is exactly solvable, the massive model is
no longer exactly solvable. One has to employ some non-
perturbative methods, such as bosonization and Monte
Carlo simulations [13], to solve it. In his beautiful paper
[8], Coleman studied the massive Schwinger model and
its extension with SUf(2) flavor (isospin) symmetry by
using the bosonization technique. Among important re-
sults, he found the following for the model with SU(2)f
symmetry in the strong coupling limit. (i) The model is
equivalent to the sine-Gordon theory with p=v 2st. (ii)
The lightest particle is an isotriplet, and the next lightest
is an isosinglet. (iii) The isosinglet/isotriplet mass ratio is
&3. (iv) The isotriplet is I =1 +, while the isosinglet
is 0++, not 0 . He confessed that he did not under-
stand why it is so. In this paper we examine these results
numerically in the light-front Tamm-Dancoff approxima-
tion including up to four-body states. We not only
confirm his results, but also obtain several new results.
Our main results are the following. (i) We also find that
the lightest particle is an isotriplet and the next is an iso-
singlet in the strong coupling limit. The isotriplet may be
called a "pion, " because the valence component is dom-
inant. (ii) We calculate the "pion" mass as a function of
the fermion mass numerically. It behaves like m
in the strong coupling limit. (iii) We calculate the
isosinglet/isotriplet mass ratio for various values of the
fermion mass and find that it is 1.762 for
m =1.0X10 (e/Vm). (iv) We argue that the lightest
isosinglet is a bound state of two "pions. " This is our
answer to Coleman's question. The valence state ("g") is
much heavier due to the annihilation force. (v) We find
no g-g, ~-q, or m-~ in the isotriplet or isoquintet bound
states in the strong coupling region. (vi) We calculate the
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"pion decay constant" to be 0.3945. (Of course, this is
merely a two-dimensional analogue and has no physical
importance; the "pions" do not decay. What we would
really like to do is to demonstrate that we can calculate
such phenomenological quantities such as this from the
fundamental field theory. )

The massive Schwinger model in the LFTD approxi-
mation has been studied by Bergknoff' [14] and Mo and
Perry [15]. Our work is based on these works, especially
on that of Mo and Perry. We refer the readers to them.
There are also some papers on the massive Schwinger
model in discretized light-cone quantization (DLCQ)
[16-19],which is closely related to the LFTD approxi-
mation.

The paper is organized as follows. In Sec. II we will
describe the light-cone quantized massive Schwinger
model with SU(2)& and its Tamm-Dancoff approxima-
tion. The states are classified by the exact flavor (isospin)
symmetry. We truncate the states, keeping only two- and
four-body components. The inclusion of four-body states
is essential for our work. As we will see, the lowest iso-
singlet state is not in its valence state and therefore can-
not be found in the lowest approximation (up to four-
body states). In Sec. III we will describe our numerical
method. The method is a generalization of that of Mo
and Perry. We expand the wave functions in terms of
basis functions, which satisfy assumed symmetries under
exchanges of momenta and boundary conditions, and di-
agonalize the matrices for the "norm" and the light-cone
Hamiltonian. The "norm" is necessary because the basis
functions are not orthonormal. We then give results.
The hope for the LFTD approximation is that the com-
ponents with a large number of constituents are
suppressed at least for the low-lying states. We will see
that it is the case (except for the lightest isosinglet) by
comparing the calculations with two- and four-body
states with those with only two-body states. We will also
show that a small number of basis functions is sufficient
to produce quite accurate values. We will then identify
states by examining the wave functions. It is a peculiar
feature of the LFTD approximation that we can utilize
detailed information of the wave functions. It is also ex-
ploited in calculating the "pion decay constant. " Section
IV is devoted to discussions. The appendixes are collec-
tions of conventions, lengthy expressions, and some for-
mulas.

II. LIGHT-FRONT TAMM-DANCOFF APPROXIMATION

A. Massive Schwinger model ~ith two flavors

2

a a A =v'2e y 1t
t

y;
i=1

i&2d p;I =mf;R,

i~28~$;R =mg;I +~2eA

(2.2)

show that A and $,1 ,'(1———y—)f,are dependent vari-

ables and that only f;R—:—,'(1+y )p; is independent. (See

Appendix A for notation. ) These dependent variables
can be eliminated:

eiL (x ) i ~ dy e(x y W'iR (y2&2
(2.3)

2 i=1
A (x )=—

(There can be an x independent background electric
field, which is related to the vacuum angle, as Coleman
discussed [8]. We will not consider this parameter at all
in this paper and concentrate only on the case 6}=0.)

Canonical quantization is performed by assuming the
following anticommutation relations for only indepen-
dent variables:

[0;R(x»f,'R(y}]
(2.4}

I PiR( ) %JR y ] += + I1 'R( ) P R(y)]„+=,'+=

In terms of independent variables, the Lagrangian can be
written as

2

L = X =l 2 X ' iR + iR

~ 2 2

+ —fdx dy g g;R(x )e(x y)tt;R(y—
2 2 i=1

2 2

+ fdx dy g j+(x )lx —y lj (y ).
4 i=1

(2.5)

In order to construct a we11-defined quantum theory,
we have to restrict ourselves to the
Q =fdx j+(x ) =0 subspace, where the conserved
U(l )z current is defined by

such as "quark, " "pion, " and "g." They should not be
confused with real ones, of course. The equations of
motion in the A+ =0 gauge,

2—a' A-=&2 y 1(,', 1(,„,

In this section we will establish the conventions and
provide the readers with some basic formulas.

The massive Schwinger model is two-dimensional QED
with massive fermions. The model discussed in this pa-
per involves a flavor SU(2)I (isospin) symmetry:

2j"=g4r"0;:
otherwise, we would have infinite energy.

There is also the (anomalous) U(1)„current

(2.6)

2

,' F„„F"+ g f, [y"(id„—eA—„) m] g;—, —(2.1} J~s= &:0;r"rA';:

where i (i=1,2) is the label for flavors. Because it is re-
garded as a toy model for @CD, we sometimes use words

2

Bpg=2im g:@,y, g, :+ eI' B„A
i=1
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as well as SU(2}„and SU(2) „currents defined with respect to the free field expansion:

+d't(k+) ik x (2.9)

a~"=0, (2.8)
where, from (2.4),

[b;(k+),b~(l+)] = [d;(k+),dt(l+)]

=2nk+5.;,5(k+ —I+ ) . (2.10)

where T'=o'/2. In the above the normal ordering is
I

By substituting (2.9}, the light-cone Hamiltonian P is
written, in terms of these creation and annihilation opera-
tors, as

P =P free +P self +PO +P2

mP,„,= g f [b t(k)b;(k)+d t(k)d, (k) ],
7T; l 0

P,„r= g f [bt(k, )b, (k, )+d;(k, )d, (k, )]f dk~8n;
&

0 k~
' ' ' ' ' ' ' '

o (k& —kz) (k&+kz)

P0

(2. 1 1)
II; dk; 5(k, +k~ —k3 —k4)

, g f [b;t(k, )b,t(k, )b, (k, )b, (k4)+d;t(k, )d,t(k, )d, (k, )d,.(k, )]

5(k, +k~ —k3 —k~)
b,t(k, )d—t(k, )dj(k, )b;(k4)

(k, —k4)

5(k'[+kg k3 k4)+bt(k, )dt(k~)d, (k3)b, (k4)
(ki +kq)

II dk
P, =, g f ' ' [bt(k, )b, (kt, )d, (kt, )b;(k )4+b, (kt, )d, (k, )b, (k, )b;(k, )

Qk, k~k3k4

+dt(k~)dt(k~)bt(k3)d'(kq)+d (k4)bj(k3)dj(k'~)d (k~)]

5(k)+k~+k3 —k4)
X

(k, —k~) 2

Because of light-cone kinematics, the momentum integra-
tions are restricted to [0,oo). It explains why the Hamil-
tonian does not contain the terms which consist of only
creation operators or only annihilation operators; they
would break momentum conservation. The only excep-
tion is the "zero modes" k+ =0. They are in general sup-
posed to be responsible for the nontrivial structure of va-
cua, such as spontaneous symmetry breaking. In the
present case, however, we have tentatively dropped them
because the presence of the mass term forces the wave
functions to vanish at k+ =0.

B. Isospin multiplets

States are classified by the irreducible representations
of the isospin [SU(2)z] symmetry with the conserved iso-

spin charge:

I'= f dx j'+(x ) . (2.12)

Let us first count how many independent wave func-
tions there are. It is trivial to see that there are a triplet
and a singlet for two-body states, 2 =3+1. For four-
body states, we have 2 =16 states. An elementary con-
sideration tells that there are one quintet, three triplets,
and two singlets, 2 =5+3X3+2X1. Each multiplet
has one independent wave function. Explicitly,
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~2, 2& =,'f—bX k; P d4(k&, kz, k), k4)b&(k, )b, (kz)d, (k, )d2(k4)lo&,
g,. dk;

o (2m) gk, k2k3k4

~1, 1)=f 5(k, +k, —P)$2(k„k2)bti(k, )de(k2)~0)
o 2m+k, k2

H4dk, 4

+ ' —f', -' '
s

2 o (2n. ) Qk/k2k3k4 i=1

X I Q"(k„k2,k3, k4)[b, (k, )b2(k2)d2(k3)d2(k4)+b, (k, )b, (k2)d, (k3)d2(k4}]

+~2/' (k„k2,k3, k4)b, (k, )b2(k2)d2(k3)d2(k4)

+&2/ (k„k2 k)3 k)4)b, (k, )b, (k2)di(k, )d2(k4)I ~0),

lo o& .f =b(k~+ky P)di(k, ky) [ b(tk~) d(tkg)+ b({k~)d ({kp)]l(o&

(2.13)

(2.14)

TI4 dk; 4

2~3 o (2 )2+k, k k3k4

X [$3(k„k2,k3, k4)[b, (k, )b, (k2)d, (k3)d, (k4)

+2b, (k, )b2(k2)d, (k3)d2(k4)+b2(k, )b2(k2)d2(k3)d2(k4)]

+2~3$o(k„k2, k3, k4)b, (k, )b2(k2)d, (k3)d2(k4)) ~0), (2.15)

where P is the total light-cone momentum. Other states
are obtained by the application of I . Note that the I=2
states have no two-body components. The wave func-
tions are assumed to have the following symmetries un-
der exchanges of momenta: 2P P (2.18)

C. Einstein-Schrodinger equations

The LI I'D approximation is to diagonalize the light-
front Einstein-Schrodinger equation

$4(1,2, 3,4)= —$4(2, 1,3,4)= $4(1,2, 4, 3)—,

$4(1234)= Q (2134}=
gati

(1243}
2t&' (1 2 3 4)=f' (2 1 3 4)= —g' (1 2, 4, 3),
$2s(1 2 3 4)— 1t)2s(2 1 3 4) $2s(1 2 4 3)

tti3(1, 2, 3,4)= —$3(2, 1,3,4)= —it)3(1,2, 4, 3 ),
go(1, 2, 3,4) =go(2, 1,3,4) =1{)o(1,2,4, 3) .

(2.16)

in the truncated Fock space. M is the invariant mass.
A constant of motion P+ may be replaced by its eigenval-
ue P for our states (2.13)—(2.15). This simple equation
leads to complicated coupled integral eigenvalue equa-
tions for wave functions. They are collected in Appendix
B. In the following, we discuss the crudest Tamm-
Dancoff truncation (keeping only two-body states) for the
purpose of illustration. For the isotriplet the Einstein-
Schrodinger equation (2.18) becomes

Charge conjugation invariance leads to further restric-
tions:

M
$2(x, 1 —x)= m

2

2

277
—+ $2(x, 1 —x)
1 1

x 1 —x

$2(1,2) =+$2(2, 1), $2(1,2)= + Q2(2, 1),
$4(1,2, 3,4) =+$4(3,4, 1,2),

Q "(1,2, 3,4)= + g "(3,4, 1,2),
P' (1,2, 3,4}=+1{) (3,4, 1,2),
go{1,2, 3,4)=%go{3,4, 1,2),
$3(1,2, 3,4)=+$3(3,4, 1,2),

(2.17)

e' i tt'2() 1 —7)
27r o (x —y)2

(2.19)

This is the same as that obtained by 't Hooft [20,21] in
his study of two-dimensional @CD (QCD2) in the I/N ex-
pansion. It represents a pion consisting of a quark and an
antiquark interacting through a linear potential. By in-
tegrating over x, one gets

M f dx $2(x, 1 —x)

where the upper (lower) sign corresponds to charge con-
jugation even (odd). In the following we will not exploit
these restrictions, but rather use them as an important
check for the results.

=m f dx —+ $2(x, 1 —x) . (2.20)
0 x 1 —x

One may easily see that, in the massless limit, it has an ei-
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Pl

2

e 1 1—+ Pz(x, 1 —x)
2m. x 1 —x

+ I dy $2(y 1 —y) 2—
2]r p (x —y)2

(2.21)

one sees that M =&2e /]r is an eigenvalue in the mass-
less limit. The g is heavier than the pion. The difference
comes from the "2" in Eq. (2.21), which is due to the an-
nihilation force (the last term of Pp ). In the next sec-
tion, we will show that if we include four-body states
there appears a lighter isosinglet state than the g.

genvalue M =0. On the other hand, from the equation
for the isosinglet,

M
]I'rz(x, 1 —x )

m —1+nPco.t(nP) =0 . (3.1)

[Here and hereafter, we work in units of e/3/n. = l. The
strong coupling limit is thus equivalent to the massless
limit (m ~0).] We expand the two-body wave functions
in terms of fk(x) (k =0, 1,2, . . . ):

appropriate basis functions. When we include four-body
states, however, the orthogonality of Jacobi polynomials
does not help us much. In fact, their basis functions for
four-body states are no longer orthogonal. We therefore
use simpler basis functions which are equivalent to their
basis functions.

One can easily see by inspection that the two-body
wave functions must vanish at x=0 and 1 because of the
mass term. (Here x is a fraction of momentum. See Ap-
pendix B.) Bergknoff [14] showed that they behave as x ~,

where P is the solution of the equation

III. NUMERICAL METHOD AND RESULTS

A. Basis functions

N~

P(x, l —x)= g akfk(x),
k=0

where

(3.2)

There are several ways to discretize the coupled in-
tegral eigenvalue equations [16,22]. Among them, we
think that the method of basis functions [15] is most ap-
propriate for our purpose. For the strong coupling, the
behavior of the wave functions near the edges of momen-
tum region is very important. The DLCQ is unable to
express this behavior very well, though it is good for
moderate values of the coupling.

The choice of basis functions is essential for efficient
numerical methods. Mo and Perry studied the massive
Schwinger model by using several basis functions. They
showed that exact integrability of the matrix elements is
very important because otherwise it would take much
CPU time for numerical integrations for matrix elements.
Their conclusion is that Jacobi polynomials are the most

[x (1—x)]~+",
[x (1—x)]~+"(2X —1) .],(x)= ' (3.3)

N4

i(]x]&x2 &x3 &x) 4g b&G&(x] &X2,X3,X4)
k

g x, =l,
(3.4)

where

The four-body wave functions (except for ]I]4) must also
vanish as x,~ at x, =0 (i=1,2,3,4). We expand the four-
body wave functions in terms of G],(x],x2, x3 x4):

p ki k2 k3
(X]X2X3X4 ) (X, —X2 ) (X,2X34 ) (X,—X4 )

G], (x]&X2&X3&x4)=
'

P ki k2 k3
(X]X2X3X4) (X] X2) (X]2X34) (X3 X4) X]2

(3.5)

where x&2=x&+x2 and x34 x3+x4 One can easily
p rt

1 n2 n 3 n4
show that (x,x2x3x4) x

& x2 x3 x4 can be expressed in
terms of G„(x„x2,x3,x4) of (3.5) uniquely, because of
x ]2 +x 34 1. According to the symmetries under ex-
changes, k, and k3 may take only odd or even integers.
For example, in the expansion of p", k, and k3 take only
odd values.

B. Eigenvalue equations

k, , k3 odd,

1/jP(X ] &X2&X 3&X4 ) g CgGg(x ] &X2&X 3&X4 )

k

(3.6)

tions of matrix form. For example, for isosinglet states,
we have

Pz(x, l —x)= g akfk(x),
k=0

( 3] x&x23&x4&x) g b„G],(x„x2,x3&x4)
k

By inserting the expansions of wave functions in terms
of basis functions and projecting the equations to two-
and four-body basis functions, we obtain eigenvalue equa- and

k, , k3 even,
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0 0 jj (m' —1)C+D
M 0 B 0 b = &6(E E—)

0 0 B c +—2(E E—)

3/6(E E—)

(m 1—}Q +R +S 4—T+6U
—2~3 U

&—2(E E—)

—2&3U b , (3.7)

(m —1)Q+R +S 4—T+2U c

where Hx=EAx, (3.10)
1

kl=
0

~kl Gk X1&X2~X3,X4 Gl X1&X2&X3&X4
(4)

fk(x)fj(x)
Ckj dx

( 1 )

where H and A are N XN matrices. By first solving the
eigenvalue problem for the norm A,

Av, =k, , v, , (v;, v )=5; (3.11)

and then by using the rescaled eigenvectors w, =v; /QA, ,
we can transform (3.10) to the usual form

1

Dkj= f dxdyfk(x} 2—
0

fjy
X

W HS'y=Ey,
where

(3.12)

1
Ekl k X1 Gj(x $ lxzyx3yx4 )

j4j (x, +x, )' W=(w, , . . . , wjv), (3.13)

1
Ekj = fk(1 —X4) Gj(x jyxzyx37x4)

~4j (x, +x, )'

4

Qkj f Gk(xl~xz~x3~X4) X Gj(xl~xz~x3~X4) ~

(4)

(3.&)

and x= Wy. We diagonalize this rotated H numerically.
Note that the eigenvectors x; satisfy the relation
x; Ax =5," if y; are orthonormalized.

In the following we will be concerned with only the
strong coupling region because the structure of the mass
spectrum is relatively simple there.

with

f =f gdx5 gx; —1

4 4

X; y1y2 X, —1
6) 0. 1 2

X5(x, +xz —yj —yz),
4 4

f =—f g dx, dy, dy, 5
(6)' 0

(3.9)

X5(x3+x4—
y3

—y4),
4 4

X; P1 g4 X; 1

X5(x, +x4 —y, —
y4 } .

These are calculated by using the formulas collected in
Appendix C. The matrix eigenvalue equations for the
isotriplet and isoquintet are presented in Appendix D.

The matrix eigenvalue equation has the following form
containing a "norm" A:

1Rkj= f Gk(x„xz,xz, x4) 2 Gj(y„yz, x3,x4),
(6) (x, —y, )

1Skj= f Gk(xj, xz, X3,X4) Gj(x&,xz,y3~y4),(6)' (x3 —y3)

1
T„,=f G„(x„x„x3x4) 2Gj(yj xz x3y4),(6)" (x, —y, )

1
Ukj f ——G„(x„x„x3x4) Gj(y „xz,x, ,y4),(6)" (xj+X4)

C. Two-body Tamm-Dancoft' approximation

Let us briefly summarize the results for the crudest
Tamm-Dancoff approximation, keeping only two-body
states.

We have three parameters: the fermion mass (in units
of e/~n) m, the largest value for k in the expansion
(3.2), Nz, and the largest value for k, in the expansion
(3.4), N4, which is neglected in this subsection [23]. First
of all, we have to know how many basis functions are
necessary in order to produce sufBciently accurate values.
Figure 1 is the result for the lightest isotriplets. Remark-
ably, even only one basis function is enough to get
sufficiently good values for the mass eigenvalues. The
lowest mass at m =1.0X10 is 6.02593X10 for one
basis function and 6.02593X10 for eight basis func-
tions. This should be called a "pion, " whose mass van-
ishes in the massless limit. Figure 2 shows the same re-
sult for the lightest isosinglets. The lowest mass at
m =1.0X10 is 1.41550 for one basis function and
1.41550 for eight basis functions. As we have seen, it
should become V2 in the massless limit. We call this
state "g," the lightest isosinglet in the valence state. For
both cases the convergence is very fast even for higher
states. The difFerences between the values for one basis
function and for eight basis functions becomes apprecia-
ble for larger fermion mass, but they are the same in the
first five digits even for m = 1.0.

In the next subsection, we will include four-body states
keeping N2 =3 which seems large enough.

D. Two- and four-body Tamm-DancofF approximation

The convergence of the mass spectrum is not so drastic
when the number of four-body basis functions changes.
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(i-~,m-o. oo~]

FIG. 1. Two-body Tamm-Dancoff approxi-
mation for isotriplets. The lightest five states
are shown with the total number of basis func-
tions. The convergence is faster for smaller
masses. The lowest state has a very small

mass. We call this the "pion."

I I

4 5
2~DY BASS FUNCTGNS

This is presumably because of the complicated shapes of
the four-body wave functions. Figure 3 shows for isotrip-
lets how the masses converge when N4 increases. The to-
tal number of four-body basis functions is

N~ +N ~s+N2s

N4+1
2

X (N4+ 1)

N4+1 N4+2
+2 2X X X(N4+1)

2

where [ ] is Gauss' symbol. For N4 =3, it is 96. Figure 4
is for isosinglets. The isotriplet and isosinglet mass spec-
tra are shown in Fig. 5.

From these, we see that N4=3 is large enough. In the
following, most calculations are done with N4 =3.

The lightest state is pion. Compare with Fig. 1. The
pion mass at m =1.0X10 is 5.52473X10 for N4=4,
and it is 5.53050X10 for N4=1. See Fig. 6. The fact
that the value does not change much (only 9%) by the in-

clusion of four-body states implies that this state is in its

valence state. In fact, one can see by examining the wave
functions that the probability of being in the two-body
(symmetric under x,~x 2 ) state is 98.36% at
m =1.0X10 . This state is 6-parity even. If we could
confirm that it is parity odd, our identification would be
complete, i.e., 1 . But in the light-cone quantization,
parity is very diScult to implement. In more than two
spatial dimensions, one may define a kind of parity opera-
tion which leaves the quantization plane intact by using a
spatial rotation. But in one spatial dimension, there are
no rotations. In conclusion, we fail to implement parity
in our scheme. It turns out, however, that charge conju-
gation and the probabilities of being in specific states are,
in most cases, very powerful in identifying states.

It is interesting to see how the pion mass varies with
the fermion mass. Figure 7 shows that the pion mass is
roughly proportional to the square root of the fermion
mass:

lnm =0.564(2)+0.5007(2)lnm . (3.14)

Note that it seems consistent with the usual notion of
current quark masses. Grady [13] got 0.58+0.10 instead

fi-o, m-o. oo~ (

FIG. 2. Two-body Tamm-Dancoff approxi-
mation for isosinglets. The lightest five states
are shown. Note that the spectrum is very
similar to that of the one-Qavor model. We
call the lowest state the "g."

I I

4 5
2-BODY BASS FUNCTIONS
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ln(m„—&2)=0.19(1)+0.993(2)lnm . (3.15)

Note that m„—~2 is roughly proportional to m, in con-
trast with the pion mass, m -m' . This state is G-

parity odd.
It is very interesting to see that g is no longer the light-

est isosinglet once four-body states are included. Figure
4 shows that the lightest isosinglet is not rl, but it tends to
be massless in the m ~0 limit. Its mass is
9.73543X10 at m =1.0X10 for N4=4. The con-

of 0.5007(2) and claimed that it is consistent with —,. We

will discuss this in the next section.
It is also easy to find g in the spectrum. Its mass at

m =1.0X10 is 1.4154873 for N4=4 and 1.4154960
for N4=1. See Fig. 8. The two-body result is extremely
close to this value. [The difference is less than
(1X10 )%.] The probability of being in the two-body
(symmetric under xI~xz) is more than 99.999% at
m =1.0X10 . The dependence of the mass on the fer-
mion mass is shown in Fig. 9:

vergence is relatively slow. The isosinglet/isotriplet mass
ratio is 1.762. This should be compared with &3 in the
strong coupling limit, obtained by Coleman. Note, how-
ever, that the pion/rl mass ratio is
(5.5247X10 )/1. 41549=3.65X10; the coupling is
not quite strong. Actually, 1.762=&3+0(m /m„).
Thus we think that the above value is consistent with
Coleman's result. We will shortly show that this state is
G-parity even.

In order to identify states, it is useful to introduce the
meson operators

A „(k„k2)=b,(kI)d~(k~),

[b, (k, )d, (k2) —b, (k, )d~(k2)],
1

2
(3.16)

A tI I(k„k2)= —bt~(k1)d, (k2),

A, II(k„k2)=—

A00(k„k~)= [b, (k1)d, (k~)+b~(kI)d2(k~)] .1

2

The isosinglet state i0,0) is rewritten in terms of the
meson operators as

(a)
2 ~ 0-

(I~1,m~0. 001(

1.5-

1.0-

0.5-

0.0-
I

0

(b)
2.0-

I

20

(I~1,m~0. 0'I ]

I

40
I I I I

60 80 100 120
48ODY BASIS FUNCTIONS

I

140 160

FIG. 3. Two- and four-body Tamm-Dancoff
approximation for isotriplets. The lightest five
states are shown with the total number of
four-body basis functions. (a) is for
m =1.0X10 and (b) for m =1.0X10
The increase of the number of basis functions
leads to finer resolution. Some ("spurious")
states appear when the number of basis func-
tions is large enough. We think that they are
scattering states. They do not appear to reach
the asymptotic values within our calculations.

1.5-

1.0-

0.5—

0.0—
I

0 20
I

40
I I I

60 80 100
4-BOOY RAIS RNCTCNS

I

120 140 160
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p dk, dk2
l0, 0) =f 5(k, +k2 —P)$2(k„k2)Aoto(k, , k~)l0)

o 2m.+k, k2

4dk, 4

(2~) Qk, k~k3k4

X [g (3k, , k 3, k4, k 2)[A oo(k„k 2}A oo(k 3, k4) —Aoo(k„k4)Aoo(k3, k2)]
—2&3$o(k), k3, k4, k2)[At, (k„kq)A ) )(k3 k4)

A to(k i, k2 ) A to(k3, k4)+ A, , (k „k2 ) A» (k3& k4 )] j l0) . (3.17)

From this expression it is now clear that go is the wave
function for the n.-m system. For the lightest isosinglet,
the probability of being in the four-body rr-n state (go) is
calculated to be 54.07%, while it is 41.84% for the two-
body (antisymmetric under x,~xz } state. (All the rest is
for g-g component. ) This state is G-parity even. [See
(2.17).]

Now we have obtained the answer to Coleman's ques-

tion. (1) The lightest isosinglet 0++ is a pion-pion bound
state. (2) In the weak coupling region, its mass will be-
come almost twice the pion mass, while the pion and 7)

masses will become almost degenerate. This is why the
0++ state is far away up from these states in the weak
coupling region. (3) Why is it so light? (a) Because it is a
bound state of two pions. Its existence would be found
by nonrelativistic reasoning as Coleman demonstrated for

(a) /i. o,m-o. oo~ i

2.0—

1.5-

1.0-

0.5—

0.0—

(b)

2.0—

I

50

[i-o,m-o. oi }

I I

100 150
48ODY BASS FUNCTGNS

I

200 FIG. 4. Two- and four-body Tamm-Dancoff
approximation for isosinglets. The lightest five

states are shown with the total number of
four-body basis functions. {a) is for
m =1.0X10 ' and {b) for m =1.0X10 '.
Compare with Fig. 2. The lightest state is not

g, but tends to massless in the m~0 limit.
There are also "spurious" states.

I

50 100 150
4-BODY BASS FUNCTONS

I

200
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f =0.394518(4)+2.26(8) X 10 m . (3.23)

The right-hand side can be calculated numerically, as

shown in Fig. 13. In the strong coupling region, it is al-

most independent of the fermion mass, indicating that
PCAC (partial conservation of axial vector current) is a
valid concept. In the limit, it is 0.3945,

In the following we list several unsolved problems.
(1) The relation between the pion mass and the fermion

mass is consistent with the usual notion of current quark
masses and the pion decay constant depends only weakly
on the fermion mass in the strong coupling region. On
the other hand, however, if we use the current algebra re-
lation,

IV. DISCUSSION
2

f~'=m(0 x p;g, 0
i=1

(4.1)

We have obtained the mass spectrum of the massive
Schwinger model numerically in the LFTD approxima-
tion and have seen that the LFTD approach is very
powerful in the study of bound states. In particular, be-
cause we obtain the wave functions simultaneously, the
identification of the states is easy. We also examine
PCAC by seeing if the "pion decay constant'* is really a
constant in the small mass region and how the pion mass
changes with the fermion mass. Remarkably, PCAC is
very good even for this two-dimensional toy model.

it follows that the condensation (0~ g2=, g;g; ~0) is in-

dependent of m. (Note that unfortunately we are not able
to calculate it directly in our scheme because we normal
order the fermion bilinear and discard the zero modes
completely. ) On the other hand, since it is naively [25]
expected that pion mass is proportional to m ~ in the
strong coupling limit from the work by Dashen,
Hasslacher, and Neveu [26] and Coleman [8]. It seems,
however, to us that the value obtained by Grady is also

a) [I 2,m 0.001[

I
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llo2, m~0. 01 I

I I I
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40 FIG. 10. Four-body Tamm-DancofF approx-
imation for isoquintet states. The first five
states are shown with the total number of
four-body basis functions. (a) is for
m =1.0X10 and (b) for m =1.0X10
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1 0
7 'V7 0

0 0
3/2 O'

0 0
0 2

O 3/Z

0 0

2 0
V 3 0 {}

%'e treat x+ as our "time. "
Accordingly, the y matrices are defined as

(A3)

APPENDIX 8: EINSTEIN-SCHRODINGER EQUATIONS

We give a complete set of coupled integral eigenvalue
equations obtained by applying the Hamiltonian (2.11) to
the states (2.13)—(2.15). We have rescaled the total
momentum P out by changing variables to momentum
fractions x; =k; /P. The two-body wave function
gz(k„k2) is replaced by Pz(x, ,x2), but the four-body
wave function f"(k„kz,k3, k4) by f"(X„X2,X3 x4)/P
and other wave functions analogously. For the four-body
wave functions, g4,

& x; =1. We introduce 4 and 4 for
notational convenience:

%=/' +Q +~2/"

thus, g = (gz, QL ) . The totally antisymmetric tensor e""
is defined by

1
0

3
(B1)

~01 ~
—+ (A4) For isospin=2,

M m' e' 4
1

l//4( X ] y X3 y X 3 y X4 ) y y4( X ] y X2 y X 3 y X4 )
2 277; ) X;

e 1 1+
2

d3 1dy2 ' 5(xl +x2 3 1 3 2 W4(yl 3 2 X3 X4 }
277 0 2(x, —y, ) 2(xz —y, )

1 1+5(x 3 +x4 —y, —
y2 )$4(x, ,xz,y „y2 )

2(x3 —y, ) 2(x4 —y, )

1+5(x, +x4 —y &

—
yz )$4(y „xz,yz, x3 )

(x, —y, )

12+x4 yl 3 2%4(yl x1 3 2 X3)
(x2 —y, )3

15(x1 +x3 yl 3 2) P4(yl X2 y2 X4)
(x, —y, }3

1+5(x2 +x 3
—y, —

y2 )$4(y „x„y2,x4 )
(x2 —y, )

(82)

For isospin= 1,

M Nl e
$2(x, 1 —x)=

2 ' '
2 2m.

e'—+ $2(x, l —x)— f dyx 1 x 2n o (x y)2

e 5(y, +y3+y3 —x)+ dy
& dy2dy3

7T 0 (x —y, )

X 0"(yi,y2,y3, 1 —»+
2

[0"(y~,y2, y3, 1 —x}+0"(yi,y2, y3, 1 —x}]

e 5(y2+y3+y4 (1—x})
dy2dy 3dy4

0 [(1—x) —y4]

0"(x 32,33 34}+~- [0"(x,yz, y3 y4)+0"(x y2, y3,y4)] (B3)
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2
(X 1 yX2yx3$X4 )

xi*xz x3&x42' i x;

e2 1+ . $2(x „1—x, )
4~ (x2+x4)

1

(x2+x3)
—$2(X2, 1 —x2)

1

(x, +x4)
1

(x, +x3)

—$2(1—x3,x3)
1 1 1 1+$2(1 —x4, x4)

(x2+x4) (x, +x4) (x2+x, ) (x, +x3)

1+
2

dy1dy2 5(x1+x2 —
V1

—
V2 W (313 2 X3 X4)

277 0 2(x, —y, ) 2(x2 —y, )

1 1+5(x3+x4 —y, —
y2 hb (x»x2, y, ,y2 )

2(x3 —y, ) 2(x4 —y, )

1—&(X1+X4—
V1

—V2)4"(X2» V2 x3)
(X1 V1 )

1
+~(x2+x4 31 32)(t (X1 31 32 X3)

(X2 —y, )

1+5(x, +x3 —y, —V2)g "(x2,y, ,y2, x4) 2(X1 V1)

1
5(x2 +x3 y, —

y2 )P"(x,,y1,y2, x4 )
(x2 —y1)

1 1+ — dy1dy2 &(X1+X4—
V1

—V2)+(x2 V13 2 X3)
2 2n' (x, +x4)

1
5(X2+X4 3 1 V2)+(x1 3 1 V2 X3)

(x2+x4)

1
5(x 1

+x 3 y, —
y2 )0'(X2,y 1,y2, x4 )

(x, +x, )

is
2

2
(X1,X2,X3,X4)

1+5(X2+x, —y, —y, )4(x, ,y„y2,x4)
(x2+x3)

(84)

2 4 e2
g —g' (x„x„x„x4)+ ~ . $2(X1, 1 —X1)

21K; 1 x; 4&277 (x2+X4)
1

(x2+x3)

1 1
+q2(x„ 1 —x, )

(x, +x4) (x, +x3)

1 1—$2(l —x3 X3) 2+
(x2+x4) (x, +x4)

1+$2(1 —x4, x4 ) +
(x2+x3)

1

(x, +x, )

e 1S 1 1
+ dyldy2 '~(x1+ 2 31 V2W (31 32 3 4)

277 0 2(x, —y, ) 2(x2 —y, )

1S 1
+5(x3+x4 3 1 V2)g (x»x2,y»y2) 22(x3 —y, ) 2(x4 —y, )
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1S 1+5(x1+x4» —V2) P ( 2 3 1 3 2 x3}
(x1 V1}

+5(x2+x4 Vl 3 2W (x1 3 1 3 2 x3}1S 1

(x2 —y, }

1S 1—5(x, +x,—y, —y2)g (x„y1,y, ,x4)
V1}

1S—5(x2+x3 V1 V2)g' (x„y1,y2, x4)
(x2 —y, )

e 2
1+

4 dy1dy2 ' 5(x1+x4 y1 y2)+(x2 3 1 3 2 x3 }4~ o (x, +x4)

1
2+x4 3 1 V2)+(x1 3 1 3 2 x3 }

(x2+x4)
1+5(x 1 +x3 y, —

y2 )%(x2,y „y2,x4 )
(x, +x3)

1+5(x 2 +x 3
—y 1

—
y2 )%'(x 1,y 1,y2, x4 )

(x, +x, )
(BS)

II/ (X1,X2,X3,X4)

m e 2 4
2S X1,X2,X3,Xg27T; 1 x;

e 1 1 1 1+,—$2(x1, 1 —x1) + +$2(x2, 1 —x2) +
4~2m (x2+x4) (x2+x3) (x, +x4) (x, +x3)

1
+$2(1—x3,x3)

(x2+x4)
1 1 1+$2(1 —x4,x4 )

(x, +x4) (x2+x3) (x1+x3)

e 1 1+
2

dyidy2 '5(x1+x2 31 V2W (3132 x3 x4}
277 0 2(x, —y1) 2(x2 —y, )

2S 1 1+5(x3+x4 —
y1

—V2)g (x1,x2,y1,y2) +
2(x3 —y, ) 2(x4 —y, )2

1+5(x, +x4 —y, —y2)g (x2,y„y2, x3)2S

(x, —y, )

1
5(x2+x4 3 1 V2W (x1 3 1 32 x3}2S

(x2 —y, )

1+5(x, +x3 —y, —y2)g (x2,y, ,y2, x4)
(x, —y, )

2S 1—5(x2+x3 V1 y2)g ~(x„y„y2,x4)
(x2 —y, )

e 1+
4 dyldy2 ' 5(x1+x4 3 1 V2)+(x2 yl V2 x3 }
4m o (x, +x4)

1+5(x2+x4 V1 3 2)+(x1 3 1 3 2 x3}
(x2+x4)

1
5(x1 +x3 V1 y2 }%(x2,y„y2,x4)

(x1+x3)
1+5(x2 +x 3

—y 1
—

y2 )%(x1,y 1,y2, x4 )
(x2+x3)

(B6)
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For isospin =0,

M m
gz(x, 1 —x)= e

2m

—+ gz(X, 1 —x)+ f dy $2(y, 1 —y) 2—
x 1 x 21T 0 (x —y)

e+ f dy, dy, dy,
5(y 1 +yz+y3 —x)

[&6/3(y „yz,y3, 1 —x) —+240(y 1 V2,V 3, 1 —x ) ]
(x —y, )

M
2

'I//3 (X 1,X2,X3,X4 )

e 5(yz+V3+y4 —(1—x) }
dy2dy3dy4 [ 6A( yz V3 V4) — 21)'jo(x yz V3 V4)]2' 0 [(1—x)—

y4 ]
(B7)

m

2

e2 4

3 X),X2,X3,X42K; &x;

&3e' 1+ . $2(x„l—x, )
4&2m (xz+x4)

1

(xz+x3)
—1I(z(X2, 1 —xz)

1

(x, +x4)
1

(x, +x, )'

—gz(1 —x3,x3 )
1

(xz+x4)
1, 1

+lj'jz(1 —x4, x4 }
(x, +x4)' (xz+x, )

1

(x, +x3)

e 1 1+ dyldyz'@xl+xz yl yz)$3(yl yz X3 X4)2' 0 2(x, —y, ) 2(xz —y, )

1
+~(x3+x4 yl yz)A(xl X2 yl yz)

2(x3 —y, )

1
~(x1 +x4 yl

—
V2 W3(xz yl V2 X3 }

(x, —y, )

1+5(xz+X4 —y, —
yz )$3(x, ,y, ,yz, x3 )

1

2(x4 —y, )

1+5(x1+ 3 yl yz 43(xz yl yz X4}
(Xl —yl )'

1
5(xz +x3 yl yz )$3(x l,yl, yz, x4 )

(xz —y, )

&3e' 1+ dyldy2 ' ~(x 1+X4 yl V2)@(xz yl V2 X3)
27T 0 (x, +x4)

1
+~(xz+X4 Vl V2)@(x 1 yl V2 X3)

(xz+x4)

1
+~(xl+x3 yl yz)@(xz yl V2 X4)

(x, +x, )

1
5(xz +x3 y, —

yz )4(x „y„yz,x4)
(x2+x3)

M
2

fp(X1,Xz, X3,X4 )

(B8)

m 2 4

0 X),X2,X3,X42'
1 1+,y,'(X, , 1 —X,),+, +y'(X2, 1 —Xz} +

4&2m (xz+x4) (xz+x3) (x1+x4) (xl+X3)

1 1—gz(1 —x3,x3) 2+
(xz+x4) (x 1+x4)

]

—gz(1 —x4,x4) +
(x, +x, )' (x, +x, )'

J
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p
2

1 1+ dy]dy2 5(x]+x2—» —V2)40(V],V2 x3 x4} 2+
277 0 2(x, —y, ) 2(x2 —y, )

1 1
4 3'1 3'2)A( 1 2 3'1 3'2 2

+
2(x3 —y]) 2(x4 —y, )

15(x]+ 4 31 V2Wo(x23132 x3}
(x, —y, )

1
5(x2+x4 3 1 V2 Wo(x] 3 1 3 2 x3 }

(x2 —y])
1—5(x, +x3 —y, —y2)go(x2 y„y2,x4)

(x, —y, )

1
5(x2+x3 3 1 3 2 Wo(x] 3 1 3 2 4}

(x2 —y, )

e 2 1+ dy]dy2 5(x] +x4
—y] —V2)@(x2,V],V2 x3)2S' 0 (x]+x4)

1
+5(x2+x4 —y, —V2)4(x],y],V2, x3)

(x2+x4)
1+5(x ] +x3 —y, —

y2 )4(x2,y „y2,x4 )
(x, +x3)

1+5(x2+x3 y, —y2)4(x],y],y2, x4)
(x2+x3)

(B9)

APPENDIX C: SOME FORMULAS

This is a list of useful integral formulas for calculating matrix elements by using the basis functions (3.3) and (3.5)
(principal-value integrals are understood):

I (a,P)= f dx dy = — B(a,a)B(P,P),
0 (x —y)2 2(a+ p)

I"(a,P)= f dx dy (2x —l)(2y —1)
0 (x —y)2

a
2(a+P)(a+P+ 1)

4 4

2+4 '
1

-1'+' 1234'1'2'3'4'

=B(4P+k+n2+n3+n4+1, 2P+k+n]+1)B(P+n4+1,P+n2+1)B(2P+n2+n4, P+n3+1), (C2)

I'(2P+n, +1)I (2P+n +1)I'(2P+n +1}I'(2P+n +1)g dx 5 g x,.—1 (x,x2x3x4) x] x2 x3 x4'—
i=1 i=1 1(8P+n]+n2+n3+n4+4)

f
4 4

+ dx;dy]dy25 g x,. —1 5(x]+x2—y] —y2)(x]+x2) (x]x2x3x4} (y]V2) (x3x4} x] x2 x3 x4 y] 'y2

(C3)

=B(P+m, +1,P+m2+1)B(P+n, +1,P+n2+1)
I (4P+n, +n2+m, +m2+ l)l (2P+n3+1)I (2P+n4+1)

X 1 2 1 2 3 4 (C4)
I (8P+n + ]+nn2+n3+m4+m1+32)
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lr

4 4

g dx;dy1dyzb g x; —1 5(x, +xz —y, —yz)(x, —y, ) (x,xzx3X4) (y1yz) (X3X4) X1 Xz X3 X4
i=1 i=1

I (4P+n, +nz+m, +mz+1)I (2P+n3+1)I (2P+n4+1)
I (8P+n, +nz+n3+n4+m, +mz+3)

where

D(n1 n2 ml m2)

p+n1 p+n& p+m1 p+m&

dx dy
x '

1 —x 'y '(1 —y)
0 (x —y)

—In, nz—
I

—Im, —
mz

k=0

kxz Im, —m, I

1=0

r

1rz

X
1/2

( 4)"+'I —(P+n+r, 13+m+s)

mZ' e(n, nz )e—(m, m, )—
fn, nzf—

k =0 r=0
odd

Im, —mzl 1iz ~m1 —
mz~

X X
1=0 s =0
odd

l/2
( 4)"+'I"—(13+n + r 13+m+s),

with n =min(n„nz) and m =min(m1, mz).

APPENDIX D: MATRIX EIGENVALUE EQUATIONS

The following are matrix eigenvalue equations for the isotriplet and for the isoquintet.
For the isotriplet,

1(2(x, 1 —x)= g a„f„(x),
jc =0

(x 1 |xz|x3yx4 ) + g bkGk(x»x»x3, X4 ), k» k3 odd

(x1 xz x3 x4) g ckGk(x, ,xz, x3,X4), k, even, k3 odd
k

(X1»2»3 X4) X dkGk(xl»2»3 X4) kl odd, k, even .
k

0 0
0 B 0
0 0 B
0 0 0

where

0 b

0 e

B d

(m —1)C+D
2(E —E)

&2(E —E)
&2(E—E)

2(E —E)
(m' —1)Q+R +S 4T+4U-

—2+2U
—2&2U

&2(E —-E)
—2&2U

(m ' —l )Q +R +S 4T+2U-
2U

&2(E—E)
—2&2U

2U

(m —1)Q+R +S—4T+2U
C

.d.

(D2)

fk (x)f((y)
dx dy

(x —y)

For the isoquintet,

$4(x»xz, x»X4)= g bkGk(x»xz, x3,x4), k, , k3 odd,
k

M Bb = [(m —1)Q +R +S 4T]b . —

(D3)

(D5)
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