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Convergence of the optimized 8 expansion for the connected vacuum amplitude:
Zero dimensions
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Recent proofs of the convergence of the linear b expansion in zero and one dimension have been
limited to the analogue of the vacuum generating functional in Geld theory. In zero dimensions it
was shown that with an appropriate, N-dependent, choice of an optimizing parameter A, which is
an important feature of the method, the sequence of approximants ZN tends to Z with an error
proportional to e ' . In the present paper we establish the convergence of the linear 8 expansion for
the connected vacuum function W = lnZ. We show that with the same choice of A the corresponding
sequence WN tends to W with an error proportional to e '~. The rate of convergence of the latter
sequence is governed by the positions of the zeros of Z~.

PACS number(s): 11.10.Jj, 11.15.Tk

I. INTRODUCTION

In a previous paper [1] it was proved that in zero-
dimensional space-time the optimized linear b expansion
can completely cure the problems inherent in conven-
tional perturbation theory. A conventional perturbation
expansion is a formal series in powers of the coupling
constant. Such a power series typically has a zero ra-
dius of convergence and sometimes is not even useful as
an asymptotic series because it is not Borel summable.
In contrast, the optimized linear b expansion produces a
sequence of approximants which converge rapidly to the
exact answer, with an error R~ that decreases exponen-
tially with the order N: R~ exp( —cN). The proof
given in Ref. [1] was subsequently extended [2] to one-
dimensional space-tixne (the quantum anharmonic oscil-
lator), where it was shown that for the finite-temperature
partition function Rtv exp( —cN2~s). The technique
can also be extended to establish a proof of convergence
for cutofF p42 s theories (with either sign of the squared
mass) in finite volume.

However, the proofs of convergence given in Refs. [1]
and [2] were limited to the partition function (vacuum-
vacuum amplitude) Z, which represents the sum of all
vacuum graphs, disconnected as well as connected. In
quant»m 6eld theory the crucial quantity to compute is
W, the logarithm of the vacuum-vacuum function, which
represents the sum of the connected vacuum graphs only.
It is nontrivial to show that the optimized linear b ex-
pansion converges for R' because Z~, the Nth approxi-
mation to Z, has zeros in the complex-b plane at which
ln ZN is singular. The presence of such zeros could inter-
fere with the convergence of the sequence lV~. It is the

where g is the coupling constant and p, the mass. In or-
der to perform a weak-coupling expansion of Z in powers
of g it is necessary that the mass parameter y2 be posi-
tive; a weak-coupling expansion does not exist otherwise.
However, in the linear b expansion the value of p is im-
material. Thus, for simplicity we restrict our attention to
the massless case p = 0; the analysis of the massive case
(with either sign of y, ) does not difFer in any significant
way.

The linear b expansion [3) has features in common with
a number of previous approaches [4—14) to improving on
the convergence of ordinary perturbation theory. It in-
volves the introduction of an artificial parameter b which
does not appear in the original problem and which in-
terpolates linearly between the theory we hope to solve,
with action S, and another soluble theory, with action
Sp. The interpolating action S(b) is defined as

S(b)—:A(1 —b')Sp + bS, (2)

so that S(0) = Sp and S(1) = S.
Any desired quantity is evaluated as a perturbation se-

ries in powers of b, which is then set equal to 1 at the

purpose of this paper to show that in zero dimensions the
b expansion for W does in fact converge, in spite of the
zeros of Z~.

The specific model we consider here is the zero-
dimensional analogue of the Euclidean functional integral
for a p4 quantum field theory, which in this case amounts
to the one-dimensional integral

OO
4Z= Axe ~*
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end of the calculation. At b = 1 the theory defined by
S(b) is independent of the value of A. However, to any
finite order N in b there is a residual A dependence, and
the choice of A is in fact crucial to the convergence of the
b expansion. Indeed, if A were taken to be a constant in-

dependent of the order N, the 8 expansion would have a
zero radius of convergence, just as in ordinary perturba-
tion theory. However, it was proved in Ref. [1] that if A is

chosen as an%, the sequence of approximants Z~(AN)
converges to Z. The numerical value of o. is given at the
beginning of Sec. III. The scaling A = cN ~ was shown in
Ref. [2] to guarantee the convergence of the correspond-
ing sequence for the finite-temperature partition function
of the anharmonic oscillator. However, the proof did not
extend to zero temperature because the limits P ~ oo

and N ~ oo are not interchangeable.
In the context of field theory it is natural to work with

the logarithm of the partition function, i.e. , with con-
nected diagrams. It is therefore desirable to extend the
proof of convergence to W = lnZ. To do so it is nec-

essary to determine the location of the zeros of Z~ in
the complex-6' plane in the limit of large ¹ This de-

termination is performed asymptotically by a steepest-
descent evaluation of the integral representing Z(b) and
an asymptotic analysis of the behavior of the remainder

R~ as a function of complex b.
In Sec. II we explain how the zeros of Z~ acct the

convergence of the b expansion for W. The asymptotic
analysis of the location of these zeros is given in Sec. III.
Finally, in Sec. IV we summarize our results and dis-

cuss possible extensions of the analysis presented here to
higher dimensions.

1 dz 1
F~(1) = . , F(z),

2%i Q Z 1 Z

(5)

where Cq is a closed contour encircling the point z = 1

but not the origin. Subtracting Eq. (4) from (5) gives the
following general integral representation for the remain-
der RN = F(1) —FN(1):

1 dz 1
Rrv = . , F(z),

2zx Q z z 1

where the contour Coq encircles both z = 0 and z = 1 in
an anticlockwise direction, as shown in Fig. 1.

Now let us apply these identities to the function F(8) =
ln Z~(8) evaluated at b = 1 in order to obtain a bound
on the remainder, which in this case we denote by

'R~ = ln Z~ —(ln Z~) ~ .

Expressing Z~(z) in terms of its roots,

ZN(z) = ZN(0)
N zl

z. )

so that

where Co is a closed anticlockwise contour encircling the
origin but not the point z = 1. The quantity F(1) itself
can be represented as

II. RELEVANCE OF THE ZEROS OF SN

In this paper we are investigating the convergence of
the 8 expansion for W = ln Z. This involves computing
the ¹hpartial sum W~ of the Taylor series in b of
W(b) = lnZ(8), where

Thus,

1 ~ dz 1
'R~ = . ) , ln(z —z„) .

2+i - ~ z~+' z —101

(1O)

@I') f g
—A +b(A

Lz

in which we have taken g = 1 without loss of generality.
Then b is set equal to 1 and A chosen in some appropriate
fashion as a function of N.

It was shown in Ref. [1] that with the appropriate scal-

ing of A the sequence of approximants Z~(b) evaluated
at b = 1 tends to the exact result. Consequently the se-

quence lnZ~ also tends to W. However, this does not
constitute the systematic expansion of W in powers of b

that we seek. That is to say, W~, the sum of the first N
terms of the Taylor expansion of ln Z, is not the same as
lnZ~, the logarithm of the sum of the first N terms of
the Taylor expansion of Z.

To examine the convergence of W~ to W we will make
use of a slight generalization of some identities introduced
in Ref. [2]. Given a function F(b), the ¹hpartial sum
of its Taylor expansion evaluated at b = 1 can be repre-
sented as the contour integral

PIG. 1. Contours in the complex-z plane used for the rep-
resentation of F~(1), F(1), and R~ [Eqs. (4)—(6)].
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dz 1
N ) zhl+1.=1 .-

By parametrizing the integration variable z along each
branch cut by pe's" it is easy to establish the bound

1 1 1

/z„—lf N /z„/+
' (12)

where we have used the inequality ~z —1~ ) ~z„—1~ along
each radial cut. This latter inequality is valid provided
that ~z„~ ) 1, which will be established in the next sec-
tion. If z;„denotes the root having the smallest mod-
ulus, then Eq. (12) may be replaced by the simpler in-

equality

1 1
JRiv/ (

/zmin 1/ /zmin/
(13)

Since ~zm;
~
) 1, we may conclude from Eq. (13) that

the remainder RN vanishes for large 1V. The rate at
which R~ tends to 0 is crucially dependent on the be-
havior of z; as a function of N, which is the subject of
the next section.

Note that constant terms such as lnZiv(0) do not con-
tribute to the integral around the contour Co~.

In the derivation of Eq. (10) we are assuming that
there are no singularities of the integrand inside the con-
tour other than those at z = 0 and z = 1. We will verify
this assumption in Sec. III. Let us now expand the con-
tour Coq by pushing it outward in all directions. In so
doing we encounter the logarithmic branch points ema-
nating &om the roots z„. We take the branch cuts to lie
along straight lines radiating directly outwards, as shown
in Fig. 2. Thus, the shifted contour wraps around these
branch cuts and the integral is then given by the sum of
the discontinuities across each branch cut:

III. SADDLE-POINT DETEKMINATIGN GF THE
SMALLEST ZERO OF Z~

In Ref. [2] it was shown that the sequence Z~ converges
to Z if the parameter A is chosen as A = Aiv = gaN,
where the numerical value o. = 1.3254. . . is obtained &om
cr = 2/ sinh P and P satisfies the transcendental equation
P = coth P. We adopt the same choice for the parameter
A here. In this case the series

N

Z~(z) = ) c„z" (14)

looks rather simple: Apart &om the last term, which is
small and negative, the coefficients are all positive and
monotonically decreasing, looking roughly like a geomet-
ric series. Unfortunately, it is not easy to determine the
location of the roots of a polynomial &om the knowl-
edge of the coefficients c„. As an example, consider the

2
simple-looking case c„=e ~" . For small values of p the
roots lie on a circle centered at the origin in the complex-
z plane. However, as p increases past a critical value two
pairs of complex-conjugate roots break away &om the
circle. Additional roots eventually break away from the
circle as p increases through a whole sequence of critical
values. This phenomenon is described in Ref. [15]. To
our knowledge there is no simple analytic way to deter-
mine these critical values or, indeed, the positions of the
roots.

Interestingly, the configuration of the roots of ZN
shares many of the characteristics of this simple model.
For large odd N all but five of the roots lie almost exactly
on a circle; of the remaining roots, one complex-conjugate
pair lies inside the circle, another conjugate pair lies out-
side, and there is a single root located far away on the
positive-real axis (see Fig. 3 for the case N = 27). When
N is even the only qualitative difference is that there is
no real root. As shown in Eq. (13), it is the position

FIG. 2. Logarithmic branch cuts radiating from the zeros
of Z~(z) in the representation of R~ in Eq. (11).

FIG. 3. Location of zeros of Z~(z) in the complex plane
for N = 27. The circle (of radius 2.1) is just an empirical Bt
to the ring of zeros. The distant real root at z = 14.124 is
not shown.
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ZN(z) = Z(z) —RN(z) (15)

of the pair of roots nearest the origin which determines
whether or not the sequence O'N converges to W.

As remarked above, it is very di%cult to find the po-
sitions of the roots directly from the coeKcients. Thus,
we have adopted the alternative strategy of expressing
ZN(z) as the difference

lvl

IA ()I& —Ax +lyl cos8 g N —u) cos8
Z

~ 0 0
(21)

The maximum of the u integrand occurs at
N/ cos0 ) N, whereas the upper limit is less than or
equal to Ncxlzl/4. Thus, provided that lzl & 4/n, we

may bound
I
AN (z) I

by

and estimating each term on the right side of (15) by
asymptotic methods. Note that while Z(z) does not de-
pend explicitly on the large parameter N, when z g 1 it
does involve AN, which is a large parameter. It is through
this dependence that we are able to estimate the integral
representation for Z(z) by steepest-descent analysis. The
result of this analysis is that

I --I =1+
I I

+0 I—
iaN) ),Np

Prom this asymptotic relation we conclude that RN tends
to zero like exp( —/3+N/cx), thus proving that WN con-
verges to W.

The asymptotic analysis of the two terms RN (z) and
Z(z) on the right side of Eq. (15) follows in Secs. III A
and III B, respectively.

A. Asymptotic bound on RN(z)

The starting point for our analysis is the identity for
8N(y)—:e "(e"}N established in Ref. [1]:

IAN(z)l &, dx e " '+Isl o
lyl

+ e
p

BN(z) = dx e +"

so that

l~l
N we' ei(N+1)(8+e) (24)

0

2 2 l~l

( )I & d )ze —iy! c d N w o 8¹! 0

2
lzlN+i d

—Ae (px2 4)N+1¹!
(22)

Apart Rom the factor of lzl +, the right side of
Eq. (22) is precisely AN(1), which was shown in Ref. [1]
to be bounded by CNS/' e N~/' Thus,

IAN(z)l & CN i Izl +'e . (23)

In the second of the two regions of the x integration,
the quantity Az —x is negative, so that y = ue'( + ~.

The corresponding contribution to the remainder is then

—ON= —y e "/N!.d N (17)
(25)

In this case the ~ integrand is a monotone function whose
maximum occurs at the upper limit. Thus,

This identity is to be applied under the z integration with

y = z(Axz —x4). That is,

Rzz(z) = 2 f dz e +z(1 —Oz (zi)] .

Let us first deal with the case Rez ) 0, where the
x integration contour can be maintained along the real
axis. For complex z in this region we integrate Eq. (17)
along the ray y' = yt, with 0 & t & 1, to obtain

OO

IB ( )I d -"*'-!"!"'II"+'!"!-'
N Z ZC

"* (*' —&*')"" (26)N!

Again, the right side is BN(1) multiplied by a factor of
lzl

+ . In Ref. [1], BN(1) was shown to be bounded for
large N in precisely the same way as AN(l).

Thus, altogether,

IRN(z)l & CN i Izl +'e i', (27)

8N(y) = 1 — dy' y' e " /N!,
G

provided that

4
(28)

using ON(0) = l.
The x integration in Eq. (18) splits naturally into the

two ranges 0 & x & i/A and i/A & x. In the first case
y = lyle*, where 0 = arg(z). The contribution to the
remainder from this range is therefore

l~l

(z) dx e
—&& +v d N —zzze' i(N+1)8Z

(20)

Thus,

Now let us consider Rez & 0. The only difference is
that since cos 0 & 0 the roles of AN and BN are reversed.
That is, IAN(z)l is bounded as in Eq. (23) independent
of lzl, while IBN(z)l is bounded in the same way, pro-
vided that Eq. (28) holds. Altogether, the conclusion for

IRN(z) I
remains the same.

B. Steepest-descent evaluation of Z(z)

For Rez ) 0 the integral in Eq. (3) is an adequate
definition of the function Z(z) in the complex-z plane.
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Later on in this subsection we will examine the analytic
continuation of Z(z) to the left-half z plane. Because
A = AN is large, we evaluate the integral by looking for
the saddle points of the exponent y in the integrand:

(p(x)—:—Ax + z(Ax —x ) . (29)

The three saddle points satisfying p'(x) = 0 are xo ——

0 and xy = +/A(z —1)/(2z). At these saddle points
p(xo) = 0 and y(x~) = —Az(z —I)'/(4z).

The method of steepest descents requires that for each
value of complex z we deform the integration path in
Eq. (3) to a stationary-phase contour in the complex-x
plane connecting the original end points at z = koo. %e
find that there are two cases to consider. When ]z] ( 1
(region A) the stationary-phase contour passes through
the saddle point xo only and not through the others.
In contrast, when ]z] ) 1 the stationary-phase contour
passes through all three saddle points. The appropriate
integration contours for these two cases are illustrated in
Figs. 4 and 5, respectively. In the second case there are
two subregions in the complex-z plane to consider, region
8, in which exp[p(xy)] is subdominant with respect to
exp[p(xo)] = 1, and region C, in which the reverse is true.
The boundary curve I' between subregions 8 and C is
given by the polar equation

2F
cos8 =

r2+ 1

where z = re'~. The above regions and the boundary
curves are illustrated in Fig. 6.

In regions A and 8 the dominant contribution to
Z~(z) comes from the saddle point at the origin, whose
contribution is a slowly varying (nonexponential) func-
tion of ¹ Z(z) N ~ . Referring to Eq. (15), we
see that a zero of Z~(z) must arise from a cancellation
between this contribution and R~(z), which as we have

FIG. 4. Stationary-phase contours of the function rp(x) in
Eq. (29) for a typical complex value of z with ]z~ ( 1. The
original integration contour lying along the real axis must be
distorted into the contour marked AxoB, passing through the
saddle point xo. The other saddle points play no role in the
asymptotic evaluation of the integral.

FIG. 5. Stationary-phase contours of the function y(x) in
Eq. (29) for a typical complex value of z with ~z~ ) 1. The
original integration contour lying along the real axis must be
distorted into the contour marked Az BxoCz+D, passing
through the three saddle points zo and xy.

seen is bounded by const x exp[A(in~z~ —o./2)]. Thus,
no zero is possible for ~z~ ( e ~ = 1.94. . . . Since this
value is strictly greater than one, the zeros in regions
A and 8 will not affect the convergence of R~. From
the numerical plot in Fig. 3 it appears that the bound on
]z] is saturated, giving rise to a ring of zeros.

In region C the dominant contribution to ZIv(z) comes
from the saddle points xy. These saddle points give a
nontrivial exponential dependence to Z~(z) of the form
exp[No. (z —1)2/(4z)). Since this exponent is positive,
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FIG. 6. Right-half z plane showing the three regions A,
8, C discussed in Sec. III B. The boundary between regions
8 and C, labeled I', is given in Eq. (30). Also shown are the
two smallest-modulus roots of Zg(z) for N = 27.
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the necessary cancellation required for a zero can only
occur at still larger values of ~z~. This accounts for the
conjugate pair of complex zeros lying outside the ring in
Fig. 3 and the large real root. None of these zeros aBects
the convergence of 'R~.

Finally, we examine the boundary curve I' separating
regions 8 and C. On this curve the exponent of the
saddle points at x~ is the same as that of xo. There
thus arises the possibility of a cancellation between their
contributions, leaving a remainder which can be compen-
sated by R~(z) at a smaller value of ~z~ inside the ring
of zeros in Fig. 3. Note that the smallest zero marked
in Fig. 6 lies almost exactly on I', indicating that this is
indeed the mechanism that produces the zero of smallest
absolute value. In order for this cancellation to occur
the two saddle-point contributions must be completely
out of phase. The phase of each contribution is of course
uniquely determined by the direction of the stationary-
phase path going through the saddle point. As can be
seen &om Fig. 5, the stationary-phase path directions dif-
fer by x/2. Thus, the required condition for cancellation
ls

Im (p(z~) = vr/2+ (2n+ 1)x,

eigenvalue problems. Once the integral representation
for Z(z) has been continued to negative values of Rez,
it may be subjected to the same saddle-point analysis as
above. For this case, there are just two regions, ~z

~
( 1 in

which the stationary-phase contour passes only through
the saddle point xo and ~z~ ) 1 in which the contour
passes through all three saddle points, but the contribu-
tion kom xo dominates. These two cases correspond to
what happens in regions A and 8 for Rez ) 0. Thus, the
resulting zeros complete the ring of zeros on Fig. 3 but
do not acct our conclusions regarding the convergence
of W~.

IV. DISCUSSION AND CONCLUSIONS

The arguments presented above establish the conver-
gence and bound the remainder in an optimized expan-
sion of W:—ln Z for the non-Gaussian integral (3), pro-
vided we choose to vary the optimizing parameter A with
X at large N so as to optimize the convergence of the
partials ZN (i.e. , we take A v N):

lnZ lnZ~ - g-~ /'

where n is any integer.
This equation is to be solved in conjunction with

Eq. (30). The condition ~z~ ) 1 excludes negative val-
ues of n and in fact the smallest value of the modulus
of the root z is obtained for n = 0. Kith n = 0 the
simultaneous solution of Eqs. (30) and (31) is

(ignoring power prefactors). With this choice of N de-

pendence for A, we have shown that

ln Z~ —(ln Z~)N e

The remainders in the partials WN = (lnZ~)~ for the
connected function W are thus asymptotically

z= a+ga2 —1, (32)
W W

—/3mN/cx

where a = 1+3vri/(Na). The accuracy of our asymptotic
analysis improves with increasing N. For X = 27 this
saddle-point analysis predicts the positions of the small-
est roots quite accurately: z = 1.481. . . 6 (0.811.. )i, .
to be compared with the actual numerical values z =
1.443. . .6(0.835. . .)i,, as shown in Fig. 6. For larger val-
ues of N the roots approach their asymptotic values with
an error that behaves like 1/~¹

From Eq. (32) we can determine the behavior for large
N of the modulus of the smallest root z;„.This is given
in Eq. (16), which we have checked numerically by per-
forming a fit to a series in inverse powers of v N up to
N = 59. The crucial feature of Eq. (16) is that ~z

approaches 1 &om above sufEciently slowly that 'R~, the
difference between R"~ and TV, tends to zero. %bile the
convergence is not as rapid as that of the sequence Z~,
which converges like exp( —aN/2), it still converges like

an exponential: exp( —/3vr N/n) .
Up until now we have not considered the case Rez ( 0.

For this case the integral representation for Z(z) is no
longer valid as it stands because it is divergent. As z is
rotated into the left-half complex plane the end points of
the integration contour must be rotated in the opposite
direction (and at one-quarter of the rate) in order for the
integral to continue to exist. A description of this ana-
lytic continuation procedure may be found in Ref. [16] for
the case of boundary conditions on di8'erential equation

Although the numerical illustrations have been for odd
N, we should emphasize that with A chosen as y~aN the

f9

FK'. 7. Wiv(4) versus A for N = 19, showing the
lower maximum and the minimum. The dotted line is at
A = Aiv = Qn¹ Note that the vertical scale is highly mag-
ni6ed, with a range of about 7 x 10
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results for even N interpolate smoothly between those
for odd N. The distinction originally arose [2] in the
context of the principle of minimal sensitivity (PMS [7])
as applied to Z~(A). There it turns out that for odd N
there is a single stationary point of Z~ as a function of
A, whereas for even N there is a point of inBection but no
stationary point. The present paper marks a step away
&om reliance on the PMS philosophy. Instead we are
simply choosing A in such a way that the convergence of
the sequence WN is guaranteed. This methodology elim-
inates the arbitrariness that often occurs in applying the
PMS criterion. That is, there may well be several sta-
tionary points [17), and one then has to choose between
them by some further criterion which itself needs to be
justified. In the case of W~ there are indeed several sta-
tionary points, and one no longer has a strict inequality
such as Z~ ( Z to help one distinguish between them.
For example, for N = 19 there are two maxima and one
minimum in A. The first maximum and minimum, illus-
trated in Fig. 7, are reasonably close to the exact value of
W, while the second maximum exceeds it by some 0.4%%uo.

The value of A given by A = gaN is slightly lower than

the position of the first maximum, and gives a better es-
timate of W: 0.594875 7 compared with the exact value
of 0.5948753. . . .

The convergence of the optimized expansion for W is
slower than that for Z with this choice of A(N). It is
of course possible that a more rapid convergence [with
ln(W —W~) N—",

2 ( v ( 1] might be obtained
with a difFerent choice of A(N). Our main object here
has been to provide an existence proof for a convergent
procedure for the connected generating function. An un-
derstanding of the convergence at the level of connected
quantities is crucial in higher dimensions, where the h

expansion for the full partition function converges at any
finite space-time volume, but at a rate which deterio-
rates as the volume is increased. As W is linear in the
volume (for large volume) a convergent procedure at any
finite volume will be uniformly convergent (for connected
quantities) as the volume cutoff is removed. Finally, we
note that the techniques used above involve only saddle-
point estimates which should generalize readily to func-
tional integrals defining the partition functions for quan-
tum mechanics or 6eld theories.
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